GENETIC ANALYSES USING FAMILY-BASED SURVEY DATA

Yan Li

Joint Program for Survey Methodolgy

University of Maryland at College Park

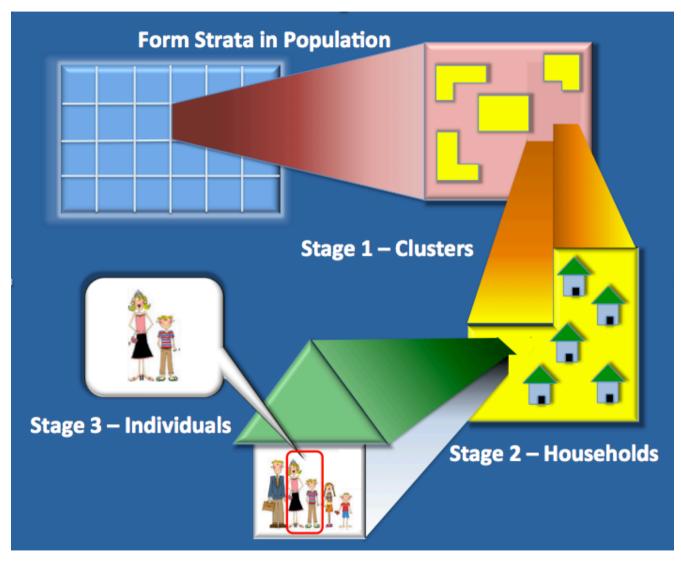
yli6@umd.edu

4th Baltic-Nordic Conference on Survey Statistics Aug 25, 2015

National Genetic Household Surveys (NGHS)

- Conducted in various countries
 - e.g. Health 2000 Survey from Finland (Heistaro, 2008);
 Canadian Health Measures Survey (Tremblay et al., 2007);
 U.S. Health and Retirement Study;
 National Health and Nutrition Examination Surveys (NHANES)
 Phenotypic, environmental and behavioral data
 - Various types of genetic data
- Less bias in NGHS comparing to traditional genetic studies <u>NGHS</u>: random samples representing well-defined populations <u>Traditional genetic studies</u>: volunteers or convenience sample

NGHS Cont'd



• Correlation among families due to multistage geographical cluster sampling

• Correlation within families because of biological inheritance

Differential sampling
 Weights

OUTLINE

PART I: Hardy-Weinberg Equilibrium Tests

PART II: Genetic Association Studies with Complex Designs

PART I: Hardy-Weinberg Equilibrium Tests

Hardy Weinberg Equilibrium (HWE)

In the case of a single locus with two alleles A and a:

Frequencies of allele A and alle a: $f(A) = p_A$; $f(a) = p_a$

Under ideal conditions,

Hardy Weinberg Equilibrium will be reached after one generation of random mating, i.e., the genotype frequencies remain same:

 $f(AA) = p_A^2$; $f(Aa) = 2p_A p_a$; $f(aa) = p_a^2$

Why Testing HWE is Important?

- Departure from HWE infer the existence of natural selection, mutation, migration, assertive (non-random) mating, otherwise infer genotyping errors.
- In Genetic Association Studies

Preliminary step before testing for association between the alleles and disease (Salanti et al., 2005; Zou, 2006; Zou & Donner, 2006)

 HWE is often an assumption in studies testing association of geneenvironment interactions with diseases (Chatterjee and Carroll, 2005)

HWE Testing Methods for NGHS

➢ Y. Li et al. (2009), Testing Hardy-Weinberg equilibrium and homogeneity of Hardy-Weinberg disequilibrium using complex survey data. *Biometrics* 65, 1096-104.

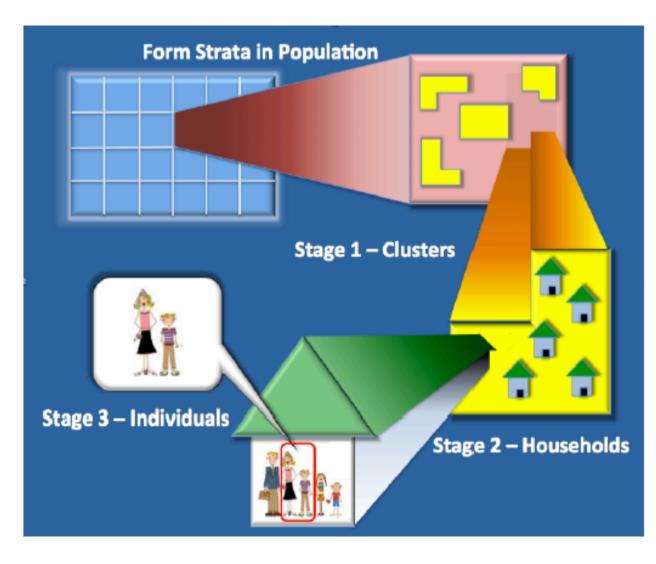
✓ Correlation due to multistage cluster sampling

✓ Differential weighting

How to take account of genetic correlation within families?

