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1. Review of basic cosmology. The cosmological principle, the 
Friedmann-Robertson-Walker metric. Definition of the Hubble 
constant and redshift.

2. Distances in an expanding Universe. Angular and luminosity 
distances and the surface brightness in an expanding Universe.

3. Derivations of the Friedmann equations using general relativity and 
solutions to the equations.

4. Derivation of the second order differential equation that describes 
the evolution of small density perturbations D=dr/r in the Newtonian 
non-relativistic case.

5. The lecture notes correspond to: MBW:p. 100-124, 162-166 (§3-3.2, §4.1.1)
L: p. 150-235, 311-317 (§5-7, §11.1-11.2)
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On this lecture we will discuss
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• The standard cosmological model is 
based on the cosmological principle, 
which states that on sufficiently large 
scales, the Universe can be considered 
spatially homogeneous and isotropic.

• The cosmological principle can also be 
stated as the existence of a fundamental 
observer at each location, to whom the 
Universe appears isotropic. 

• For an isotropic Universe the only 
allowed motion is pure radial expansion 
(or contraction):
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3.1 Basic cosmology: The cosmo-
logical principle
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Galaxies in the Universe are
strongly clustered on scales
≤10h-1 Mpc and have random
Velocities of ~100-500 kms-1.
On larger scales the distribution
is more homogeneous and the 
mean motions with respect to the 
cosmological rest frame are 
small, when compared to the 
expansion velocity.

�~v = H�~x
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• In an isotropic and homogeneous Universe there exists a three-
dimensional hypersurface in space-time, on which the density, 
temperature and expansion rate are uniform and evolve according to 
a universally agreed time, called the cosmic time.

• The Universe is maximally symmetric and can be described by the 
Robertson-Walker metric: (Note we use here the [+---] GR notation.)

• a(t) is the cosmic scale factor that describes the overall size of the 
Universe. K describes the curvature of the Universe (K=+1 closed, 
spherical geometry, K=0 flat and K=-1, open, hyperbolic geometry). 
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Robertson-Walker metric I
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ds2 = c2dt2 � dl2 = c2dt2 � a2(t)


dr2

1�Kr2
+ r2(d#2 + sin2 #d�2)

�
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• A proper distance l can be defined at time t by l=∫dl: and without loss 
of generality we can set the angular coordinates to zero.

• Here c(r) is the comoving distance between the two fundamental 
observers. The proper distance l is thus calculated by multiplying the 
comoving distance c(r) with the scale factor a, note a=1/(1+z). 

• It is also often useful to change the time variable from proper time to 
conformal time defined as: 
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Robertson-Walker metric II
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l = a(t)

Z r1

0

drp
1�Kr2

= a(t)�(r1)

�(r) = arcsin(r),K = +1 ;�(r) = r,K = 0 ;�(r) = arsinh(r),K = �1

⌧(t) =

Z t

0

cdt0

a(t0)
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• The Hubble parameter, H(t), at a cosmic time t is defined to be the 
rate of change of the proper distance l between two fundamental 
observers:

• The Hubble parameter H(t) is called the Hubble constant H0 at the 
present time. The value of the expansion parameter is determined by 
the energy content of the Universe and it varies as a function of 
redshift. 

• Quantities that depend on the value of H0 are often expressed using 
little h defined as: 
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The Hubble parameter
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dl

dt
=

ȧ(t)

a(t)
a(t)�(r1) = H(t)l ) H(t) =

ȧ(t)

a(t)

h =
H0

100 kms�1Mpc�1
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• Let us study two rays of light emitted in an expanding Universe. The 
first one emitted at time te and received at time t0 and the second 
emitted at te+dte and received at t0+dt0:

• The comoving distance c(re) does not change. Combining the two 
expressions we get:

• In practise dtc<<tc ja dt0<<t0, using the definition of the conformal time:  
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Redshift
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(
⌧(t0)� ⌧(te) = �(re)� �(0) = �(re)

⌧(t0 + �t0)� ⌧(te + �te) = �(re)

⌧(t0 + �t0)� ⌧(t0) = ⌧(te + �te)� ⌧(te)

�t0
a(t0)
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�te
a(te)

) �0

�e
=
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�0
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a(t0)
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• The proper velocity of a particle with respect to a fundamental 
observer at the origin is defined as v=dl/dt:

• Here vexp is the velocity component due to the universal expansion 
of the Universe and vpec is the peculiar velocity of the galaxy.

