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National Genetic Household Surveys (NGHS) 
 

• Conducted in various countries 

e.g.    Health 2000 Survey from Finland (Heistaro, 2008); 

Canadian Health Measures Survey (Tremblay et al., 2007); 

    U.S. Health and Retirement Study; 

         National Health and Nutrition Examination Surveys (NHANES)  

o Phenotypic, environmental and behavioral data 

o Various types of genetic data 

• Less bias in NGHS comparing to traditional genetic studies 

NGHS: random samples representing well-defined populations 

Traditional genetic studies: volunteers or convenience sample 
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NGHS Cont'd 
 

• Correlation among 
families due to multistage 
geographical cluster 
sampling 
 
• Correlation within 

families because of 
biological inheritance 
 
• Differential sampling 

Weights 
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OUTLINE 
 
 

PART I: Hardy-Weinberg Equilibrium Tests  
 
  
 
PART II: Genetic Association Studies with Complex 
Designs 
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PART I: Hardy-Weinberg Equilibrium Tests 
 

Hardy Weinberg Equilibrium (HWE) 
 

In the case of a single locus with two alleles A and a: 

Frequencies of allele A and allle a:𝑓 𝐴 = 𝑝!; 𝑓 𝑎 = 𝑝!  

Under ideal conditions, 

Hardy Weinberg Equilibrium will be reached after one generation of 
random mating, i.e., the genotype frequencies remain same:  

𝑓 𝐴𝐴 = 𝑝!!; 𝑓 𝐴𝑎 = 2𝑝!𝑝!; 𝑓 𝑎𝑎 = 𝑝!! 
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Why Testing HWE is Important? 

• Departure from HWE - infer the existence of natural selection, 
mutation, migration, assertive (non-random) mating, otherwise infer 
genotyping errors. 

• In Genetic Association Studies 

Preliminary step before testing for association between the alleles 
and disease (Salanti et al., 2005; Zou, 2006; Zou & Donner, 2006) 

• HWE is often an assumption in studies testing association of gene-
environment interactions with diseases (Chatterjee and Carroll, 
2005)  
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HWE Testing Methods for NGHS 

Ø Y. Li et al. (2009), Testing Hardy-Weinberg equilibrium and 
homogeneity of Hardy-Weinberg disequilibrium using complex 
survey data.  Biometrics 65, 1096-104.  

 
ü Correlation due to multistage cluster sampling 

 
ü Differential weighting 
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How to take account of genetic correlation within families? 
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METHODS – HWE TESTS 
Notations:  
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For a locus with M alleles (𝑋!,…, 𝑋! ,… ,𝑋!) 

• 𝑝! = Pr 𝑋! :  Frequency of allele 𝑋! 

• 𝑝!!! = Pr 𝑋!𝑋!! :  Frequency of genotype 𝑋!𝑋!! 

• 𝐺 = !!! !
!

: the number of possible distinct genotypes 

For example, for a locus with 2 alleles A and a,  

M=2 

Allele frequencies: 𝑝! and 𝑝!, 𝑝! + 𝑝! = 1 

Genotype frequencies: 𝑝!!,𝑝!" ,𝑝!!, with 𝑝!! + 𝑝!" + 𝑝!! = 1 

G= !!! !
!

= !!! !
!

= 3 
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• 𝒚𝒉𝒊𝒋𝒌 = (𝑦!!"#,!,… ,𝑦!!"#,!,… ,𝑦!!"!,!!!)!  

genotype indicators for individual hijk with  

𝑦!!"#,! =
1 if  the  genotype  of  individual  ℎ𝑖𝑗𝑘  is  𝑔
0 Otherwise                                                                                                        

• 𝝁𝒉𝒊𝒋𝒌 = (𝜇!!"#,!,… , 𝜇!!"#,!,… , 𝜇!!"!,!!!)!, where 

𝜇!!"#,! =
1− 𝑟 𝑝!! + 𝑟𝑝! if  the  genotype  𝑔 =   𝑙/𝑙
2 1− 𝑟 𝑝!𝑝!!   if  the  genotype  𝑔 =   𝑙/𝑙! 

