The major merger origin of massive early-types since $z \sim 2$

C. López-Sanjuan, O. Le Fèvre, L. Tasca, L. de Ravel, and MASSIV + VVDS teams

Centro de Estudio de Física del Cosmos de Aragón

López-Sanjuan+13, A&A, 553, A78

8th July 2013 EWASS 2013 – S04 (Turku, Finland)

The merger origin of early-type galaxies (ETGs)

González-García & Balcells 2005; Naab et al. 2006; Rothberg et al. 2006a,b, 2010; Hopkins et al. 2009

$M_{\star} \sim 10^{10}~M_{\odot} - 10^{11}~M_{\odot}$

Major mergers explain \sim 30% of the ETGs' number density evolution since $z \sim$ 1. Other processes (e.g., secular evolution, environment) are needed (de Ravel+09, Wild+09 and next talk, López-Sanjuan+10).

$M_{\star}\gtrsim 10^{11}~M_{\odot}$

Major mergers seem common enough to explain all the ETGs' number density evolution since $z \sim 1$ (e.g., Eliche-Moral+10, Robaina+10, Prieto+13).

Is this the case at z > 1?

 The number density evolution of ETGs (ρ_{ETG}) since z ~ 2. (Buitrago+13, Pozzeti+10).

The gas-rich (wet) major merge rate (R_{MM}) since z ~ 2. At z > 1 the merger rates are based on morphology (e.g., Conselice+08) or in photometric pairs (e.g., Ryan+08, Bluck+13). Our first goal is estimate the merger rate up to z ~ 2 from spectroscopic close pairs.

3 A model to link $R_{\rm MM}$ and $\rho_{\rm ETG}$.

The number density evolution of ETGs (ρ_{ETG}) since $z \sim 2$. (Buitrago+13, Pozzeti+10). The gas-rich (wet) major merger rate ($R_{\rm MM}$) since $z \sim 2$. \square At z > 1 the merger rates are based on morphology (e.g., Conselice+08) or in photometric pairs (e.g., Ryan+08, Bluck+13). Our first goal is estimate the merger rate up to $z \sim 2$ from spectroscopic close pairs.

If A model to link $R_{\rm MM}$ and $\rho_{\rm ETG}$.

The number density evolution of ETGs (ρ_{ETG}) since $z \sim 2$. (Buitrago+13, Pozzeti+10). The gas-rich (wet) major merger rate ($R_{\rm MM}$) since $z \sim 2$. \square At z > 1 the merger rates are based on morphology (e.g., Conselice+08) or in photometric pairs (e.g., Ryan+08, Bluck+13). Our first goal is estimate the merger rate up to $z \sim 2$ from spectroscopic close pairs.

• A model to link $R_{\rm MM}$ and $\rho_{\rm ETG}$.

VVDS: VIMOS VLT Deep Survey

Survey	<i>i</i> (AB)	Area (deg ²)	N _{spec}
VVDS-Wide VVDS-Deep	$i \le 22.5$ $i \le 24.0$	8.10 0.74	\sim 25800 \sim 11500
VVDS-Ultradeep	i ≤ 24.75	0.14	~ 900

VVDS-Ultradeep

(Le Fèvre+05; Le Fèvre+13, arXiv: 1307.0545): fainter part of the VVDS designed to fill the redshift desert at z > 1.5.

We found 9 close pairs at 1.5 < z < 3 with $r_{\rm p}^{\rm max} = 150 h^{-1}$ kpc and $\Delta v \leq 2000$ km s^{-1}.

VVDS-Deep mergers at z < 1: de

Ravel+09, López-Sanjuan+11

: Mass Assembly Survey with SINFONI in VVDS

IFU samples at 0.5 < z <3

 $\begin{array}{l} \text{IMAGES } 0.4 < z < 0.8 \\ \text{SINS } 1.3 < z < 2.7 \\ \text{OSIRIS-Keck } 1.5 < z < 2.5 \\ \text{LSD/AMAZE } 2.5 < z < 4 \\ \text{MASSIV } 0.9 < z < 1.8 \end{array}$

MASSIV provides 2D NIR (J- & H-band) spectroscopy of 84 star-forming galaxies to study the dynamical support of galaxies at 1 < z < 1.5 (Epinat+12), fundamental relations (Vergani+12), metallicity gradients (Quyrel+12) and the merger rate from spectroscopic close pairs (López-Sanjuan+13).