• The total observed redshift of a galaxy can be divided into the 
component due to the cosmological expansion and the peculiar 
velocity of the galaxy:
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Peculiar velocities
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v(t) = ȧ(t)�(t) + a(t)�̇(t) = vexp + vpec

1 + zobs =
�2

�P
=

�1

�P

�2

�1
) 1 + zobs = (1 + zpec)(1 + zcos)
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• The comoving distance c(r) and the proper distance l=a(t)c(r) are 
not observables, because the light from a distant source observed 
at the present time on Earth was emitted at a much earlier time.

• We can define an angular distance dA that relates the observable 
angular size (𝜗) to the physical size of the the object (D):

• The proper size D can be considered as the proper distance 
between two light signals, sent from two points with the same radial 
coordinate re at a given cosmic time te. Thus D is just the integral of 
dl in the Robertson-Walker metric in the transverse direction and we 
get for the angular diameter distance:
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Angular diameter distance
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# =
D

dA

D = aere

Z
d# =

a0re
1 + z

# dA =
a0re
1 + ze

= aere
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• Correspondingly the luminosity distance can be defined:
• Let us consider an area A, which covers the solid angle w at the 

distance of the observed object, corresponding to an area of wdA2. 
Because of the expansion of the Universe the corresponding area 
at the origin is larger:  

• If the same number of photons pass through the area A in a time 
interval dt0 we have: 
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Luminosity distance
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F =
L

4⇡d2L

A = !d2A(a0/ae)
2 = (a0re)
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F =
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• In a static Universe and for very short distances dA=dL=d. This 
means that the surface brightness of an object is constant: 

• However in an expanding Universe this assumption is no longer valid 
and instead we have on cosmological distances: 

• For a given L and D the apparent surface brightness decreases with 
redshift as ∝(1+z)4 independent of the assumed cosmological model. 
This is usually referred to as cosmological surface brightness 
dimming and makes studies of high-z objects very difficult.
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Surface brightness in and 
expanding Universe
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• The standard model of cosmology arises from the (simple) application 
of general relativity on the very special class of a homogeneous and 
isotropic matter/energy distribution.

• In this case the Einstein field equation can be written as: 

• Rµn is the Ricci tensor, describing the local curvature of the Universe, 
R is the curvature scalar, gµn is the metric, L the cosmological 
constant and Tµn is the energy-momentum tensor of the matter 
content of the Universe.
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3.2 Relativistic cosmology: 
Friedmann equations I
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Rµ⌫ � 1

2
gµ⌫R� gµ⌫⇤ =

8⇡G

c4
Tµ⌫
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• Contracting the field equation with gµn yields the trace of the field 
equation and we get the following form for the field equation:

• Here rc2 is the energy density, P the pressure and Uµ is the four 
velocity of the fluid. In a homogeneous and isotropic universe, the 
density and pressure only depend on the cosmic time and no peculiar 
motion is allowed, this implies:

