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Three Examples of Local Area Statistics

e Estimation of crop acreage, crop production, crop yield for the
purpose of local agricultural decision making, payments to farmers if
crop yields are below certain levels.

@ Estimation of transportation related variables such as purpose of the
trip (work, shopping, social, etc.), means of transportation (car, walk,
bus, subway, etc.), travel time of trip to assist transportation planners
and policy makers who need comprehensive data on travel and
transportation patterns.

@ Estimation of income and poverty statistics for the administration of

federal programs and the allocation of federal funds to local
jurisdictions.
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Problem 1: Remote Sensing BIGDATA

@ Can earth resources satellite data provide useful ancillary data source
for county estimates of crop acreage?

o Satellite information is recorded for pixels (a term for picture
elements). A pixel is about .45 hectares;

@ Based on satellite readings in early Fall, it is possible to classify the
crop cover all pixels. This generates big data.
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A Quote from Bellow et al.

The polar-orbiting Landsat satellites contain a multi-spectral
scanner (MSS) that measures reflected energy in four bands of
the electromagnetic spectrum for an area of just under one acre.
The spectral bands were selected to be responsive to vegetation
characteristics. In addition to the MSS sensor, Landsats IV and
V have a Thematic Mapper (TM) sensor which measures seven
energy bands and has increased spatial resolution. The large area
(185 by 170 km) and repeat (16 day per satellite) coverage of
these satellites opened new areas of remote sensing research:
large area crop inventories, crop yields, land cover mapping, area
frame stratification, and small area crop cover estimation.
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Courtesy of Carol Crawford, NASS-USDA (6 slides)

Cropland Data Layer

Agriculture by crop type and location

A sample:

Corn I winter Wheat [l Rice 2 ~ 9 billion pixels!
B soybeans [ Cotton [ Alfalfa 4
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2014 Cropland Data Layer Inputs
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2014 Deimos-1/UK2 Satellite Tasking

Windowing:
Multiple
acquisitions per &

Full Swath maximum
image size : 600 by
600 Km

Along track
maximum 16 tiles
(1280 Km)

Funding through mid-August
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Decision Tree
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17 States Classified

Se pte m b er 9 Crops Estimated

Imagery from April - August

Crops Estimated

B Coton M Potatoes [ Sugarcane
I Rice [ com I Tobacco
B Peanuts M Sovbeans [ Sorghum
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Problem 2: Vehicle Probe Project (VPP) BIGDATA

@ Original goal: to enable a wide-variety of transportation operations
and planning applications that require a high-quality data source.

@ Applications include congestion management systems, traveler
information systems, travel-time on changeable message signs.

@ Data contains travel time, speed, historic speed, etc. for different
road segments

o If data for a whole year, for all 12,295 TMC segments in Maryland

were to be downloaded, the estimated number of records is 6.46
billion. The physical disk size of this data is estimated to be 375GB.
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FIGURE: Location of NJ11-0009 segment in New Jersey, near Philadelphia.
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FIGURE VPP travel time data

Travel Tie (Minutes)
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Problem 3: BIGDATA from Administrative Records

@ Internal Revenue Service Data

@ Supplemental Nutrition Assistance Program (SNAP) data
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Some features of BIGDATA

e May not contain the variable(s) of interest
@ errors due to measurement, classification, self selection, etc.

@ massive complex data for local area

computational issue
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How do we correct Big Data?

Look for existing sample data or conduct a new survey

Some features of sample surveys
@ Finite populations
@ Representativeness
@ Large samples for large areas, but small or no sample for small areas
@ Variable(s) of interest can be included
e Chance selection: equal/epsem
@ Stratification to improve precision and administrative control
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Sample Survey Data

@ Problem 1: June Enumerative Survey

@ Problem 2: National Household Travel Survey (NHTS) and American
Community Survey (ACS)

@ Problem 3: ACS
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How do we combine Big Data with Sample Survey Data?

Two Cases:

@ Case 1: No or little overlap between the two data sources

o Case 2: Most of the survey data can be linked with Big Data
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Case 1: Statistical Matching
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Small Area Level Model

Ref: Fay and Herriot (JASA 1979)

Fori=1,---,m,
Level 1: (Sampling Distribution): y;|0; ~ N(0;,;);
Level 2: (Prior Distribution): 8; ~ N(x'3, A)
where
@ m : number of small area:
@ y; : direct survey estimate of 6;;
@ 0; : true mean for area /;
@ x;: p x 1 vector of known auxiliary variables;
@ ;i known sampling variance of the direct estimate;
@ The p x 1 vector of regression coefficients 3 and model variance A

are unknown.
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Estimation Method

Parameter of Interest: 6;

Inferences based on the posterior distribution of 6;:
ind A
0ily: B. A N7, 07(A)),
where

) éIB = (]. — B,’)y; + B,'Xi-,@

e B = Aﬁb,—

o g7(A) = (1 - B
EB: Treat 3 and A fixed and estimate them by consistent estimators (e.g.,
ANOVA, ML, REML, adjusted ML)
HB: Put priors, possible non-informative flat priors, on 8 and A. The

inference is based on the posterior distribution of the target parameter.
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The James-Stein Estimator

A A A -2
HI-JS = (1 — BJS)y;, where BJS = mmiz
> Y;
Results:
o Total MSE (TMSE) of direct estimator: > ; E[(y; — 0,)%10] = m
. m ) m—2)2
o TMSE of JS estimator: » ", E[(67° —0,)%10] < m — mETQ‘,Gf
(Efron)
Remarks:

e If9; =0, (i=1,---,m), then TMSE of JS< [m — (m —2)] =2.
Thus, the largest reduction is obtained when §; =0 (i =1,--- , m)
and m large.

e If any |yj| — oo , the JS converges to the direct.
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Measurement Error Issue in Big Data

Two Situations:

@ Situation 1: The sources of measurement error can be reasonably
identified and we have enough data to explain them.