• 𝑟  : Fixation coefficient to characterize the departure from HWE – 
correlation between two alleles in an individual. 

Under HWE H0: r = 0 
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Pseudo Score Function – Individual-based 

𝑺 𝜽 =
𝜕𝝁𝒉𝒊𝒋𝒌(𝜽)

𝜕𝜽
𝑾𝒉𝒊𝒋𝒌𝑽𝒂𝒓!𝟏 𝒚𝒉𝒊𝒋𝒌 (𝒚𝒉𝒊𝒋𝒌 − 𝝁𝒉𝒊𝒋𝒌(𝜽))

!!!"

!!!

!!!

!!!

!!

!!!

!

!!!

,     

  where  

 𝑾𝒉𝒊𝒋𝒌 =
⋱ ⋯ 0
⋮ 𝑤!!"# ⋮
0 ⋯ ⋱ (!!!)(!!!)

Inverse of the selection probability  

 

 𝑽𝒂𝒓 𝒚𝒉𝒊𝒋𝒌  - covariance matrix of 𝒚𝒉𝒊𝒋𝒌 

 
Working correlation among members within families – Independent 
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To take account of genetic correlations within families  

Pseudo Score Function – Family-based 

𝑺 𝜽 =
𝜕𝝁𝒉𝒊𝒋(𝜽)
𝜕𝜽

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!𝟏 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐(𝒚𝒉𝒊𝒋 − 𝝁𝒉𝒊𝒋(𝜽))
!!!

!!!

!!

!!!

!

!!!

,     

  where  

𝒚𝒉𝒊𝒋 = (𝒚𝒉𝒊𝒋𝟏,… ,𝒚𝒉𝒊𝒋𝒌,… ,𝒚𝒉𝒊𝒋𝑲𝒉𝒊𝒋)
! across selected family 

members 
 
𝝁𝒉𝒊𝒋 = 𝐸(𝒚𝒉𝒊𝒋) = (𝝁𝒉𝒊𝒋𝟏,… ,𝝁𝒉𝒊𝒋𝒌,… ,𝝁𝒉𝒊𝒋𝑲𝒉𝒊𝒋)

! 
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Pseudo Estimating Equations  

𝑺 𝜽 =
𝜕𝝁𝒉𝒊𝒋(𝜽)
𝜕𝜽

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!𝟏 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐(𝒚𝒉𝒊𝒋 − 𝝁𝒉𝒊𝒋(𝜽))
!!!

!!!

!!

!!!

!

!!!

,   

  where  

𝒘𝒉𝒊𝒋 is sample weight matrix for family-hij with diagonal involving 
sample weight for each selected family member  

𝒘𝒉𝒊𝒋 =
𝑤!!"!𝑰!!! 0 0

0 ⋱ 0
0 0 𝑤!!"!!!"𝑰!!!

 with 

   𝑰!!! = (G-1) dimensional identity matrix 
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Pseudo Estimating Equations  

𝑺 𝜽 =
𝜕𝝁𝒉𝒊𝒋(𝜽)
𝜕𝜽

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!𝟏 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐(𝒚𝒉𝒊𝒋 − 𝝁𝒉𝒊𝒋(𝜽))
!!!

!!!

!!

!!!

!

!!!

,   

  where 𝑽𝒂𝒓 𝒚𝒉𝒊𝒋  -- genetic correlation within family-hij 
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For example, consider family-hij with 1 parent (P) and 2 offspring 
(𝑂!,𝑂!) and locus with allele A and allele a 

𝑽𝒂𝒓 𝒚𝒉𝒊𝒋 =
𝜮𝑷 𝜮𝑷,𝑶𝟏 𝜮𝑷,𝑶𝟐

𝜮𝑶𝟏 𝜮𝑶𝟏,𝑶𝟐
𝑆𝑌𝑆 𝜮𝑶𝟐

  , 

where  

𝜮𝑷 = 𝜮𝑶𝟏 = 𝜮𝑶𝟐: 2 by 2 covariance matrices between the 
indicators of genotypes in the same individual 
 