Introduction Data Merger rate Toy model Results Conclusions VVDS-Ultradeep MASSIV MASSIV MASSIV MASSIV MASSIV MASSIV

We found 13 gas-rich major close pairs at 1 < z < 1.8 with $r_{p}^{max} = 30h^{-1}$ kpc and $\Delta v \le 500$ km s⁻¹.

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es

The major merger origin of massive early-types since $z \sim 2$

MASSIV (1 < z < 2): the merger rate evolves as $R_{\rm MM} \propto (1 + z)^{3.9}$. **VVDS-Ultradeep** (z = 2.35) $R_{\rm MM} \propto (1 + z)^{4.5} e^{-0.17z^3}$, with $z_{\rm peak} = 1.8$. We confirm the tendency from previous work (e.g., Conselice+08, Ryan+08).

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es The major merger origin of massive early-types since z ~ 2

MASSIV (1 < z < 2): the merger rate evolves as $R_{\rm MM} \propto (1 + z)^{3.9}$.

$\begin{array}{l} \textbf{VVDS-Ultradeep} \ (z=2.35) \\ R_{\rm MM} \propto (1+z)^{4.5} {\rm e}^{-0.17z^3}, \mbox{ with } z_{\rm peak} = 1.8. \\ \mbox{We confirm the tendency from previous work} \\ \ ({\rm e.g., Conselice+08, Ryan+08}). \end{array}$

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es

The major merger origin of massive early-types since $z\,\sim\,2$

MASSIV (1 < z < 2): the merger rate evolves as $R_{\rm MM} \propto (1 + z)^{3.9}$.

VVDS-Ultradeep (z = 2.35)

 $R_{\rm MM} \propto (1+z)^{4.5} {\rm e}^{-0.17 z^3}$, with $z_{\rm peak} = 1.8$. We confirm the tendency from previous work (e.g., Conselice+08, Ryan+08).

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es

The major merger origin of massive early-types since $z\,\sim\,2$

MASSIV (1 < z < 2): the merger rate evolves as $R_{\rm MM} \propto (1 + z)^{3.9}$.

 $\begin{array}{l} \textbf{VVDS-Ultradeep} \ (z=2.35) \\ R_{\rm MM} \propto (1+z)^{4.5} {\rm e}^{-0.17 z^3}, \mbox{ with } z_{\rm peak} = 1.8. \\ \mbox{We confirm the tendency from previous work} \\ \ ({\rm e.g., \ Conselice+08, \ Ryan+08}). \end{array}$

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es The major merger origin of massive early-types since z ~ 2

Main assumption: 1 wet major merger = 1 new ETG. $\Phi(z, M_{\star})R_{MM}(z)$

Main assumption: 1 wet major merger = 1 new ETG. $\Phi(z, M_{\star})R_{\rm MM}(z)E_{\rm MM}(z, M_{\star}, M_{\rm lim}, \mu_1, \mu_2)$

Main assumption: 1 wet major merger = 1 new ETG. $\Phi(z, M_{\star})R_{\rm MM}(z)E_{\rm MM}(z, M_{\star}, M_{\rm lim}, \mu_1, \mu_2)$

Main assumption: 1 wet major merger = 1 new ETG. $\Phi(z, M_{\star})R_{\rm MM}(z)E_{\rm MM}(z, M_{\star}, M_{\rm lim}, \mu_1, \mu_2)f_{\rm LTG}(z, M_{\star})$

1:11:4 I M_{lim} $\rho \; [10^{-5} \; {\rm Mpc^{-3} \; dex^{-1}}]$ 141210 8 6 11 Manual Manual I 4 20 $10.\bar{8}$ 11.011.211.411.611.8 $\log \left(M_{\star}/M_{\odot} \right)$

