

Chiara

Spiniello

L.V.E. Koopmans, S.C.Trager, M. Barnabè, T.Treu, O.Czoske

Kapteyn Astronomical Institute University of Groningen (NL)

THE X-SHOOTER LENS SURVEY OVERVIEW

- 1. Science goals and strategies
- 2. The method:

Strong lensing + Dynamics + Stellar population

3. The goal

Disentangle luminous from dark in internal region of massive ETGs

4. Results:

Constraining the Initial Mass Function directly from galaxy spectra

5. Conclusions & Future works

THE X-SHOOTER LENS SURVEY OVERVIEW

WHAT?

- Spectroscopically observe a sample of well studied massive lens ETGs (z≈ 0.1 − 0.4 and σ* > 250 km/s), with multi-color HST data.
- Combine strong gravitational lensing with dynamics and stellar population.

Spiniello et al. 2011, 2012, 2014 (in prep)

SCIENTIFIC GOALS:

- Spatially resolved kinematics
- Disentangle stellar and dark-matter content
- Mass distrubution as function of galaxy mass and redshift
- ► Slope of the Initial Mass Function (IMF) → directly from spectra

(Talk @ Special Session 12 "A fresh look at the stellar IMF")

THE X-SHOOTER LENS SURVEY THE CURRENT SAMPLE I

SLACS System	z _{lens}	z _{BG}	$R_{\rm eff}(\rm kpc)$	R _{Ein} (kpc)	M _V (mag)	$\langle \sigma_{XSH} \rangle$ (km s ⁻¹)
Completed					_	
SDSSJ0037-0942	0.1955	0.6322	7.03	4.95	16.90	277 ± 6
SDSSJ0044+0113	0.1196	0.1965	5.56	1.72	16.32	260 ± 8
SDSSJ0216-0813	0.3317	0.5235	12.6	5.53	18.36	327 ± 19
SDSSJ0912+0029	0.1642	0.3239	10.8	4.58	16.56	325 ± 10
SDSSJ0935-0003	0.3475	0.4670	20.7	4.26	17.71	380 ± 22
SDSSJ0936+0913	0.1897	0.5880	6.61	3.45	17.12	256 ± 18
SDSSJ0946+1006	0.2219	0.6085	8.33	4.95	17.78	300 ± 22
SDSSJ1143-0144	0.1060	0.4019	9.21	3.27	15.83	287 ± 18
SDSSJ1627-0053	0.2076	0.5241	6.66		16.91	303 ± 23
SDSSJ2343-0030	0.1810	0.4630	8.27	4.62	17.17	298 ± 21
On-going						
SDSSJ1112+0826	0.2730	0.6295	6.20	6.19	17.97	
SDSSJ020+1122	0.2822	0.5530	6.73	5.12	18.12	
XLENS-Pilot Program						
SDSSJ1148+1930	0.4440	2.3815	12.5	29.0	20.02	352±26

C.Spiniello

C.Spiniello

EWASS2013 - Sy4

Slide 4/18

THE X-SHOOTER LENS SURVEY THE CURRENT SAMPLE II

Spatially resolved kinematics profiles up to Reff

Spiniello et al.2014b (in prep)

C.Spiniello

EWASS2013 - Sy4

THE X-SHOOTER LENS SURVEY THE GOAL

Breaking the stellar mass - dark matter degeneracy

EWASS2013 - Sy4

QLENS

THE X-SHOOTER LENS SURVEY THE GOAL

Breaking the stellar mass - dark matter degeneracy

Is dark-matter in massive ETGs really dark or just invisible?

EWASS2013 - Sy4

THE X-SHOOTER LENS SURVEY THE 1000000\$ QUESTION

Do more massive Early-Type galaxies have...

More internal Dark Matter?

C.Spiniello

More stars with $M < 0.3 M_{\odot}$?

<u>Nal doublet and FeH Wing-Ford:</u>

QLENS

Gravitational Lensing

GOOD

BAD

- Total mass within REinOnly gravity dependent
- Imposible to disentagle luminous from dark
- Mass-sheet degeneracy

Stellar Kinematics

GOOD

-Detailed analysis of the internal structure (Spatially resolved)

BAD

- Mass-anisotropy degeneracy
- Harder at higher redshift

TOTAL MASS

QLENS

Gravitational Lensing

GOOD

BAD

- Total mass within REin - Only gravity dependent
- Imposible to disentagle luminous from dark
- Mass-sheet degeneracy

GOOD

-Detailed analysis of the internal structure (Spatially resolved)

BAD

- Mass-anisotropy degeneracy
- Harder at higher redshift

Stellar Population Analysis

STELLAR MASS

GOOD

- Precise
- stellar mass
- Age and Z
- Accurate M/L

BAD

- High S/N spectra
- required (~75 Ang)
- Bad model in NIR

TOTAL MASS

QLENS

Gravitational Lensing

GOOD

GOOD

-Detailed analysis of

the internal structure

(Spatially resolved)

BAD

BAD

degeneracy

- Mass-anisotropy

- Harder at higher redshift

- Total mass within REin - Only gravity dependent
- Imposible to disentagle luminous from dark
- Mass-sheet degeneracy

Stellar Population Analysis Stellar Kinematics

GOOD

- Precise
- stellar mass
- Age and Z - Accurate M/L

- BAD
- High S/N spectra
- required (~75 Ang)
- Bad model in NIR

TOTAL MASS

STELLAR MASS

DISENTANGLE LUMINOUS FROM DARK MATTER

SPATIALLY RESOLVED STELLAR KINEMATICS (X-Shooter) + STRONG GRAVITATIONAL LENSING

+

STELLAR POPULATION ANALYSIS

Precise total mass: upper limit on fraction of stellar mass inside Rein (no more than 100% in stars!)