20.9.2022 13

Friedmann equations II
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Rµ⌫ + gµ⌫⇤ =
8⇡G

c4

✓
Tµ⌫ � 1

2
gµ⌫T

◆

Tµ⌫ = (⇢+ P/c2)UµU⌫ � gµ⌫P

Uµ = (c, 0, 0, 0); Tµ
⌫ = diag(⇢c2,�P,�P,�P ); T = ⇢c2 � 3P
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• Finally we need the the components of the Ricci tensor and Ricci 
scalar, which can be solved by inserting the Robertson-Walker metric 
in the Riemann-Christoffel curvature tensor and using the affine 
connections (See appendix A1.1 MBW and the additional notes 
and/or a course on GR for details):
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Friedmann equations III
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• Now, finally the Friedmann equations can be derived by inserting the 
values for the Ricci tensor and the energy momentum tensor: We get 
two separate set of equations for the time-time (0,0) component and 
for the space-space (1:3,1:3) components: 

• Finally inserting the first equation into the second we get FRW2:
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Friedmann equations IV
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2ȧ2

a2
+

2Kc2

a2
= 4⇡G

✓
⇢� P

c2

◆
+ ⇤c2Space-space components

✓
ȧ
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• The second Friedmann equation can be formulated in terms of the 
energy components of the Universe as:

• Using the definitions of the critical density and the scale factor:

• The Hubble constant varies as a function of redshift depending on the 
contributions of the various energy components.
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General solutions to the Friedmann
equations
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• At redshifts below z<105 (z<zeq radiation-matter equality) the radiation 
content of the Universe has little effect on its global dynamics and 
assuming L=0 we get: 

• For a flat K=0 model the solution is in particular simple and this model 
is called the Einstein-de Sitter (EdS) model (P.S. 2):

• For the closed K=+1 and open K=-1 models the solutions are best 
expressed in parametric form, see MBW page 117 for details.
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Solution for a matter-dominated 
Universe
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• In the flat model we have in addition to matter also vacuum energy L:

• The solution can be found, when 0<Wm,0<1 (P.S. 2): 

• At early times a∝t2/3, because the L-term is still small and the model 
resembles the Einstein-de Sitter model. At late times the L-term 
dominates and we end up with exponential growth of the scale factor:

20.9.2022 18

Solution for a flat Wm+WL=1 model

Matemaattis-luonnontieteellinen tiedekunta /                       
Peter Johansson / Galaxy formation and evolution Lecture 3

✓
ȧ
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• The age of the Universe is finite, thus only a finite region of space 
have had enough time to be in contact. The particle horizon is defined 
as:

• If the integral converges there can be regions with c(r)>c(rH), from 
which we have not received any information. This happens if ra2⇒∞ 
when a⇒0. Particle horizons do exist in models where radiation (∝a-4) 
or matter (∝a-3) dominated at early times.

• This result is important when studying the early Universe and one of 
the driving forces behind the theory of inflation. 
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Horizons in the Universe
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• The age of the Universe in a homogeneous expanding Universe can 
be derived from the equation: 

• This equation can be integrated numerically for any cosmology and in 
special cases analytically.  

• For the EdS model Wm,0=1 ja WL,0=0:

• On the next page the general equations with a plot from MBW page 
120 are given.
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Age of the Universe I
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Age of the Universe II
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a) All models have WL,0=0 and from top to 
bottom Wm,0=0.1, 0.3, 0.5, 1.0, 2.0.

b) All models have Wm,0+WL,0=1 and from 
top to bottom Wm,0=0.1, 0.3, 0.5, 1.0.
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Distances in the Universe I
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• We derived expressions for the angular and luminosity distances in 
terms of the comoving coordinate r. Recall that r(t) is the comoving
coordinate of a light signal that originates at cosmic time t and 
reaches us at the origin at the present time t0. The comoving distance 
corresponding to r can be written using the conformal time as:

• In terms of redshift this can be rewritten as:

�(r) = ⌧(t0)� ⌧(t) = c

Z a0

a(t)

da

aȧ

�(r) =
c

H0a0

Z z

0

dz

E(z)
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Distances in the Universe II
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• Finally we can derive the angular diameter distance in comoving
coordinates:

• When z<<zeq and WL,0=0 a closed expression exists for all three 
values of K (Mattig’s formula):

• For a flat (Wm,0+WL,0=1) universe r=c and we need to integrate: 

r = fK


c
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c
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0

dz
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⌦0z + (2� ⌦0)[1� (⌦0z + 1)1/2]
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3.3 Evolution of small perturbations 
in an expanding Universe
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• The aim of the section is to understand how small perturbations grow 
in the expanding Universe. At high redshifts the density enhancement 
with respect to the background, dr is small and the corresponding 
density contrast D=dr/r is small. 