Main assumption: 1 wet major merger = 1 new ETG. $\rho_{\text{ETG}} = \int \int \Phi(z, M_{\star}) R_{\text{MM}}(z) E_{\text{MM}}(z, M_{\star}, M_{\text{lim}}, \mu_1, \mu_2) f_{\text{LTG}}(z, M_{\star}) dz dM_{\star}$

- The number density evolution of ETGs (ρ_{ETG}) since z ~ 2. (Buitrago+13, Pozzeti+10).
- The gas-rich (wet) major merger rate ($R_{\rm MM}$) since $z \sim 2$.

S A model to link R_{MM} and ρ_{ETG} .

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es The major merger origin of max

The major merger origin of massive early-types since $z\sim2$

Mergers and ETGs evolution

 (dry) merger rate of massive ETGs
 (López-Sanjuan+12, Marmol-Queraltó+12, Newman+12)

If we assume that one gas-rich merger provides a new ETG, we can explain the number density evolution of massive ETGs at 1 < z < 2. Dry merging becomes important at z < 1. Since z = 2, 2/3 of ρ_{ETG} is due to wet mergers and 1/3 to dry mergers.

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es

The major merger origin of massive early-types since $z\sim2$

Mergers and ETGs evolution

+ (dry) merger rate of massive ETGs (López-Sanjuan+12, Marmol-Queraltó+12, Newman+12)

If we assume that one gas-rich merger provides a new ETG, we can explain the number density evolution of massive ETGs at 1 < z < 2. Dry merging becomes important at z < 1.

Since z= 2, 2/3 of $ho_{
m ETG}$ is due to wet mergers and 1/3 to dry mergers.

C. López-Sanjuan @ CEFCA @ EWASS 2013 // clsj@cefca.es The major merger origin of massive early-types since z ~ 2

Mergers and ETGs evolution

+ (dry) merger rate of massive ETGs (López-Sanjuan+12, Marmol-Queraltó+12, Newman+12)

If we assume that one gas-rich merger provides a new ETG, we can explain the number density evolution of massive ETGs at 1 < z < 2. Dry merging becomes important at z < 1.

Since z = 2, 2/3 of ρ_{ETG} is due to wet mergers and 1/3 to dry mergers.

Conslusions

- We measure the merger rate at $z \gtrsim 1$ from spectroscopically confirmed close pairs in MASSIV and VVDS-Udeep. The merger rate evolves as $(1 + z)^{3.9}$ up to $z \sim 1.5$, then flattens. **VUDS** (VIMOS Ultra Deep Survey) will provide $R_{\rm MM}$ at z > 2.5.
- Since z = 2, 2/3 of ρ_{ETG} is due to wet mergers and 1/3 to dry mergers. The evolution at 1 < z < 2 is fully explained by major wet mergers.

Conslusions

- We measure the merger rate at $z \gtrsim 1$ from spectroscopically confirmed close pairs in MASSIV and VVDS-Udeep. The merger rate evolves as $(1 + z)^{3.9}$ up to $z \sim 1.5$, then flattens. **VUDS** (VIMOS Ultra Deep Survey) will provide $R_{\rm MM}$ at z > 2.5.
- Since z = 2, 2/3 of ρ_{ETG} is due to wet mergers and 1/3 to dry mergers. The evolution at 1 < z < 2 is fully explained by major wet mergers.

Conslusions

- We measure the merger rate at $z \gtrsim 1$ from spectroscopically confirmed close pairs in MASSIV and VVDS-Udeep. The merger rate evolves as $(1 + z)^{3.9}$ up to $z \sim 1.5$, then flattens. **VUDS** (VIMOS Ultra Deep Survey) will provide $R_{\rm MM}$ at z > 2.5.
- Since z = 2, 2/3 of ρ_{ETG} is due to wet mergers and 1/3 to dry mergers. The evolution at 1 < z < 2 is fully explained by major wet mergers.