Obs. & prev. models	Our model	Our results	Conclusions
000000	0000	000000	

The chemical evolution of elliptical galaxies: Insights from semi-analytic modelling

Rob Yates

with Bruno Henriques, Peter Thomas, Guinevere Kauffmann, Jonas Johansson & Simon White

EWASS 2013: Symposium 4

9th July 2013

Dur model

Our results

Observations

Rob Yates

arXiv:1305.7231,

Our model

Our results

Conclusions

Observed M_* -[α /Fe] relations

A positive correlation

between σ (i.e. M_*) and α enhancement is found in local ellipticals.

Obs. & prev. models Our model Our results Conclusio	1) (1)			
	Obs. & prev. models	Our model	Our results	Conclusions

- Massive ellipticals: Form stars over shorter timescales \Rightarrow high [α /Fe]
- Low-mass ellipticals: Form stars over longer timescales \Rightarrow low [α /Fe]

2) Top boow IME	in massive elli	nticolo	
00000	0000	000000	
Obs. & prev. models	Our model	Our results	Conclusions

Massive ellipticals:

Obs. & prev. models	Our model	Our results	Conclusions
000000	0000	000000	

Top-heavy IMF in massive ellipticals?

Thomas (1999)

"Only under the assumption that **the IMF is significantly flattened** with respect to the Salpeter value during the [major-merger-induced] starburst, can a Mg/Fe overabundant population be obtained."

Calura & Menci (2009)

"By assuming a SF-dependent IMF,... the observed correlation between $[\alpha/\text{Fe}]$ and σ can be accounted for."

<mark>Our mode</mark>l

Our results

Conclusions

Top-heavy IMF in massive ellipticals?


```
"We reproduce the
observed positive slope of
the M_*-[\alpha/Fe]
relation...[when using] a
very mildly top-heavy
IMF (x = -1.15)."
```

Obs.	&	prev.	models	
000	00	•		

<mark>Our model</mark> 0000 Our results

Conclusions

Top-heavy IMF in massive ellipticals?

Nagashima et al. (2005b)

"The α element abundance in ellipticals is consistent with observed values only if the top-heavy IMF is used."

"... none of the models reproduces the observed increase of α /Fe with σ ."

(see also Pipino et al. 2009b)

Obs.	&	prev.	mo	dels
000	00	0		

Our model

Our results

Chemical evolution modelling

Obs. & prev. models	Our model	Our results	Conclusions
000000	●000	000000	
Inputs to the GCE	E model		

 $e_{\mathsf{Z}}(t) = \int_{M_{\mathsf{I}}}^{M_{\mathsf{U}}} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$

Rob Yates

1) Initial mass			
000000	0000	000000	
Obs. & prev. models	Our model	Our results	Conclusions

$$e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}M$$

Standard *Chabrier (2003)* IMF, fixed across time and space

	-			10	×	
000000		0000			000000	
Obs. & prev. models Our model			Our results	Conclusion		

2) Star formation histories (SFHs)

$$e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$$

Our model

Our results

Conclusions

3) Metal yields

$$e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$$

- AGB: Marigo (2001)
- SN-Ia: Thielemann et al. (2003) (W7 model)
- SN-II: Portinari et al. (1998)

4) Stellar lifetimes

$$e_{\mathsf{Z}}(t) = \int_{M_l}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$$

Our model

Our results

Conclusions

4) Stellar lifetimes

$$e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$$

- BM: Mannucci et al. (2006)
- PL: Maoz et al. (2012)
- NG: Strolger et al. (2004)

Dur model

Our results

Model elliptical galaxies

Rob Yates

GCE in SAMs

arXiv:1305.7231,

Obs. & prev. models	Our model	Our results 000000	Conclusions
Model M _* -[O	/Fe] relation		

48 % prompt SNe-Ia

(where 'prompt' means < 400 Myrs)

Slope of the M_* -[O/Fe] relation increases with decreasing SN-Ia prompt fraction

10.5 log(M.) [M.] \sim 0 % prompt SNe-la

0.1

9.5

10.0

11.5

11.0

0	bs.	&	prev.	mod	dels
0	00	00	0		

Our mode

Our results

Conclusions

Improving the slope...

For full elliptical sample (light blue contours), some low- M_* galaxies are too α enhanced...

Obs.	&	prev.	models
000	00	0	

Our model

Our results

Conclusions

1) Model ages

Some very old, low-mass ellipticals in the model

1) Model ages

Our model

Our results

Conclusions

Ongoing improvements:

- Reincorporation of gas onto galaxies over longer timescales (*Henriques et al. 2013*)
- SFR proportional to H₂ density (Fu et al. 2013)
- Reduction in ram pressure stripping efficiency in galaxy groups (*Henriques et al. in prep.*)

Some very old, low-mass ellipticals in the model

Our mode

Our results

Conclusions

PL: Model M_{*}-[O/Fe] relation

Steeper slopes for the mass-age-selected sample (dark blue, dashed contours)

Obs. & prev. models	Our model	Our results	Conclu
000000	0000	000000	

2) Metal-rich winds from SNe-II

$$f_{\rm wind} = \min\left[1.0, \left(\frac{\Sigma_{\rm cold}}{10\; M_{\odot} {\rm pc}^{-2}}\right)^{-1}\right]$$

Oxygen rich, α enhanced, and shortly after SF. (e.g. Martin et al. 2002; Tumlinson et al. 2011)

Including SN-II-driven galactic winds increases slopes

Our mode

Our results

Conclusions

PL: $[\alpha/Fe]$ relations

Positive slopes are obtained (when using a 'small' fraction of prompt SN-Ia) for all α elements, except Mg

Our mode

Our results

Conclusions

Other types of galaxy

Our SAM+GCE also provides a good match to the z = 0 gas-phase MZR and chemical composition of the MW disc

0	bs.	&	prev.	models	
0	00	00	0		

Our model

Our results

Nitrogen

Additional production of N in high-metallicity, massive stars required to obtain strong M_* -[N/Fe] and M_* -[N/O] relations

Conclusions			
Obs. & prev. models	Our model	Our results	Conclusions

- Positive slopes in the M_{*}-[α/Fe] relations of local ellipticals can be obtained in a hierarchical clustering model (without requiring a variable IMF).
- This is best achieved when using a SN-Ia DTD with small 'prompt' component, and SN-II yields that account for prior stellar mass loss
- The *z* = 0 gas-phase MZR, as well as the chemical properties of G dwarfs in the MW disc, can also be reproduced *with the same model*.
- Galactic winds, driven by SNe-II, strengthen positive slopes in M_* - $[\alpha/Fe]$ relations.
- Reproduction of e.g. M_{*}-[N/O] in ellipticals and [Fe/H] in the ICM requires further work...