METHODS – HWE TESTS

Notations:



H strata ↓ I_h PSUs sampled in the stratum h ↓ J_{hi} families sampled in PSU-hi ↓ K_{hij} individuals in family-hij

For a locus with M alleles $(X_1, \ldots, X_m, \ldots, X_M)$

•
$$p_m = \Pr\{X_m\}$$
: Frequency of allele X_m

- $p_{mm'} = \Pr\{X_m X_{m'}\}$: Frequency of genotype $X_m X_{m'}$
- $G = \frac{(M+1)M}{2}$: the number of possible distinct genotypes

For example, for a locus with 2 alleles A and a,

M=2

Allele frequencies: p_A and p_a , $p_A + p_a = 1$

Genotype frequencies: p_{AA} , p_{Aa} , p_{aa} , with $p_{AA} + p_{Aa} + p_{aa} = 1$ $G = \frac{(M+1)M}{2} = \frac{(2+1)2}{2} = 3$ • $\mathbf{y}_{hijk} = (y_{hijk,1}, \dots, y_{hijk,g}, \dots, y_{hijk,G-1})^T$

genotype indicators for individual hijk with

 $y_{hijk,g} = \begin{cases} 1 & \text{if the genotype of individual } hijk \text{ is } g \\ 0 & \text{Otherwise} \end{cases}$

• $\mu_{hijk} = (\mu_{hijk,1}, ..., \mu_{hijk,g}, ..., \mu_{hijk,G-1})^T$, where

$$\mu_{hijk,g} = \begin{cases} (1-r)p_l^2 + rp_l & \text{if the genotype } g = l/l \\ 2(1-r)p_l p_{l'} & \text{if the genotype } g = l/l' \end{cases}$$

r: Fixation coefficient to characterize the departure from HWE – correlation between two alleles in an individual.

Under HWE H₀: *r* = 0

Pseudo Score Function – Individual-based

$$S(\theta) = \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \sum_{k=1}^{K_{hij}} \frac{\partial \mu_{hijk}(\theta)}{\partial \theta} W_{hijk} Var^{-1}(y_{hijk})(y_{hijk} - \mu_{hijk}(\theta)),$$

where

$$W_{hijk} = \begin{bmatrix} \ddots & \cdots & 0 \\ \vdots & w_{hijk} & \vdots \\ 0 & \cdots & \ddots \end{bmatrix}_{(G-1)(G-1)}$$
 Inverse of the selection probability

 $Var(y_{hijk})$ - covariance matrix of y_{hijk}

Working correlation among members within families – Independent

To take account of genetic correlations within families

Pseudo Score Function – Family-based

$$S(\theta) = \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \frac{\partial \mu_{hij}(\theta)}{\partial \theta} w_{hij}^{1/2} Var^{-1}(y_{hij}) w_{hij}^{1/2}(\frac{y_{hij}}{y_{hij}} - \frac{\mu_{hij}}{\mu_{hij}}(\theta)),$$

where

$$y_{hij} = (y_{hij1}, ..., y_{hijk}, ..., y_{hijK_{hij}})^T$$
 across selected family members

$$\boldsymbol{\mu}_{hij} = E(\boldsymbol{y}_{hij}) = (\boldsymbol{\mu}_{hij1}, \dots, \boldsymbol{\mu}_{hijk}, \dots, \boldsymbol{\mu}_{hijK_{hij}})^T$$

Pseudo Estimating Equations

$$S(\boldsymbol{\theta}) = \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \frac{\partial \mu_{hij}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} w_{hij}^{1/2} Var^{-1}(y_{hij}) w_{hij}^{1/2}(y_{hij} - \mu_{hij}(\boldsymbol{\theta})),$$

where

 w_{hij} is sample weight matrix for family-hij with diagonal involving sample weight for each selected family member

$$\boldsymbol{w_{hij}} = \begin{bmatrix} w_{hij1} \boldsymbol{I}_{G-1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & w_{hijK_{hij}} \boldsymbol{I}_{G-1} \end{bmatrix} \text{ with }$$