• With assumed luminosity profile

Upper limit on M/L

+

STELLAR POPULATION ANALYSIS

CONSTRAIN THE IMF SLOPE DIRECTLY FROM SPECTRA

EWASS2013 - Sy4

RESULTS I

Spiniello et al. 2011

The Cosmic Horseshoe **()** SDSS 1148+1930

discovered by Belokurov+07

 $R_{\text{eff}} = 2.2" \quad M_{\text{ein}} = 5.02 \times 10^{12} M_{\odot}$ $R_{\text{Ein}} = 5.2" \quad z_{\text{lens}} = 0.444$

Stellar mass fraction within REin

1. From XSH spectra AND Lens mass model

 $f^*_{
m HQ} = 0.19^{+0.04}_{-0.09}$

LENS

RESULTS I

Spiniello et al. 2011

The Cosmic Horseshoe **()** SDSS 1148+1930

discovered by Belokurov+07

$$\begin{array}{ll} R_{\rm eff} = 2.2" & M_{\rm ein} = 5.02 \times 10^{12} M_{\odot} \\ R_{\rm Ein} = 5.2" & Z_{\rm lens} = 0.444 \end{array}$$

Stellar mass fraction within REin

1. From XSH spectra AND Lens mass model

 $f^*_{
m HQ} = 0.19^{+0.04}_{-0.09}$

LENS

2. From VIS broad-band colors

 $f_{Chabrier}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.07 \pm 0.02$ $f_{Salpeter}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.17 \pm 0.06$ $f_{x=-3.0}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.30 \pm 0.11$

RESULTS I

Spiniello et al. 2011

The Cosmic Horseshoe **()** SDSS 1148+1930

discovered by Belokurov+07

 $\begin{array}{ll} R_{\rm eff} = 2.2" & M_{\rm ein} = 5.02 \times 10^{12} M_{\odot} \\ R_{\rm Ein} = 5.2" & z_{\rm lens} = 0.444 \end{array}$

Stellar mass fraction within REin

1. From XSH spectra AND Lens mass model

 $f^*_{
m HQ} = 0.19^{+0.04}_{-0.09}$

ENS

2. From VIS broad-band colors

 $f_{Chabrier}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.07 \pm 0.02$ $f_{Salpeter}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.17 \pm 0.06$ $f_{x=-3.0}^{*} = M_{tot}^{*}/M_{tot}^{Ein} = 0.30 \pm 0.11$

Bottom-light IMF = too little mass in stars
 Bottom-heavy IMF = too much mass in stars

→ excluded at 90%CL (consistent with *Treu et al.,2010*)

C.Spiniello

Bottom-light INIT – too little mass in stars
 Bottom-heavy IMF = too much mass in stars

excluded at 90%CL (consistent with *Treu et al.,2010*)

Evidence for a mild steepening and bottom-heavy IMF in massive ETGs from Sodium and Titanium-Oxide indicators

Spiniello et al. 2012

DATA

SDSSJ0912+0029

 $\langle \sigma \rangle = 312 \pm 12 \text{ km/s} \qquad z = 0.1642$

 $R_{Ein} = 3.87 kpc$

SDSS Data

1. Red and dead galaxies with different velocity dispersions (150 - 310 km/s) 2. Stacked sample of ~50 giant ETGs with $\sigma > 300$ km/s

SDSSJ0041-0914

Single galaxy from the LRG sample with a very strong NaI doublet absorption

SSP MODELS:

(Conroy & van Dokkum, 2012)

Empirical (MILES, IRTF) + Synthetic Libraries

- Ages: 7 13.5 Gyr
- $[\alpha/Fe] = 0 0.4$
- IMFs : Chabrier , Salpeter (α = -2.35), α = -3.0, and α = -3.5

C.Spiniello

EWASS2013 - Sy4

Stellar mass fraction within REin for different IMF slope

IMF slope $(dN/dm = M^{X})$	$f_B^* \ (L_{ m Ein}/M_{ m Ein}) imes (M/L)_B^*$	$f_V^* \ (L_{ m Ein}/M_{ m Ein}) imes (M/L)_V^*$
- 2.35 - 3.00	$\begin{array}{c} 0.75 \pm 0.2 \\ 1.6 \pm 0.5 \end{array}$	$\begin{array}{c} 0.59 \pm 0.18 \\ 1.4 \pm 0.4 \end{array}$
- 3.50	2.4 ± 0.8	2.4 ± 0.7