𝑝!!(1− 𝑝!!) −𝑝!! ∙ 2𝑝!𝑝!
𝑆𝑌𝑆 2𝑝!𝑝! ∙ (1− 2𝑝!𝑝!)
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𝜮𝑷,𝑶𝟏 = 𝜮𝑷,𝑶𝟐: covariance between parent and offspring 

𝑝!! − 𝑝!! 𝑝!!𝑝! − 𝑝!! ∙ 2𝑝!𝑝!
𝑆𝑌𝑆 𝑝!!𝑝! + 𝑝!!𝑝! − (2𝑝!𝑝!)!

   

𝜮𝑶𝟏𝑶𝟐: covariance between full siblings  

1
4
𝑝!! +

1
2
𝑝!! −

3
4
𝑝!!

1
2
𝑝!!𝑝! −

3
2
𝑝!!𝑝!

𝑆𝑌𝑆 𝑝!𝑝! − 3𝑝!!𝑝!!
   

 

𝜮’s are functions of coefficient of condensed identities (CCI), and 
depend on the family relationship between the pair of individuals 

(Lange, 2002 on page 82) 
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Pseudo Estimating Equations 𝑺 𝜽 = 𝟎: 

§ Unknown Parameters: 𝜽 = 𝒑, 𝑟 ! 

§ 𝑺 𝜽 = (𝑺𝒑! , 𝑆!!)! 
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Quasi-score test statistic: 

𝑇𝑆! = 𝑆!! 𝜽 𝑽𝒂𝒓!𝟏(𝑆!)𝑆!! 𝜽 ,  

where 

𝜽 = 𝒑𝒘, 𝑟 = 0 ! – The solution to 𝑺! 𝜽 = 𝟎 under H0 

𝑽𝒂𝒓(𝑆!) – Consistent estimator of 𝑽𝒂𝒓(𝑆!) 
 

By Taylor linearization method (Rao et al., 1998) 

𝑽𝒂𝒓(𝑆!)     =
𝐼!

𝐼! − 1
𝒛!! − 𝒛! 𝒛!! − 𝒛!

!
!!

!!!

!

!!!

, 
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where 

𝒛!! = !𝝁𝒉𝒊𝒋
!"

− 𝑰𝟐𝟏𝑰𝟏𝟏!𝟏
!𝝁𝒉𝒊𝒋
!𝒑

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!! 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐(𝒚𝒉𝒊𝒋 − 𝝁𝒉𝒊𝒋)
!!!
!!! ,  

𝑰𝟐𝟏 =
!
!𝒑
𝑺! 𝜽 =

− !𝝁𝒉𝒊𝒋
!𝒓

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!! 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐 !𝝁𝒉𝒊𝒋
!𝒑

!!!!
!!!

!!
!!!

!
!!! , and 

𝑰𝟏𝟏 =
!
!𝒑
𝑺! 𝜽 =

−    !𝝁𝒉𝒊𝒋
!"

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!! 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐 !𝝁𝒉𝒊𝒋
!𝒑

!!!!
!!!

!!
!!!

!
!!! ,  

evaluated at 𝜽 = 𝜽  , and  𝒛! = !
!!

𝒛!!!!
!!! . 

 
Under suitable conditions (Rao et al 1998), 

              𝑇𝑆! = 𝑺𝒓𝑻 𝜽 𝑽𝒂𝒓!𝟏(𝑺𝒓)𝑺𝒓𝑻 𝜽   ~  𝝌(𝟏)𝟐  
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Simulations show that the developed HWE test 𝑇𝑆!:  
 

o Maintain the nominal level 
 

o Achieve higher power than the test 𝑇𝑆!   that ignores the 
genetic correlation within families 

 
Limitations:  

Within-family sampling depends on 

family  relationship   e. g. 1P2O, 3O, etc √
𝐠𝐞𝐧𝐨𝐭𝐲𝐩𝐞  𝐫𝐞𝐥𝐚𝐭𝐞𝐝  𝐟𝐚𝐜𝐭𝐨𝐫𝐬                                             X

   

𝒘𝒉𝒊𝒋
𝟏/𝟐𝑽𝒂𝒓!! 𝒚𝒉𝒊𝒋 𝒘𝒉𝒊𝒋

𝟏/𝟐 

 



22 

 

 

To fix the problem, we use the Pseudo Score Function based on the 
pairwise scores  

𝑺 𝜽 = 𝒘𝒉𝒊𝒋𝑺𝒉𝒊𝒋

!!!

