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1. The two-point correlation function of galaxies.
2. The perturbation spectrum. The relationship between the two-point 

correlation function and the power spectrum of perturbations.
3. The form of the initial perturbation spectrum and the Harrison-

Zeldovich spectrum.
4. Transfer functions for adiabatic cold and hot dark matter models.
5. Biasing of the galaxy population and baryonic acoustic oscillations in 

the galaxy power spectrum. 
6. The lecture notes correspond to: L: p. 385-419 (§14.1-14.7)

MBW: p. 196-208, 262-270 (§4.3-4.4,§6.1)
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On this lecture we will discuss
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• To make a quantitative comparison between theories of galaxy 
formation and the observed distribution of galaxies, we need to 
quantify the spectrum of density perturbations in the Universe.  

• The simplest quantitative description of the statistical distribution of 
galaxies on large scale is provided by the two-point correlation 
function, which describes the excess probability of finding a galaxy at 
distance r from a galaxy selected at random over that expected in a 
uniform, random distribution:

• N0 is the background number density and the correlation function x(r) 
can also be written in terms of finding pairs of galaxies as:
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6.1 The two-point correlation 
function for galaxies I
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dN(r) = N0[1 + ⇠(r)]dV

dNpair = N2
0 [1 + ⇠(r)]dV1dV2
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• The two-point correlation function can be directly related to the 
density contrast D=dr/r by writing r=r0[1+D(x)]:

• Taking averages over a large number of elements, the mean value of 
D(x) and D(x+r) are zero by definition and we get:

• From which we can identify:
• Observationally we usually work with the angular two-point 

correlation function w(q), which can be measured on the sky and 
then be converted to x(r): 
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The two-point correlation 
function for galaxies II
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dNpair(~r) = ⇢(~x)dV1⇢(~x+ ~r)dV2

dNpair(~r) = ⇢20[1 +�(~x)][1 +�(~x+ ~r)]dV1dV2

dNpair(~r) = ⇢20[1 + h�(~x)�(~x+ ~r)i]dV1dV2

⇠(r) = h�(~x)�(~x+ ~r)i

N(✓)d⌦ = ng[1 + w(✓)]d⌦
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• Observationally the two-point correlation 
function can be well described in the range 
[100h-1 kpc,10h-1 Mpc] by a power law:

1. The correlation function is quite smooth, 
there are no obvious preferred scales.

2. There is a characteristic scale r0=5h-1 Mpc, 
which defines the scale at which the density 
of galaxies is twice the background density 
(i.e. the ~non-linear scale).

3. Also on larger scales, the richest galaxy 
clusters and brightest quasars are correlated 
with r0≈(15-25) h-1 Mpc, although these 
perturbations are still in the linear stage of 
development.
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The two-point correlation 
function: Observations
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The observed two-point
correlation function from 
the 2dF survey. 



www.helsinki.fi/yliopisto

• In deriving the relationship between x(r) and the power spectrum of 
fluctuations it is natural to work with wavevectors k=(2p/l)ik and 
Fourier transforms.

• Using Parseval’s theorem we can relate the integrals of the squares 
of D(r) and its Fourier transform Dk:

• The left-hand side of this equation is the mean square of the 
amplitude of the fluctuation within volume V and |Dk|2 is the power 
spectrum of the fluctuations, which is often written simply as P(k):
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The perturbation spectrum I
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• Since the correlation function is spherically symmetric, the volume 
element of k-space can be written as d3k=4pk2dk.

• The final step is to relate <D2> to the two-point correlation function:

• Multiplying out the cross terms in this summation, they all vanish 
except for those which k=k’:

• Finally we notice that x(r) is a real function and we are only 
interested in the real part of eik∙r, that is cos(k∙r)=cos(kr cos q) 
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The perturbation spectrum II
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• Performing the integral over an isotropic probability distribution of 
angles q on a sphere, that is we integrate cos(kr cos q) over      
(½)sin qdq gives the final result:

• The function (sin kr)/kr allows only wavenumbers k≤r-1 to contribute 
to the amplitude of fluctuations on the scale r. Fluctuations with larger 
wavenumbers corresponding to smaller scales, average out to zero 
on the scale r.

• The inverse relation for the power spectrum can also be derived:
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The perturbation spectrum 
III
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• The smoothness of the two-point correlation suggest that the 
spectrum of initial fluctuations must have been very broad with no 
preferred scales and it is natural to begin with a power law form:

• Because of the (sinkr)/kr has value unity for kr<<1 and decreases 
rapidly to zero when kr>>1. We can integrate k from 0 to kmax≈1/r to 
estimate the dependence of the amplitude of the correlation function 
on the scale r:

• Since the mass of the fluctuation is proportional to r3, this result can 
also be written in terms of the mass within the fluctuations on the 
scale r, M~rr3:
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6.2 The initial power spectrum I
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⇠(r) / r�(n+3)

⇠(M) / M�(n+3)/3
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• To relate x to the root-mean-square density fluctuation on the mass 
scale M, D(M), we take the square root of x:

• Before the perturbations came through their particle horizons  and 
before the epoch of equality of matter and radiation energy densities, 
the density perturbations grew as D(M)∝a2, as the perturbations of 
the gravitational potential were frozen-in (see end of Lecture 4).