 $I_{G-1} = (G-1)$ dimensional identity matrix

Pseudo Estimating Equations

$$S(\theta) = \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \frac{\partial \mu_{hij}(\theta)}{\partial \theta} w_{hij}^{1/2} \frac{Var^{-1}(y_{hij})}{Var^{-1}(y_{hij})} w_{hij}^{1/2}(y_{hij} - \mu_{hij}(\theta)),$$

where $Var(y_{hij})$ -- genetic correlation within family-hij

For example, consider family-*hij* with 1 parent (P) and 2 offspring (O_1, O_2) and locus with allele A and allele a

$$Var(y_{hij}) = \begin{bmatrix} \Sigma_P & \Sigma_{P,O_1} & \Sigma_{P,O_2} \\ & \Sigma_{O_1} & \Sigma_{O_1,O_2} \\ SYS & & \Sigma_{O_2} \end{bmatrix},$$

where

 $\Sigma_P = \Sigma_{O_1} = \Sigma_{O_2}$: 2 by 2 covariance matrices between the indicators of genotypes in the same individual

$$\begin{bmatrix} p_A^2(1-p_A^2) & -p_A^2 \cdot 2p_A p_a \\ SYS & 2p_A p_a \cdot (1-2p_A p_a) \end{bmatrix}$$

$$\begin{split} \boldsymbol{\Sigma}_{P,\boldsymbol{\theta}_1} &= \boldsymbol{\Sigma}_{P,\boldsymbol{\theta}_2} \text{: covariance between parent and offspring} \\ \begin{bmatrix} p_A^3 - p_A^4 & p_A^2 p_a - p_A^2 \cdot 2p_A p_a \\ SYS & p_A^2 p_a + p_a^2 p_A - (2p_A p_a)^2 \end{bmatrix} \end{split}$$

 $\Sigma_{o_1o_2}$: covariance between full siblings

$$\begin{bmatrix} \frac{1}{4}p_A^2 + \frac{1}{2}p_A^3 - \frac{3}{4}p_A^4 & \frac{1}{2}p_A^2p_a - \frac{3}{2}p_A^3p_a \\ SYS & p_Ap_a - 3p_A^2p_a^2 \end{bmatrix}$$

 Σ 's are functions of coefficient of condensed identities (CCI), and depend on the family relationship between the pair of individuals

(Lange, 2002 on page 82)

Pseudo Estimating Equations $S(\theta) = 0$:

• Unknown Parameters: $\boldsymbol{\theta} = (\boldsymbol{p}, r)^T$

•
$$\boldsymbol{S}(\boldsymbol{\theta}) = (\boldsymbol{S}_{\boldsymbol{p}}^T, \boldsymbol{S}_r^T)^T$$

Quasi-score test statistic:

$$TS_1 = \hat{S}_r^T (\tilde{\boldsymbol{\theta}}) \widehat{\boldsymbol{Var}}^{-1} (\hat{S}_r) \hat{S}_r^T (\tilde{\boldsymbol{\theta}}),$$

where

$$\widetilde{\boldsymbol{\theta}} = (\widetilde{\boldsymbol{p}}^w, r = 0)^T$$
 – The solution to $\boldsymbol{S}_p(\widetilde{\boldsymbol{\theta}}) = \boldsymbol{0}$ under H_0
 $\widehat{\boldsymbol{Var}}(\widehat{S}_r)$ – Consistent estimator of $\boldsymbol{Var}(\widehat{S}_r)$

By Taylor linearization method (Rao et al., 1998)

$$\widehat{Var}(\widehat{S}_r) = \sum_{h=1}^{H} \frac{I_h}{I_h - 1} \sum_{i=1}^{I_h} (\mathbf{z}^{hi} - \overline{\mathbf{z}}^h) (\mathbf{z}^{hi} - \overline{\mathbf{z}}^h)^T,$$

where

$$\begin{aligned} \mathbf{z}^{hi} &= \sum_{j=1}^{J_{hi}} \left(\frac{\partial \mu_{hij}}{\partial r} - I_{21} I_{11}^{-1} \frac{\partial \mu_{hij}}{\partial p} \right) \mathbf{w}_{hij}^{1/2} Var^{-1} (\mathbf{y}_{hij}) \mathbf{w}_{hij}^{1/2} (\mathbf{y}_{hij} - \mu_{hij}), \\ I_{21} &= \frac{\partial}{\partial p} S_r(\boldsymbol{\theta}) = \\ \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \left\{ - \left(\frac{\partial \mu_{hij}}{\partial r} \right) \mathbf{w}_{hij}^{1/2} Var^{-1} (\mathbf{y}_{hij}) \mathbf{w}_{hij}^{1/2} \left(\frac{\partial \mu_{hij}}{\partial p} \right)^T \right\}, \text{ and} \\ I_{11} &= \frac{\partial}{\partial p} S_p(\boldsymbol{\theta}) = \\ \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} \left\{ - \left(\frac{\partial \mu_{hij}}{\partial p} \right) \mathbf{w}_{hij}^{1/2} Var^{-1} (\mathbf{y}_{hij}) \mathbf{w}_{hij}^{1/2} \left(\frac{\partial \mu_{hij}}{\partial p} \right)^T \right\}, \\ \text{evaluated at } \boldsymbol{\theta} = \widetilde{\boldsymbol{\theta}} \text{ , and } \overline{z}^h = \frac{1}{I_h} \sum_{i=1}^{I_h} z^{I_h}. \end{aligned}$$