!!!

!!

!!!

!

!!!

= 𝟎, 

 with 

𝑺𝒉𝒊𝒋 =
1

𝜋!"|!!"

!!!"

!!!

!!!"

!!!

𝜕𝝁𝒉𝒊𝒋 𝜽
𝜕𝜽

𝑽𝒂𝒓!𝟏 𝒚𝒉𝒊𝒋 𝒚𝒉𝒊𝒋 − 𝝁!!" , 
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where 

o 𝜋!"|!!" – Joint inclusion probability for pair (k, l) given family hij is sampled 

o 𝒚𝒉𝒊𝒋 = (𝒚𝒉𝒊𝒋𝒌,𝒚𝒉𝒊𝒋𝒍)𝑻 – a vector of indicators of genotypes for pair of 

individuals (k, l) in family hij 

o 𝝁𝒉𝒊𝒋 = (𝝁𝒉𝒊𝒋𝒌,𝝁𝒉𝒊𝒋𝒍)𝑻 = E(𝒚𝒉𝒊𝒋)  

Quasi-score test statistic (Rao et al. 1998):  

~ derived along the same line as above:  

𝑇𝑆! = 𝑆!! 𝜽 𝑽𝒂𝒓!𝟏(𝑆!)𝑆!! 𝜽 ~𝜒!!  
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Simulations Studies 
Population Generation 
• 10,000 PSUs with each PSU composed of 40 families 
• Generate genotype 

o Consider a biallelic locus (A, a) 
o 𝑝!= 𝑝!= 0.5; 𝑟 = 0, 0.1, 0.15, 0.2 

• Parents: multinomial distribution with specified genotype 
frequencies 𝑝 𝐴𝐴 = 1 − 𝑟 𝑝!! + 𝑟𝑝!; 𝑝 𝐴𝑎 = 2 1 − 𝑟 𝑝!𝑝! ; 
𝑝 𝑎𝑎 = 1 − 𝑟 𝑝!! + 𝑟𝑝! 

• Offspring: randomly generated according to Mendelian law 
• Population clustering  

Sort all families by #(aa). The 10,000 PSUs are then formed by 
grouping every 40 families sequentially. 
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Sampling Designs 
• Stage 1: sample 100 PSUs 

o Simple random sampling (srs) 
o Proportional to population size sampling (pps) 

The measure of size related to genotypes, psu’s with more #aa 
is oversampled 

• Stage 2: Sample family members - stratified SRS (SSRS) with 
stratum defined by 

o Family relationship – SSRS(F) 

o Family relationship & genotype – SSRS(GF) 

~ Oversample genotype aa   
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Test statistics 
• TS1 

• Based on quasi scores at the family level. 

• Considers genetic correlation within families. 

• TS2 

• Based on quasi scores at the family level. 

• Does NOT consider genetic correlation within families. 

• TSp 

• Based on quasi pairwise scores within families. 
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Evaluation Criteria 

• RelBias of 𝑝! 

RelBais (𝑝!) = [mean (𝑝!) - 𝑝!]/𝑝!×100% 

• Variance ratios 

o Analytical variance = Mean of 1,000 estimates of 𝑽𝒂𝒓𝑳𝑺𝒓(𝜽) 

o Empirical variance = Variance of 1,000 estimates of 𝑝! 