• Therefore, the development of the spectrum of density perturbations 
can be written as:   
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The initial power spectrum II
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• A perturbation of scale r came through the horizon when r≈ct, and so 
the dark matter mass within it was MD≈rD(ct)3. During the radiation-
dominated phases a∝t1/2 and the number density of dark matter 
particles, which will eventually form bound structures, varied as 
ND∝a-3.

• Therefore, the horizon dark matter mass increased as MH∝a3 or 
a∝MH

1/3. The mass spectrum D(MH) when the fluctuations came 
through the horizon at different cosmic epochs was 

• Thus, if n=1, the density perturbations DM=dr/r(M) all had the same 
amplitude when they came through their particle horizons during the 
radiation-dominated era.
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The initial power spectrum III
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• The rather special value of n=1 is known as the Harrison-Zeldovich
spectrum. In particular Sunyaev and Zeldovich found that in order to 
produce the observed structure today, the initial fluctuations had to have a 
scale-invariant spectrum (i.e. n=1) dr/r=10-4 on mass scales 105 -1020 M⨀. 
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The Harrison-Zeldovich power 
spectrum
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• Harrison studied the form the primordial 
spectrum must have in order to prevent the 
overproduction of excessively large amplitude 
perturbations on small and large scales. A power 
spectrum of the form P(k) ∝k does not diverge on 
large physical scales and so is consistent with 
the observed large-scale isotropy of the 
Universe.

• The inflation model predicts n slightly below 1, as 
inflation ends at slightly different times in different 
regions. The Planck satellite measured 
n=0.9649±0.042, over 8s away from n=1. 
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• Today we do not observe the initial power-spectrum except on the largest 
physical scales. The transfer function T(k) describes how the shape of the 
initial power-spectrum Dk(z) in the dark matter is modified by different 
physical processes through the relation:

• Dk(z=0) is the power spectrum at the present epoch and f(z)∝a∝t2/3 is the 
linear growth factor between the scale factor at redshift z and the present 
epoch in the matter-dominated era.

• The form of the transfer function is largely determined by the fact that there 
is a delay in the growth of the perturbations between the time when the 
perturbations came through the horizon and began to grow again. For 
example in the CDM picture, the oscillations in the photon-baryon plasma 
were dynamically more important than those in dark matter before the epoch 
of matter-radiation equality. 
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6.3 Transfer functions: Processing 
of the initial power spectrum
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• We adopt a standard power-law power spectrum: P(k)=|Dk|2∝kn.
• Before the perturbations entered the horizon during the radiation-

dominated era, their density contrast grew as Dk∝a2 on all scales. If 
the perturbations came through the horizon during the radiation-
dominated phase, the dark matter perturbations were gravitationally 
coupled to the radiation-dominated plasma and their amplitudes were 
stabilized (Mézaros effect, see Problem sheet 3). After matter-
radiation equality, all perturbations grew as Dk∝a. The net result is a 
flattening of the perturbations on small scales:
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Adiabatic cold dark matter I
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• Detailed calculations of the transfer functions have to be carried out 
using the full apparatus of the coupled Boltzmann and Einstein field 
equations. 

• It is traditional to provide convenient analytic formulae, which 
accurately describe the general form of the transfer function. For the 
adiabatic CDM model the form by Bardeen et al. can be used:

• In the case of adiabatic hot dark matter model with massive 
neutrinos, small-scale perturbations are damped by free-streaming of 
neutrinos. The spectrum cuts of exponentially below MFS~1015 M⨀
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Adiabatic cold dark matter II and 
Adiabatic hot dark matter
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Transfer functions and the 
resulting power spectra
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• Notice that on very large scales (small wavenumbers) the spectrum is 
unprocessed. On the scales of galaxies and clusters, the spectrum 
has been strongly modified.
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Subsequent evolution
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• Linear growth of the spectrum of density fluctuations continue until the 
perturbations become non-linear, DD~1. Perturbations with the largest 
amplitudes attained DD~1 first and then began to collapse to form 
bound systems. The spectrum of density fluctuations was given by:

• In the case of adiabatic cold dark matter models perturbations on small 
scales became non-linear first and collapsed to form the low-mass 
bound systems. 

• In the hot dark matter picture, elongated and flattened structures were 
formed very effectively, in fact too effectively, as everything collapsed 
into large clusters. 

�k / [k3P (k)]1/2
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Biasing I
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• So far we have implicitly assumed that the visible parts of galaxies 
trace the distribution of dark matter. However this might not always be 
the case and the generic term for this is called biasing:

• Here b is the bias-parameter, if the b>1 galaxies are a biased 
representation of the underlying dark matter. 