Under suitable conditions (Rao et al 1998),

$$TS_1 = \widehat{S}_r^T(\widetilde{\theta})\widehat{Var}^{-1}(\widehat{S}_r)\widehat{S}_r^T(\widetilde{\theta}) \stackrel{\sim}{\sim} \chi^2_{(1)}$$

Simulations show that the developed HWE test TS_1 :

• Maintain the nominal level

 \circ Achieve higher power than the test (TS_2) that ignores the genetic correlation within families

Limitations:

Within-family sampling depends on

 $\begin{cases} family relationship (e.g. 1P2O, 3O, etc) & \sqrt{genotype related factors} & X \end{cases}$

$$w_{hij}^{1/2} Var^{-1}(y_{hij}) w_{hij}^{1/2}$$

To fix the problem, we use the Pseudo Score Function based on the **pairwise scores**

$$S(\boldsymbol{\theta}) = \sum_{h=1}^{H} \sum_{i=1}^{I_h} \sum_{j=1}^{J_{hi}} w_{hij} S_{hij} = \mathbf{0},$$

with

$$S_{hij} = \sum_{k=1}^{K_{hij}} \sum_{l=1}^{K_{hij}} \frac{1}{\pi_{kl|hij}} \frac{\partial \mu_{hij}(\theta)}{\partial \theta} Var^{-1} (\underline{y_{hij}}) (y_{hij} - \mu_{hij}),$$

where

 $\circ \pi_{kl|hij}$ – Joint inclusion probability for pair (*k*, *l*) given family hij is sampled

• $y_{hij} = (y_{hijk}, y_{hijl})^T$ – a vector of indicators of genotypes for pair of individuals (k, l) in family hij

$$\circ \boldsymbol{\mu}_{hij} = (\boldsymbol{\mu}_{hijk}, \boldsymbol{\mu}_{hijl})^T = \mathrm{E}(\boldsymbol{y}_{hij})$$

Quasi-score test statistic (Rao et al. 1998):

~ derived along the same line as above:

$$TS_p = \hat{S}_r^T \big(\widetilde{\boldsymbol{\theta}} \big) \widehat{\boldsymbol{Var}^{-1}}(\hat{S}_r) \hat{S}_r^T \big(\widetilde{\boldsymbol{\theta}} \big) \dot{\sim} \chi_1^2$$

Simulations Studies

Population Generation

- 10,000 PSUs with each PSU composed of 40 families
- Generate genotype

Consider a biallelic locus (A, a)

- $\circ p_A = p_a = 0.5; r = 0, 0.1, 0.15, 0.2$
 - Parents: multinomial distribution with specified genotype frequencies $p(AA) = (1 - r)p_A^2 + rp_{A;}p(Aa) = 2(1 - r)p_Ap_{a;}$ $p(aa) = (1 - r)p_a^2 + rp_a$
 - Offspring: randomly generated according to Mendelian law
- Population clustering

Sort all families by #(aa). The 10,000 PSUs are then formed by grouping every 40 families sequentially.

Sampling Designs

• Stage 1: sample 100 PSUs

Simple random sampling (srs)

• Proportional to population size sampling (pps)

The measure of size related to genotypes, psu's with more #aa is oversampled

 Stage 2: Sample family members - stratified SRS (SSRS) with stratum defined by

Family relationship – SSRS(F)

Family relationship & genotype – SSRS(GF)

~ Oversample genotype aa

Test statistics

- TS₁
 - Based on quasi scores at the family level.
 - Considers genetic correlation within families.
- TS₂
 - Based on quasi scores at the family level.
 - Does NOT consider genetic correlation within families.
- TSp
 - Based on quasi pairwise scores within families.