VR = Analytical variance/Empirical variance 

• Rejection Rates at nominal level 5% 

% rejecting 𝑟  = 0 in 1,000 HWE test 

• Under H0 (𝑟 = 0): test size 

• Under H1 (𝑟 > 0): power 
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IN SUMMARY, 
 

Ø If within family sampling variables ⊥  Genotypes 

𝑇𝑆!  prodcues approx. unbiased estimate of allele frequencies, 
maintains the nominal level at the null hypothesis and achieves the 
highest power under alternative hypothesis 

Ø If within family sampling variables related Genotypes 

𝑇𝑆!  prodcues approx. unbiased estimate of allele frequencies, 
maintains the nominal level at the null hypothesis and achieves the 
highest power under alternative hypothesis 
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Conclusions of HWE Tests 

• Considers both levels of correlations. 

• Considers differential sampling weights 
 

When the within-family sampling is independent of genotypes/disease status: 
 

ü Y. Li, et al. (2011), Testing for Hardy Weinberg equilibrium in national 
household surveys that collect family-based genetic data. Annuals of 
Human Genetics 75, 732-41. 

 
When the within-family sampling is related to genotypes/disease status: 
 

ü L. Wang, et al. (2015): A composite likelihood approach in testing for 
Hardy Weinberg equilibrium using family-based genetic survey data 
(submitted). 
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PART II: GENETIC ASSOCIATION STUDIES  
WITH COMPLEX DESIGN 

Genetic Association Studies (GAS) aim to identify genomic variants 

(e.g., SNPs, haplotypes) that are associated with disease outcomes. 
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A motivating example—U.S. Kidney Cancer Case-Control Study 
• Population-Based Case-Control Study, Detroit, Michigan and Chicago, 

Illinois 
• Cases: identified from the population-based cancer registry in Detroit 
• Selection of controls: 
o Stratified Simple Random Sample design 
o Strata defined by the sex, age and black density   

• 1,018 cases and 1,038 controls 
• Buccal and blood samples were collected as a source of genomic DNA.   
• Tobacco use is one of the risk factors of kidney cancer (Brennan et al., 

2008) 

Analytical Goal 1: Investigate the interaction effect between tobacco use 
and the SNPs in the APOE promoter region (Moore, et al. 2009) on the risk 
of kidney cancer 
 
Analytical Goal 2: Investigate the main effect of the haplotypes inferred from 
4 SNPs (Karami et al. 2009) on the risk of kidney cancer.   
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In GAS, SNP and haplotypes – two common forms of genetic variants 

SNP(single-nucleotide-polymorphism) is the occurrence of two or more alleles 
at one locus in a DNA sequence among individuals in the same population. 

 

 

 

 

 

  

The bases G and A are referred to as alleles,  

alternative forms of a DNA segment at a single locus.  

  

www.ibbl.lu	   
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Goal 1: Gene-Environment (G-E) Interaction effect on risk of disease 

• Standard Logistic Regression Approaches – G-E interaction term 
included in the regression model (STATA, SUDAAN, R-SURVEY) 
 
However, Poor power due to small numbers of observations in 
cells cross-classified genetic variants and exposures.   
 

• Retrospective methods can be more efficient – exploring various 
covariate-distributional assumptions (Chatterjee et al. 2005).  

Therefore,   

Y. Li and B.I. Graubard (2012), Profile semi-parametric maximum likelihood 
estimation of gene-environment interaction using population-based case-
control study with probability sampling. Biostatistics, 13, 711-23. 
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Analyses results from KCS analysis  
 

 
Weighted  

Logis. Reg. 
Pseudo-
SPMLE 

  Estimates 
Smoking status 0.10 0.30 
rs8106922 0.19 0.22 
Smoking status×rs8106922 -0.06 -0.19 
  Standard Errors 
Smoking status 0.17 0.16 
rs8106922 0.13 0.12 
Smoking status×rs8106922 0.16 0.11 
  p-values 
Smoking status 0.56 0.06 
rs8106922 0.15 0.08 
Smoking status×rs8106922 0.73 0.09 
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Goal 2: Haplotype effect on the risk of disease 

Haplotype is a set of closely linked SNPs (combination of SNPs) 
on the same chromosome within the genomic region of interest. 

