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ABSTRACT

The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify
dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of
FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value
that depends upon the linking length parameter, . We show that for the commonly used choice of b = 0.2, this
critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm
enclose an average overdensity which depends on their density profile (concentration) and therefore changes with
halo mass, contrary to the popular belief that the average overdensity is ~180. We derive an analytical expression
for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests
carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement
with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially
depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for
the dependence on number of particles for the mock realizations of spherical and triaxial Navarro—Frenk—White
halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to
the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect
that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift
and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for
the universality of the mass function.
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ABSTRACT

In the standard picture of disc galaxy formation, baryons and dark matter receive the
same tidal torques, and therefore approximately the same initial specific angular mo-
mentum. However, observations indicate that disc galaxies typically have only about
half as much specific angular momentum as their dark matter haloes. We argue this
does not necessarily imply that baryons lose this much specific angular momentum as
they form galaxies. It may instead indicate that galaxies are most directly related to
the inner regions of their host haloes, as may be expected in a scenario where baryons
in the inner parts of haloes collapse first. A limiting case is examined under the ide-
alised assumption of perfect angular momentum conservation. Namely, we determine
the density contrast A, with respect to the critical density of the Universe, by which
dark matter haloes need to be defined in order to have the same average specific
angular momentum as the galaxies they host. Under the assumption that galaxies
are related to haloes via their characteristic rotation velocities, the necessary A is
~ 600. This A corresponds to an average halo radius and mass which are ~ 60% and
~ 75%, respectively, of the virial values (i.e., for A = 200). We refer to this radius as
the radius of baryonic collapse Rp¢, since if specific angular momentum is conserved
perfectly, baryons would come from within it. It is not likely a simple step function
due to the complex gastrophysics involved, therefore we regard it as an effective ra-
dius. In summary, the difference between the predicted initial and the observed final
specific angular momentum of galaxies, which is conventionally attributed solely to
angular momentum loss, can more naturally be explained by a preference for collapse
of baryons within Rpc, with possibly some later angular momentum transfer.

Key words: galaxies — formation, galaxies — evolution, galaxies — kinematics and
dynamics, galaxies — fundamental properties.
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ABSTRACT

Sizes of galaxies are an important diagnostic for galaxy formation models. In this study I use the abundance
matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to
derive estimates of the virial radius, Ry, for galaxies of different morphological types and wide range of
stellar mass. I show that over eight of orders of magnitude in stellar mass galaxies of all morphological types
follow an approximately linear relation between half-mass radius of their stellar distribution, r/; and virial
radius, ry2 = 0.015Ry0 with a scatter of = 0.2 dex. Such scaling is in remarkable agreement with expectation
of models which assume that galaxy sizes are controlled by halo angular momentum, which implies ry/; o
AR»00, where A is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter
expected from the distribution of A and normalization of the relation agrees with that predicted by the model
of Mo, Mao & White (1998), if galaxy sizes were set on average at z ~ 1 — 2. Moreover, I show that when
stellar and gas surface density profiles of galaxies of different morphological types are rescaled using radius
r, = 0.015Ry0, the rescaled surface density profiles follow approximately universal exponential (for late types)

and de Vaucouleurs (for early types) profiles with scatter of only ~ 30 — 50% at R ~ 1 — 3r,,. Remarkably, both
late and early type galaxies have similar mean stellar surface density profiles at R > 1r,. The main difference
between their stellar distributions is thus at R < r,,. The results of this study imply that galaxy sizes and radial
distribution of baryons are shaped primarily by properties of their parent halo and that sizes of both late type
disks and early type spheroids are controlled by halo angular momentum.
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ABSTRACT

Sizes of galaxies are an important diagnostic for galaxy formation models. In this study I use the abundance
matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to
derive estimates of the virial radius, R», for galaxies of different morphological types and wide range of
stellar mass. I show that over eight of orders of magnitude in stellar mass galaxies of all morphological types
follow an approximately linear relation between half-mass radius of their stellar distribution, rj,, and virial
radius, r12 = 0.015Ry0 with a scatter of = 0.2 dex. Such scaling is in remarkable agreement with expectation
of models which assume that galaxy sizes are controlled by halo angular momentum, which implies ry/; o
AR500, where A is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter
expected from the distribution of A and normalization of the relation agrees with that predicted by the model
of Mo, Mao & White (1998), if galaxy sizes were set on average at z ~ 1 — 2. Moreover, I show that when
stellar and gas surface density profiles of galaxies of different morphological types are rescaled using radius
r, = 0.015R,, the rescaled surface density profiles follow approximately universal exponential (for late types)
and de Vaucouleurs (for early types) profiles with scatter of only ~ 30 — 50% at R =~ 1 — 3r,. Remarkably, both
late and early type galaxies have similar mean stellar surface density profiles at R > 1r,. The main difference
between their stellar distributions is thus at R < r,,. The results of this study imply that galaxy sizes and radial
distribution of baryons are shaped primarily by properties of their parent halo and that sizes of both late type
disks and early type spheroids are controlled by halo angular momentum.
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ABSTRACT

