Jesse van de Sande

16-jul-13

Stellar Kinematics of z-2 Galaxies and the Inside-out Growth of Quiescent Galaxies

In collaboration with: Mariska Kriek, Marijn Franx, Pieter van Dokkum, Rachel Bezanson, Rychard J. Bouwens, Ryan Quadri, Hans-Walter Rix, Rosalind Skelton

Jesse van de Sande

Mystery of Ellipticals

Galaxies from SDSS z-0.1

Red-and-Dead Galaxies at z-2

Early-type galaxies at z ≈ 2 were smaller and denser than low-z analogs

Van Dokkum et al. 2008

Confirmation of small sizes with WFC3

(Szomoru et al. 2010)

Szomoru et al. 2010

Stellar Kinematics of z-2 Galaxies

Use dynamical mass instead:

$$M_{dyn} = K(n) \cdot r_e \cdot \sigma^2$$

Requires deep Near Infrared spectroscopy for z >1.4

Confirming high stellar densities using stellar kinematics

VLT X-Shooter Observations:

- 5 Targets from NMBS-I (van Dokkum et al. 2009) and UDS (Williams et al 2009.)
- Selected to be bright, non-starforming galaxies at 1.4 < z < 2.1
- 2 5 hours per source
- UV to NIR in single shot
- R = 5600 (~23 km/s)

16-jul-13

Jesse van de Sande

Mystery of Ellipticals

Selection Effects: young post-starburst like galaxies

X-Shooter spectra zoom

Stellar and Dynamical Mass in good agreement

M*/Mdyn may decrease over time: increase in dark matter fraction?

Massive Quiescent galaxies are indeed smaller at earlier times

Massive Quiescent galaxies have higher velocity dispersions at earlier times

Stellar density within r_e is higher at z~2 and evolves rapidly with time

Stellar density within 1 kpc only slightly higher at earlier times

Hydro-simulation predict similar evolution in size and velocity dispersion

Oser et al. 2012

Strong evolution in effective density central density stays roughly the same

Take Home Message

Photometric and dynamical masses of distant compact massive galaxies are in **good agreement**

The **stellar density** within re **evolves rapidly**, while within **1 kpc** it is consistent with a **very mild or no evolution**

Distant massive compact galaxies are the cores of present-day ellipticals and grow inside-out by mostly minor mergers