 

Diplotype is haplotype pairs on homologous chromosomes. 

Genotype is a combination of the haplotypes/SNPs on 
homologous chromosomes. 

Phenotype is the traits or conditions that you can observe or 
diagnose, like eye color or breast cancer. 

 

For a simple example,  
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          Individual 1         Individual 2 
  

   haplotype	  1 

SNP	  A SNP	  B 

   haplotype	  2 

SNP	  a SNP	  b 

 

 

diplotype 

	  AB/ab 

   haplotype	  3 

SNP	  A SNP	  b 

   haplotype	  4 

SNP	  a SNP	  B 

 

 

diplotype 

	  Ab/aB 

  

genotype 

	  AaBb 
     

phenotype 

kidney	  cancer 
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Analyzing haplotype data 
Advantages 

• There is strong evidence that several variants can interact together 
to have a large effect on the observed phenotype [Schaid, 2004]. 

• Haplotypes reduce the dimension of association tests and may 
gain statistical power [Clark, 2004] 

Challenges  

• Number of haplotypes can be large, and the number is often an 
unknown priori [Excoffier and Slatkin, 1995]. 

• Phase Ambiguity 

Can genotype data infer which SNPs form the Haplotype?  

NO! 

Phase ambiguity – MISSING DATA PROBLEM  
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Two-step method  
Step 1: Estimation of Haplotype Frequencies 𝜽 – assuming HWE 

Challenge: Can be heavy computation if 𝜽 is high dimensional! 

Weighted EM algorithm  

ü At E-step, the expected number of each haplotype in the 

population conditional on the genotypes by HWE and 

ü At M-step, the weighted estimates of haplotype frequencies,  

ü Implemented iteratively until convergence is reached.  

The estimate denoted by 𝜽𝑾𝑬𝑴  
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Step 2: Estimation of Regression Coefficients –Treating 𝜽!"# as fixed  
 
The regression parameters 𝜷 can be obtained by maximizing  

𝐿!
! 𝑦,𝐺,𝐸 = 𝑤! log𝑃𝑟! 𝑦! 𝐸! ,𝐷!

! 𝑃𝑟𝜽!"#,!(𝐷!
!|𝑜𝑏𝑠)

!!

!!!

!

!!!

       

 
conditional on the observed data obs=(y, G, E),  

 

𝑃𝑟𝜽!"#,! 𝐷!
! 𝑜𝑏𝑠 =

𝑃𝑟! 𝑦! 𝐸! ,𝐷!
! 𝑃𝑟𝜽!"#

(𝐷!
!)

𝑃𝑟! 𝑦! 𝐸! ,𝐷!
!! 𝑃𝑟𝜽!"#

(𝐷!
!!)!!

!!!!

. 
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where  

𝑦!: Binary indicator of presence, y=1, or absence, y=0, of a disease 

𝐸!: Environmental covariates associated with the ith person 

𝐺!: Genotype of the ith person 

obs=(y, G, E) 

  

𝐷!
!:  The jth diplotype that is compatible with genotype 𝐺! 

𝑐!: the total number of diplotypes that is compatible with 𝐺! 

 

𝑃𝑟! 𝐷 : the prior probability of diplotype 𝐷  

𝑃𝑟!(𝑦|𝐸,𝐷): the risk of disease given the exposure (E) and D 
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𝐿!
! 𝑦,𝐺,𝐸 = 𝑤! log𝑃𝑟! 𝑦! 𝐸! ,𝐷!

! 𝑃𝑟𝜽!"#,!(𝐷!
!|𝑜𝑏𝑠)

!!

!!!

!

!!!

       

𝒘𝒊: Sampling weights  

• Cross-sectional studies – Population Weights (PW)  

• Case-control studies with rare disease 

𝜷𝑾𝑬𝑴- Inefficient due to the large variation of the PWs  

à Rescale the PW of controls [Scott and Wild, 2011]  

 

𝜷!"#  for all the coefficients apart from intercept is 

design consistent  
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• One-step method   
~ Estimate haplotype frequencies 𝜽 and regression parameters jointly  𝜷  

o Construct the pseudo log-likelihood  

𝐿!! 𝑦,𝐺,𝐸 = 𝑤! log𝑃𝑟! 𝑦! 𝐸! ,𝐷!
! 𝑃𝑟!(𝐷!