@ Situation 2: The sources cannot be easily detected or we do not

have data to explain the measurement error even if the sources of
error are identified.

Partha Lahiri (UMD) BIGData August 24, 2015 22 /37



|
Situation 1: An Example

, ; 0; -
Level 1 (Sampling model): (i’) |6, X ind ((X) , < on’y “? >>

Level 2 (Linking model):  6;|X; i N(X:3,A)

Remark: The above model reduces to the FH model when W = 0.

The Bayes estimator of 6; under FH:
07 = (1- B)yi + BixiB,

where "
Bi= "
A+ wiy
The Bayes estimator of 6; under FH with ME:

07" = (1-B)y + B'xiB,

where

R E—
AR+ BB
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Remarks:

Under the FH-ME,
MSE(A8) = (1 — B)vi, + B2B'W 0,
which is greater than ¢, if B'W; 8 > A+ ¢, but

MSE(AB) = (1 — B )i, < by
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An lllustration

Mosaferi, S. (2015)

@ Parameter of interest: Average number of full-time employment for
49 states of the U.S.

Big Data: American Community Survey (PUMS micro data used)

Survey Data: Annual Survey of Employment and Payroll (ASPEP)
@ FH-ME model in the logarithmic scale.

@ Design-based evaluation using Census of Governments
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Mosaferi 2015

Empirical Average of Absolute Relative Deviations
from the True Values for All States
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Mosaferi 2015
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Situation 2: A partial Solution

Ref: Datta and Lahiri (1995, JMVA)

An Outlier Resistent Model For i =1,--- ,m,
Level 1: (Sampling Distribution): y;|0 nd N(0;, ¥;);

Level 2: (Prior Distribution): 0,18, A" L.p; (ef‘f’jﬁ )

where pj(x) = [;° r1/24(xr/?)gi(r)dr, ¢(x) being the pdf of a standard
normal distribution.

To retain shrinking in presence of an outlier in residual, use a heavy tail
distribution (e.g., Cauchy) for the mixing distribution g;()
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Case 2: Record Linkage
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pace 2 SECTION D - CROPS AND LAND USE ON TRACT 1
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Battese, Harter and Fuller (1988 JASA)

artha Lahiri
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How to make BIGDATA useful?

Fig 2: Plot of Coxn Hectares versus Corn Pixels by County

i
210

200
190
160
1oy
160 ]
1507
140 »
130
120
e
100
a0

[LE

Te

B0l

o0 200 a00 400 500
1
county 88 | S88 ; sa8 3 ses
www 7 Fee g SE 3 T
This plot also reflects the strong relationship between the
reported hectares of corn and the nuwber of pixels of corn
for counties separately. But the slopes and/or intercepts
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How do we combine information?

@ y;ji : value of the study variable for the jth unit of the / small area
population (i=1,---,m; j=1,--- N;)
@ We are interested in estimating the finite population means:

N;
Yi= N1y
j=1
Nested Error Regression Model

/
Yij = XiiB + vi + e,

where X is a p x 1 column vector of known auxiliary variables; {v;} and
. . jid iid
{e;} are all independent with v; =~ N(0, 02) and e; ~ N(0, 02)
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An Example

@ Estimation of the number of hectares of corn for 12 lowa counties
based on the 1978 June Enumerative Survey and satellite data.

@ y;i: the number of hectares of corn in the jth segment of the /th
county as reported in the June Enumerative Survey.

/ . . s
o x; = (1, x1j7, x2j7), where xqj; (x2;7) is the number of pixels classified as

corn (soybean) in the jth segment of the ith county.

o X' = (1, X1, Xa;), where X1; (Xz;) is the mean number of pixels per
segment classified as corn (soybean) for county i.

Partha Lahiri (UMD) BIGData August 24, 2015 34 /37



Unit Level Model with Big Data

Gershunskaya and Lahiri 2011

Model:

i = X8+ vi + ejj,
where
o v % N(O,7?)
° &y “ (1 — z;)N(0,0%) + z;N(0, 03)

@ z; is the mixture part indicator random variable with
iid .
zjj|m ~ Bin(1, )
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"...D.J. Finney once wrote about the statistician whose
client comes in and says, "Here is my mountain of trash.
Find the gems that lie therein.” Finney's advice was to
not throw him out of the office but to attempt to find out
what he considers "gems”. After all, if the trained
statistician does not help, he will find some one who
will...." David Salsburg, ASA Connect Discussion
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THANK YOU!

Partha Lahiri

BlGData August 24, 2015 37 /37