• This parameter was especially important in early cosmological 
models, where the observations of galaxies had to be reconciled with 
W0=1 (predicted by inflation theory). Now that we know that W0=0.3 
recent analysis have shown that b=1.04±0.11 (consistent with b=1).

⇠gal(r) = b2⇠D(r)

Pgal(k) = b2PD(k)
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Biasing II
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• Although the distribution of galaxies 
overall is unbiased on large scales, 
this does not exclude the possibility 
that there is bias on small scales or 
for different classes of galaxies, 
which must be the case for the 
morphology-clustering relation to be 
valid.

• The bias parameter varies with 
galaxy luminosity in the sense that 
the most luminous galaxies are more 
strongly correlated than galaxies in 
general: b/b⇤ = 0.85 + 0.15L/L⇤

Norberg et al. (2001)
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6.4 Reconstructing the processed 
initial power spectrum
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• We are now in a position to attempt to invert the observational data 
and to determine the form of the processed initial power spectrum 
and compare it with predictions of models such as those illustrated 
on page 16 of this lecture. 

• The observational results must be derived using large galaxy 
surveys and we will here utilize the results of the 2dF Galaxy redshift 
survey that measured the redshifts of 221 414 galaxies and the 
Sloan Digital Sky Survey from which we use their data on 46 748 
luminous red galaxies in the redshift range z=0.16-0.47.

• A key factor in the analysis of the data is to first quantitatively 
account for the many selection effects, which are inevitably present. 
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Redshift biases
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• Distances are typically measured from 
the redshift of galaxies using the 
Hubble law, but these distance 
estimates must be corrected.

1. ‘Fingers of God’ effect alter the 
cosmological redshift of galaxies in 
clusters due to their peculiar 
velocities. In this way the galaxies are 
displaced from their true positions.

2. Large-scale density perturbations 
induce potential motions and as a 
result galaxies are observed falling 
into large-scale density perturbations. 

Peacock et al. (2001)

The 2D correlation function
for galaxies.
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Non-linear development of 
density perturbations
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• It is evident from the power-law form of the two-point 
correlation function that on scales much larger than 
the characteristic length scale r0, the perturbations 
are still in the linear stage of development.

• For smaller scales than r0 the perturbations have 
become non-linear. In the linear matter dominated 
regime dr/r∝a, so x∝a2. In the highly non-linear 
regime clustering becomes stationary, so that at 
fixed radius x grows as x∝a3. 

• The plots show the evolution of x as a function of the 
square of the scale factor (top) and radius for 
different redshifts, as indicated in the figure (bottom).

Hamilton et al. (1991)
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The role of baryon 
perturbations
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• Four examples of the transfer 
function for models with baryons 
only (top pair of diagrams) and 
with mixed cold and baryonic 
models (bottom pair of diagrams).

• The numerical results are shown 
as solid lines and their fitting 
functions by dashed lines. 

• The baryons, which make up 
~20% of the total mass leave 
imprints upon  the galaxy power 
spectrum.
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Acoustic peaks in the power 
spectrum of galaxies: 2dF

Matemaattis-luonnontieteellinen tiedekunta /                       
Peter Johansson / Galaxy formation and evolution Lecture 6

• The baryonic oscillations from the 
Cosmic Microwave background can be 
observed in the present galaxy power 
spectrum as Baryonic Acoustic 
Oscillations (BAOs) in the sense that 
there is excessive power on the scales 
corresponding to BAO scale.

• In the 2dF data the first and second 
peaks have been detected at 
wavenumbers of k=0.06 and k=0.12 
corresponding to the first peak at 100h-1

and the second peak at 60h-1 Mpc.
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Acoustic peaks in the power 
spectrum of galaxies: SDSS
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• The same result is confirmed by 
the observations using the SDSS.

• The key use of BAOs in 
cosmological parameter 
estimations is that the fluctuation 
scale can be considered to be a 
standard rod of a known size, by 
measuring the BAO scale as a 
function of redshift we can 
determine the cosmological 
parameters. 

• The galaxy surveys show that 
W0=0.24-0.27 irrespective of the 
CMB results.

The bottom smooth line shows a DM
only model with no BAOs.
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1. The two-point correlation function describes the excess probability 
of finding a galaxy at distance r from a galaxy selected at random 
over that expected in a uniform, random distribution.

2. The initial power spectrum of perturbations was a smooth power 
law with an index close to the scale-invariant Harrison-Zeldovich
model, n=1.

3. The transfer function describes how the initial perturbation 
spectrum is modified until the present-day due to the combined 
baryonic and dark matter processes. 

4. The initial perturbation spectrum can be reconstructed from careful 
observations. The perturbation spectrum still bears the imprints of 
the baryonic acoustic oscillations from the formation of the CMB.
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What have we learned?
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