Stellar mass fraction from LINE INDEX MEASUREMENTS

INDEX = Equivalent width normalized over a continuum

EW =	$(\lambda_{red} - \lambda_{blue})$			
	$(1 - F_I / F_C)$			

- Lick indices : H β , Mgb, Fe5270, Fe5335, NaD and TiO2 (by *Trager, 1998*)
- Commonly used $[MgFe] = \sqrt{(Fe5270 + Fe5335)/2 \times Mgb}$, (by González, 1993)
- New NaI doublet (8183, 8195 A) index (by *Spiniello et al., 2012*)

C.Spiniello

EWASS2013 - Sy4

LENS

Stellar mass fraction within REin for different IMF slope

IMF slope $(dN/dm = M^{X})$	$f_B^* \ (L_{ m Ein}/M_{ m Ein}) imes (M/L)_B^*$	$f_V^* \ (L_{ m Ein}/M_{ m Ein}) imes (M/L)_V^*$
- 2.35	0.75 ± 0.2	0.59 ± 0.18
- 3.00	1.6 ± 0.5	1.4 ± 0.4
- 3.50	2.4 ± 0.8	2.4 ± 0.7

More than 100% in stars!!!

Stellar mass fraction from LINE INDEX MEASUREMENTS

INDEX = Equivalent width normalized over a continuum

- $EW = \frac{(\lambda_{red} \lambda_{blue})}{(1 F_I/F_C)}$
- Lick indices : H β , Mgb, Fe5270, Fe5335, NaD and TiO2 (by *Trager, 1998*)
- Commonly used $[MgFe] = \sqrt{(Fe5270 + Fe5335)/2 \times Mgb}$, (by González, 1993)
- New NaI doublet (8183, 8195 A) index (by *Spiniello et al., 2012*)

C.Spiniello

EWASS2013 - Sy4

LENS

LENS

335

0.12

Age=13.5Gyr Z=solar

Age=13.5Gyr $[\alpha/Fe]=0.2$

C.Spiniello

EWASS2013 - Sy4

Searching for new M-dwarfs indicators in the optical spectrum

Spiniello et al. 2013

First in single stars from MILES stellar library

Sánchez-Blázquez, et al 2006,

then in the CvD+12 Simple Stellar Population Models

Conroy & van Dokkum et al 2012

Empirical libraries:

- MILES [3500–7400]A
- IRTF [8100–24000]A +

Synthetic spectra to:

- cover the gap in wavelength
- investigate changes in the overall Z and in individual elements abundances (at fixed [Fe/H])

- Ages: {3, 13.5}Gyr
- [α/Fe] : {-0.2 , 0.4}
- IMF slopes: {1.8 , 3.5} (Salpeter=2.35)
- Effective Temperature RGB stars: {-200K, 200K}

C.Spiniello

EWASS2013 - Sy4

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

C.Spiniello

EWASS2013 - Sy4

Slide 15/18

RENS

Comparison with data and other results

Spiniello et al. 2013

C.Spiniello

EWASS2013 - Sy4

Slide 16/18

Comparison with data and other results

Spiniello et al. 2013 0.3 $/ (M/L)_{Salp}$ **SDSS** stacked Cappellari+13 0.2 Conroy+12 (SSP) **Mismatch parameter Treu+10 (L+D)** 0.1 $= \log[(M/L)_{x}]$ x=2.35 (Salpeter) 0.0 -0.1 $\log(\alpha)^*$: -0.2 x=1.8⁺(Chabrier-like) -0.3 1.8 2.0 2.2 2.4 2.6 $\log (\sigma)^* (km/s)$

C.Spiniello

EWASS2013 - Sy4

Slide 17/18

NS

1

EWASS2013 - Sy4

THE X-SHOOTER LENS SURVEY CONCLUSIONS

1. The XLENS Survey:

Lensing + Dynamics + Stellar Population Analysis to separate the luminous from the dark matter in the internal region of massive ETGs

2. Constrain the low-mass end of the IMF

A lot of indicators (both in the optical and the NIR) are needed to break degeneracies and constrain age, abundance pattern *and* IMF slope in ETGs from SSP analysis

 More and more evidences confirm that the low-mass end of the IMF slope is NOT UNIVERSAL. More massive ETGs require a Salpeter (or steeper) IMF slope.

THE X-SHOOTER LENS SURVEY FUTURE WORKS

1. DIFFERENT SSP MODELS :

Different models = different answers ???

2. L&D + SSP : CAULDRON + XLENS

Constraining the IMF cutoff Mass (*Barnabè+07,+12, Barnabè, Spiniello+13*)

3. SPATIALLY-RESOLVED IMF

If mergers and accretion of galaxies with pre-enriched gas play an important role in the evolution of the most massive ETGs (Hopkins et al. 2007), IMF could be steeper in the center and flatter in the outer region.

4. NIR spectra from X-shooter

CaT (λ8600), Wing Ford Band (λ9916), CaI (λ19800), CO (λ 23000)

VIMOS (IFU) Data
(with Dr. O. Czoske)
CALIFA (IFU) Data
(with G.Mensinga)

THANKS Chiara Spiniello

Slide 19/18!!! :-P

C.Spiniello

EWASS2013 - Sy4