We present a new statistical method to determine the relationship between the stellar masses
of galaxies and the masses of their host dark matter haloes over the entire cosmic history from
z ~ 4 to the present. This multi-epoch abundance matching (MEAM) model self-consistently
takes into account that satellite galaxies first become satellites at times earlier than they are
observed. We employ a redshift-dependent parametrization of the stellar-to-halo-mass relation
to populate haloes and subhaloes in the Millennium simulations with galaxies, requiring that
the observed stellar mass functions at several redshifts are reproduced simultaneously. We
show that physically meaningful growth of massive galaxies is consistent with these data only
if observational mass errors are taken into account. Using merger trees extracted from the dark
matter simulations in combination with MEAM, we predict the average assembly histories of
galaxies, separating into star formation within the galaxies (in situ) and accretion of stars (ex
situ). Our main results are the peak star formation efficiency decreases with redshift from 23 per
cent at z = 0 to 9 per cent at z =4 while the corresponding halo mass increases from 10'!$
to 10'23 M. The star formation rate of central galaxies peaks at a redshift which depends on
halo mass; for massive haloes this peak is at early cosmic times while for low-mass galaxies
the peak has not been reached yet. In haloes similar to that of the Milky Way about half of the
central stellar mass is assembled after z = 0.7. In low-mass haloes, the accretion of satellites
contributes little to the assembly of their central galaxies, while in massive haloes more than
half of the central stellar mass is formed ex situ with significant accretion of satellites at z < 2.
We find that our method implies a cosmic star formation history and an evolution of specific
star formation rates which are consistent with those inferred directly. We present convenient
fitting functions for stellar masses, star formation rates and accretion rates as functions of halo
mass and redshift.
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Key words: galaxies: evolution— galaxies: high-redshift—galaxies: statistics —galaxies:
stellar content —cosmology: theory —dark matter.
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Comparison with surveys
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Figure 3. Left panel: Relation between median virial radius and stellar mass at different redshifts, as labelled, empirically calibrated by
applying the Moster et al. (2013) stellar mass-halo mass relation on large mock halo catalogs. Right panel: Predicted virial size evolution,
normalized at the value at z = 0, for hosts with galaxies at fixed stellar mass of 2 x 10!° and 2 x 10! (blue and red, solid lines). The
models are compared with data for the size evolution of disc galaxies at fixed stellar mass collected by Hopkins et al. (2009; blue region),
and for the size evolution at fixed stellar mass for early-type galaxies with stellar mass > (1 — 2) x 10'!, by van de Sande et al. (2012;
grey region), and Huertas-Company et al. (2013; filled circles).
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Stellar masses and radii

Mass-Radius Relation

1000

Host Virial Radivs, r,kpe

26][9L A[922 CONfEUL
v

10 10 10 0 0
Stelar Mass /41
w0

Stellar Mass Content

Host Mass Seale / M

[P

Galaxy Properties

as a fingerprint of cosmology
& fundamental physics

1o

AN

— Mt 201
Abind

ch]

5)

INS22-K9qIiTe K6[gHon

ol

o

This sketch shows how stellar mass - radius trends can be understood
as emerging from the familiar variation of stellar mass content within
cosmic structures. The lower right panel is the well known plot of
stellar mass content as a function of host mass (shown here is the
content deduced from abundance matching techniques by Moster et
al. 2013). By appealing to the close mapping between virial mass,
velocity and radius in standard cosmology, a diagonal reflection of
this well-known plot, in the plane shown, yields a plot of virial radius
vs. stellar mass (top left panel) and hence provides an understanding
of the observed size trends in galaxies.

The argument:

1If galaxy sizes correlate linearly with those of their host structure

(as recently reenforced by Kravstov 2013)

and this is indeed due to conservation of specific angular

momentum (Fall & Efstathiou 1980; Kassin et al. 2012),

then the observed trends in galaxy size as a function of stellar

mass, and their evolution, can be understood as:

1. Collapsed structures carrying an imprint of the cosmology,

2. with stellar mass content that varies strongly with host mass,

3. but mean scalar specific angular momentum that remains
directly correlated.
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Where z is the collapse redshift. Since
high density fluctuations, more often
found in smaller regions, collapse
earlier, this leads to a slope slightly
steeper than
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having formed in much larger host
structures.
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Fig. 2. An illustration of the case where star formation rates at any given
, time M, (#) do not greatly differ from the mean star formation rate over
’ cosmic time, < M, >, of that same system (or more generally, the sum
! over all its progenitors). Arrows indicate evolutionary paths for galax-
‘ ies in this scenario: regions with high star formation rates accumulate
large stellar masses, regions with lower average star formation rates
will, at the same epoch, have lower stellar masses. Mathematically this
means that the population, as observed at any given time, will fall on
and around a “formation front” given simply by < M, >=< M, > t.,
where . is approximately equal to the age of the universe at the ob-
served redshift. Both axes here are linear; in a log — log plot the dotted
lines would be parallel.
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Fig. 1. Distribution of estimated star formation rates and stellar masses from Whitaker et al. (2012), for a set of photometrically determined redshift
ranges. “quiescent” and “star forming” systems are shown in red and blue respectively, having been categorised according to their rest frame U,
V & J-band magnitudes. The green shaded area shows the locus where the current star formation rate is equal to the average rate (given initial
formation times in the range 0 < #; < 0.6 Gyr, and recycling fractions 0.3 < R < 0.5).

This can also be seen from specific star formation rates, M* /M, vs. time...
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Summary

Observed trends in the sizes of galaxies, and their
evolution, can be understood in terms of:

e Cosmic structures that reflect the density of the universe at
the time of collaspe

e containing central stellar mass that varies strongly with host
mass (due to feedback and natural cooling limits)

e but with specific angular momentum that remains
representative of the host.
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