Evaluation Criteria

• RelBias of \hat{p}_A

RelBais (\hat{p}_A) = [mean (\hat{p}_A) - p_A]/ p_A ×100%

Variance ratios

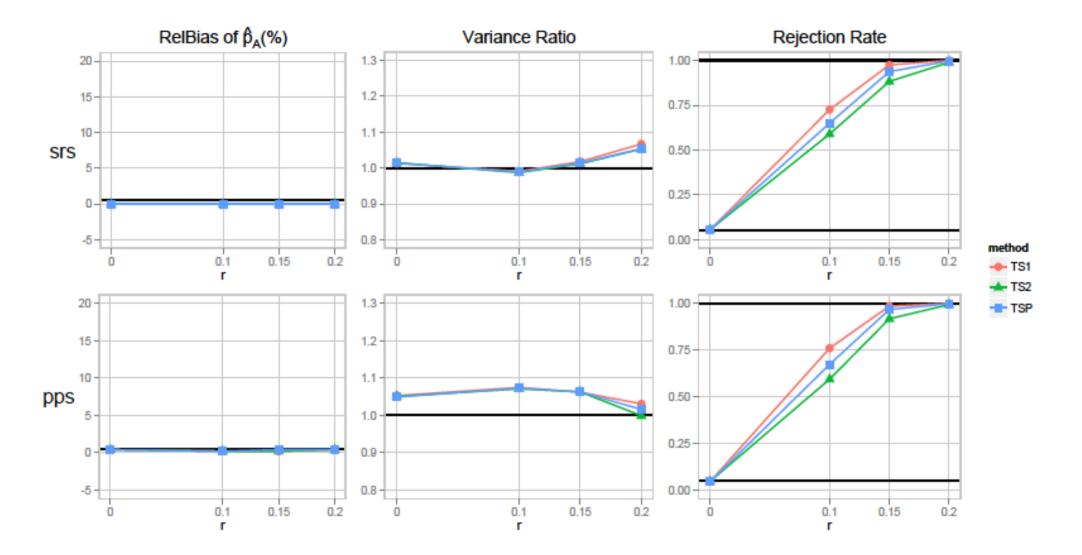
• Analytical variance = Mean of 1,000 estimates of $\widehat{Var}^L \widehat{S}_r(\widetilde{\theta})$ • Empirical variance = Variance of 1,000 estimates of p_A

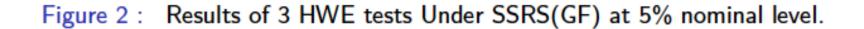
VR = Analytical variance/Empirical variance

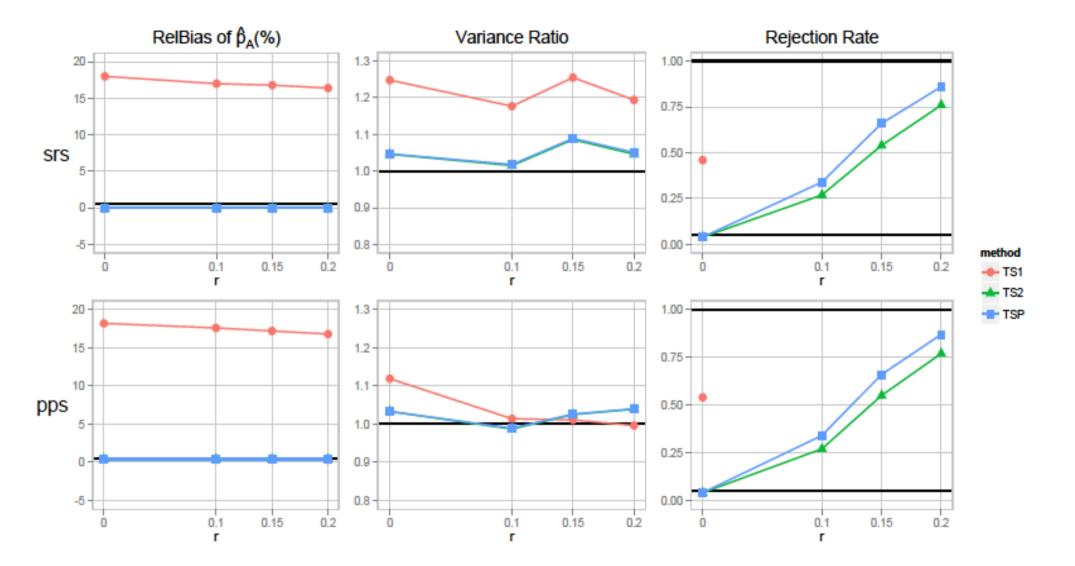
• Rejection Rates at nominal level 5%

% rejecting r = 0 in 1,000 HWE test

- Under H0 (r = 0): test size
- Under H1 (r > 0): power







IN SUMMARY,

If within family sampling variables 1 Genotypes

 TS_1 produces approx. unbiased estimate of allele frequencies, maintains the nominal level at the null hypothesis and achieves the highest power under alternative hypothesis

If within family sampling variables related Genotypes

 TS_p produces approx. unbiased estimate of allele frequencies, maintains the nominal level at the null hypothesis and achieves the highest power under alternative hypothesis

Conclusions of HWE Tests

- Considers both levels of correlations.
- Considers differential sampling weights

When the within-family sampling is **independent** of genotypes/disease status:

 ✓Y. Li, et al. (2011), Testing for Hardy Weinberg equilibrium in national household surveys that collect family-based genetic data. *Annuals of Human Genetics* 75, 732-41.