!|𝑜𝑏𝑠)
!!

  !!!

!

!!!

  ,     

Unknown parameters 𝜸 = 𝜷,𝜽    

o Solving 𝜸 directly are tedious and even numerically infeasible  

o Instead of maximizing 𝐿! directly – Extended WEM (EWEM)  
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• E-step: Compute the probability of diplotypes given observed 
data (genotypes, covariates, and outcomes) 

 

𝑃𝑟 𝐷!
! 𝑜𝑏𝑠 =

𝑃𝑟! 𝑦! 𝐸! ,𝐷!
! 𝑃𝑟𝜽(𝐷!

!)

𝑃𝑟! 𝑦! 𝐸! ,𝐷!
!! 𝑃𝑟𝜽(𝐷!

!!)!!
!!!!

. 

• M-step: maximize the conditional expectation of log-likelihood 
based on the complete data (i.e. diplotypes, covariates, and 
outcomes) 

𝐿!
! 𝑦,𝐺,𝐸 = 𝑤! log 𝑃𝑟! 𝑦! 𝐸! ,𝐷!

! 𝑃𝑟(𝐷!
!|𝑜𝑏𝑠)

!!

  !!!

!

!!!

       

 
• The iteration is continued until convergence criterion is satisfied.   

The resulting estimates are denoted by 𝜽𝑬𝑾𝑬𝑴 and  𝜷𝑬𝑾𝑬𝑴.  
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Variance estimation of the pseudo log-likelihood estimators  

The pseudo log-likelihood estimators for haplotype frequencies 𝜽 and 
𝜷 are nonlinear functions of the complex sample data.  

By Taylor linearization method,  

• Variance of one-step estimators 𝜷!"!# , automatically accounting for 
the variance due to estimating the haplotype frequencies 𝜽.  

• Variance of two-step estimators 𝜷!"# , however, ignoring the 
variance due to estimating the haplotype frequencies 𝜽. 
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Simulation Studies  

– Case-Control Design 
– Cross-Sectional Design 
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Summary of simulation results 

ü Under cross-sectional design, the proposed one-step and two-step 
methods for estimating haplotype frequencies,   𝜽!"#   and 𝜽!"!# , 
and regression coefficients, 𝜷!"# and 𝜷!"!#, perform equally well. 
Note the estimated variances of the one-step estimator 𝜷!"!# 
automatically account for the uncertainty of 𝜽!"!#, and therefore 
are recommended 
 

ü Under case-control design with rare diseases, the two-step 
estimator 𝜽!"# with population weights (PW) and 𝜷!"# with scaled 
PW are recommended. 
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U.S. Kidney Cancer Case-Control Study 
  Two-Step Std 

  Estimates 
Haplotype 1010 -0.733 -0.427 
Smoking Status -0.128 -0.057 
Smoking Status by 1010 0.075 0.006 
  Standard Errors 
Haplotype 1010 0.365 0.339 
Smoking Status 0.227 0.209 
Smoking Status by 1010 0.207 0.199 
  p-values 
Haplotype 1010 0.045 0.207 
Smoking Status 0.573 0.783 
Smoking Status by 1010 0.717 0.977 
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Future Work 

ü Hardy-Weinberg Equilibrium tests 
o TSp test requires ≥ 2 members selected within families; TS1 test 

requires within-family selection ⊥  genotypes  
o Future work: New HWE test – combining TSp and TS1 

 

ü Genetic Association Studies (GAS)  
o Haplotype-based inference under retrospective framework 
o Genome Wide Association Studies  
o Sequencing Data 

ü Surveys help improve genetic studies 
Complex sampling designs offer unique advantages in GAS 

o Cost- and time-effective;  
o Obtain representative samples;  
o Avoid biased selection of controls and/or cases 
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Thank you! 
 

 