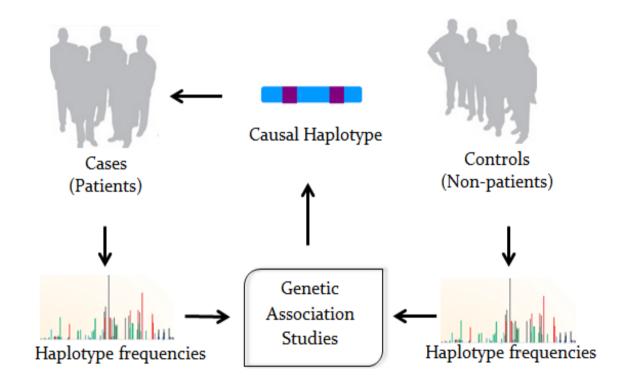
When the within-family sampling is **related** to genotypes/disease status:

✓L. Wang, et al. (2015): A composite likelihood approach in testing for Hardy Weinberg equilibrium using family-based genetic survey data (submitted).

PART II: GENETIC ASSOCIATION STUDIES WITH COMPLEX DESIGN

Genetic Association Studies (GAS) aim to identify genomic variants

(e.g., SNPs, haplotypes) that are associated with disease outcomes.



A motivating example—U.S. Kidney Cancer Case-Control Study

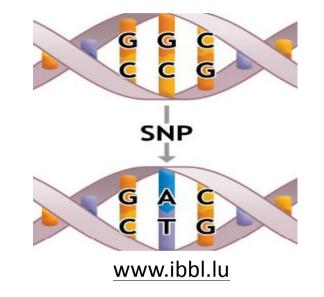
- Population-Based Case-Control Study, Detroit, Michigan and Chicago, Illinois
- Cases: identified from the population-based cancer registry in Detroit
- Selection of controls:
 - Stratified Simple Random Sample design
 - $_{\odot}$ Strata defined by the sex, age and black density
- 1,018 cases and 1,038 controls
- Buccal and blood samples were collected as a source of genomic DNA.
- Tobacco use is one of the risk factors of kidney cancer (Brennan et al., 2008)

Analytical Goal 1: Investigate the interaction effect between tobacco use and the SNPs in the *APOE* promoter region (Moore, *et al.* 2009) on the risk of kidney cancer

Analytical Goal 2: Investigate the main effect of the haplotypes inferred from 4 SNPs (Karami et al. 2009) on the risk of kidney cancer.

In GAS, SNP and haplotypes – two common forms of genetic variants

SNP(single-nucleotide-polymorphism) is the occurrence of two or more alleles at one locus in a DNA sequence among individuals in the same population.



The bases G and A are referred to as alleles,

alternative forms of a DNA segment at a single locus.

Goal 1: Gene-Environment (G-E) Interaction effect on risk of disease

• Standard Logistic Regression Approaches – G-E interaction term included in the regression model (STATA, SUDAAN, R-SURVEY)

However, Poor power due to small numbers of observations in cells cross-classified genetic variants and exposures.

• <u>*Retrospective*</u> methods can be more efficient – exploring various covariate-distributional assumptions (Chatterjee et al. 2005).

Therefore,

Y. Li and B.I. Graubard (2012), Profile semi-parametric maximum likelihood estimation of gene-environment interaction using population-based case-control study with probability sampling. *Biostatistics*, 13, 711-23.

Analyses results from KCS analysis

	Weighted Logis. Reg.	Pseudo- SPMLE
Estimates		
Smoking status	0.10	0.30
rs8106922	0.19	0.22
Smoking status×rs8106922	<mark>-0.06</mark>	-0.19
Standard Errors		
Smoking status	0.17	0.16
rs8106922	0.13	0.12
Smoking status×rs8106922	<mark>0.16</mark>	0.11
p-values		
Smoking status	0.56	0.06
rs8106922	0.15	80.0
Smoking status×rs8106922	<mark>0.73</mark>	0.09

Goal 2: Haplotype effect on the risk of disease

<u>**Haplotype</u>** is a set of closely linked SNPs (combination of SNPs) on the same chromosome within the genomic region of interest.</u>

<u>Diplotype</u> is haplotype pairs on homologous chromosomes.

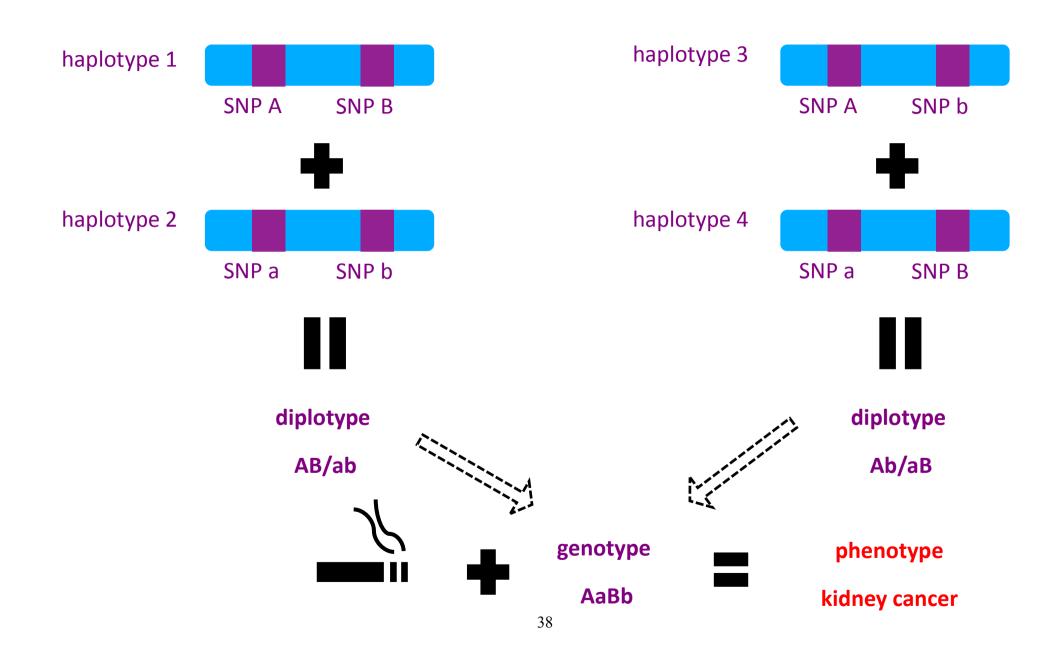
<u>Genotype</u> is a combination of the haplotypes/SNPs on homologous chromosomes.

Phenotype is the traits or conditions that you can observe or diagnose, like eye color or breast cancer.

For a simple example,

Individual 1

Individual 2



Analyzing haplotype data

Advantages

- There is strong evidence that several variants can interact together to have a large effect on the observed phenotype [Schaid, 2004].
- Haplotypes reduce the dimension of association tests and may gain statistical power [Clark, 2004]

Challenges

- Number of haplotypes can be large, and the number is often an unknown priori [Excoffier and Slatkin, 1995].
- Phase Ambiguity

Can genotype data infer which SNPs form the Haplotype?

NO!

Phase ambiguity – MISSING DATA PROBLEM

Two-step method

Step 1: Estimation of Haplotype Frequencies θ – assuming HWE

<u>Challenge</u>: Can be heavy computation if θ is high dimensional!

Weighted EM algorithm

- ✓ At E-step, the expected number of each haplotype in the population conditional on the genotypes by HWE and
- \checkmark At M-step, the weighted estimates of haplotype frequencies,
- ✓ Implemented iteratively until convergence is reached.

The estimate denoted by $\hat{\theta}_{WEM}$

Step 2: Estimation of Regression Coefficients –Treating $\hat{\theta}_{WEM}$ as fixed

The regression parameters β can be obtained by maximizing

$$L^{w}_{\beta}(y,G,E) = \sum_{i=1}^{n} w_{i} \sum_{j=1}^{c_{i}} \{\log Pr_{\beta}(y_{i}|E_{i},D_{i}^{j})Pr_{\widehat{\theta}_{WEM},\beta}(D_{i}^{j}|obs)\}$$

conditional on the observed data obs=(y, G, E),

$$Pr_{\widehat{\theta}_{WEM},\beta}(D_i^j|obs) = \frac{Pr_{\beta}(y_i|E_i, D_i^j)Pr_{\widehat{\theta}_{WEM}}(D_i^j)}{\sum_{j'=1}^{c_i} Pr_{\beta}(y_i|E_i, D_i^{j'})Pr_{\widehat{\theta}_{WEM}}(D_i^{j'})}.$$

where

- y_i : Binary indicator of presence, y=1, or absence, y=0, of a disease
- E_i : Environmental covariates associated with the *i*th person
- G_i : Genotype of the i^{th} person

obs=(y, G, E)

 D_i^j : The j^{th} diplotype that is compatible with genotype G_i c_i : the total number of diplotypes that is compatible with G_i

 $Pr_{\theta}(D)$: the prior probability of diplotype *D* $Pr_{\beta}(y|E,D)$: the risk of disease given the exposure (*E*) and *D*

$$L^{w}_{\beta}(y,G,E) = \sum_{i=1}^{n} w_{i} \sum_{j=1}^{c_{i}} \{\log Pr_{\beta}(y_{i} | E_{i}, D_{i}^{j}) Pr_{\widehat{\theta}_{WEM},\beta}(D_{i}^{j} | obs)\}$$

w_i: Sampling weights

- Cross-sectional studies Population Weights (PW)
- Case-control studies with rare disease

 $\hat{\beta}_{WEM}$ - Inefficient due to the large variation of the PWs \rightarrow Rescale the PW of controls [Scott and Wild, 2011]

 $\hat{\boldsymbol{\beta}}_{WEM}$ for all the coefficients apart from intercept is design consistent

One-step method

~ Estimate haplotype frequencies θ and regression parameters jointly β

 \circ Construct the pseudo log-likelihood

$$L_{\gamma}^{w}(y,G,E) = \sum_{i=1}^{n} w_{i} \sum_{j=1}^{c_{i}} \{\log Pr_{\beta}(y_{i}|E_{i},D_{i}^{j})Pr_{\gamma}(D_{i}^{j}|obs)\},\$$

Unknown parameters $\boldsymbol{\gamma} = (\boldsymbol{\beta}, \boldsymbol{\theta})$

• Solving γ directly are tedious and even numerically infeasible • Instead of maximizing L^w directly – **Extended WEM (EWEM)** • <u>E-step</u>: Compute the probability of diplotypes given observed data (genotypes, covariates, and outcomes)

$$Pr(D_i^j|obs) = \frac{Pr_{\widehat{\beta}}(y_i|E_i, D_i^j)Pr_{\widehat{\theta}}(D_i^j)}{\sum_{j'=1}^{c_i} Pr_{\widehat{\beta}}(y_i|E_i, D_i^{j'})Pr_{\widehat{\theta}}(D_i^{j'})}.$$

 <u>M-step</u>: maximize the conditional expectation of log-likelihood based on the complete data (i.e. diplotypes, covariates, and outcomes)

$$L^{w}_{\beta}(y,G,E) = \sum_{i=1}^{n} w_{i} \log \left\{ \sum_{j=1}^{c_{i}} \left\{ Pr_{\beta}\left(y_{i} \middle| E_{i}, D_{i}^{j}\right) \frac{Pr(D_{i}^{j} \middle| obs)}{Pr(D_{i}^{j} \middle| obs)} \right\} \right\}$$

• The iteration is continued until convergence criterion is satisfied.

The resulting estimates are denoted by $\hat{\theta}_{EWEM}$ and $\hat{\beta}_{EWEM}$.

Variance estimation of the pseudo log-likelihood estimators

The pseudo log-likelihood estimators for haplotype frequencies θ and β are nonlinear functions of the complex sample data.

By Taylor linearization method,

- Variance of one-step estimators $\hat{\beta}_{EWEM}$, automatically accounting for the variance due to estimating the haplotype frequencies θ .
- Variance of two-step estimators $\hat{\beta}_{WEM}$, however, ignoring the variance due to estimating the haplotype frequencies θ .

Simulation Studies

- Case-Control Design
- Cross-Sectional Design

Summary of simulation results

- ✓ Under cross-sectional design, the proposed one-step and two-step methods for estimating haplotype frequencies, $\hat{\theta}_{WEM}$ and $\hat{\theta}_{EWEM}$, and regression coefficients, $\hat{\beta}_{WEM}$ and $\hat{\beta}_{EWEM}$, perform equally well. Note the estimated variances of the <u>one-step estimator</u> $\hat{\beta}_{EWEM}$ automatically account for the uncertainty of $\hat{\theta}_{EWEM}$, and therefore are recommended
- ✓ Under case-control design with rare diseases, the two-step estimator $\hat{\theta}_{WEM}$ with population weights (PW) and $\hat{\beta}_{WEM}$ with scaled PW are recommended.

U.S. Kidney Cancer Case-Control Study

	Two-Step	Std
	Estimates	
Haplotype 1010	-0.733	-0.427
Smoking Status	-0.128	-0.057
Smoking Status by 1010	0.075	0.006
	Standard	Errors
Haplotype 1010	0.365	0.339
Smoking Status	0.227	0.209
Smoking Status by 1010	0.207	0.199
	p-values	
Haplotype 1010	0.045	0.207
Smoking Status	0.573	0.783
Smoking Status by 1010	0.717	0.977

Future Work

- ✓ Hardy-Weinberg Equilibrium tests

 TS_p test requires ≥ 2 members selected within families; TS₁ test requires within-family selection ⊥ genotypes
 Future work: New HWE test combining TS_p and TS₁
- ✓ Genetic Association Studies (GAS)
 Haplotype-based inference under retrospective framework
 Genome Wide Association Studies
 Sequencing Data
- ✓ Surveys help improve genetic studies

Complex sampling designs offer unique advantages in GAS

Cost- and time-effective;

- Obtain representative samples;
- Avoid biased selection of controls and/or cases

Thank you!