• Once these perturbations have grown in amplitude to D=dr/r~1 their 
subsequent development becomes non-linear and they rapidly evolve 
towards bound structures, which leads to star formation and galaxies.

• Galaxies today have D~106 and galaxy clusters D~103. The average 
density in the Universe evolves as (1+z)3 meaning that galaxies must 
have had D~1 at a redshift of z~100 and galaxy clusters at z~10. 

• This is an important conclusion, as it means that galaxies did not 
attain D~1 in the inaccessibly remote past, but at redshifts which are 
in principle accessible to direct observation.
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The growth of small perturbations I

Matemaattis-luonnontieteellinen tiedekunta /                       
Peter Johansson / Galaxy formation and evolution Lecture 3

• In what follows we present a Newtonian analysis for the growth of 
small perturbations. The more correct approach would be to use a full 
general relativistic analysis (see MBW Chapter 4.2), which is far from 
trivial. However, using the classic Newtonian analysis many important 
results can be derived.

• The equations of gas dynamics for a fluid in a gravitational field can be 
written down using the Lagrangian derivative:

1. Equation of continuity:

2. Equation of motion:

3. Gravitational potential:

d

dt
=

�

�t
+ (v̄ ·�)d�

dt
= ��⇥ · v̄

dv̄

dt
= �1

�
⇥p�⇥⇥

�2⇤ = 4�G⇥
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The growth of small perturbations II

Matemaattis-luonnontieteellinen tiedekunta /                       
Peter Johansson / Galaxy formation and evolution Lecture 3

• In the next step we write down the equations for the velocity (v), 
density (r), pressure (p) and gravitational potential (F) including first 
order perturbations where the subscript 0 refers to the properties of 
the unperturbed medium:

• Inserting this into the equations on the previous page and dropping 
second order terms we can derive the following perturbed equations:

1.

2.

3.

v̄ = v̄0 + �v̄ ⇢ = ⇢0 + �⇢ p = p0 + �p � = �0 + ��

d

dt
(
�⇥

⇥0
) =

d�
dt

= �⇥ · �v̄

d(�v̄)
dt

+ (�v̄ ·⇥)v̄0 = � 1
⇥0
⇥�p�⇥�⇤

�2�⌅ = 4⇥G�⇤
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The growth of small perturbations III
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• In an expanding Universe the velocity can be expressed as:

• Inserting this into the perturbed Euler equation (Eq 2. previous page):

• Next we can write the derivates with respect to the comoving
coordinate r rather than x and use the result below for the second 
term:

v̄ =
da

dt
r̄ + a(t)

dr̄

dt
= v̄0 + �v̄, �v̄ = au

d

dt
(aū) + (aū ·r)ȧr̄0 = � 1

⇢0
r�p�r��

d

dx
=

1

a
rc(a~u ·r)ȧ~r0 = ȧ~u
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The growth of small perturbations IV
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• By inserting into the Euler equation using comoving derivatives:

• Now, let us consider adiabatic perturbations in which perturbations in 
pressure and density are related to the adiabatic sound speed cs2 by:

• Finally, we take the divergence in comoving coordinates of the Euler 
equation and the time derivative of the continuity equation:

dū

dt
+ 2

�
ȧ

a

⇥
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⇥0a2
⇥c�p�
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a2
⇥c�⇤

⇥p/⇥� = c2
s
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ȧ
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⇥
⇥c · ū = � c2

s

⇥0a2
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dt2
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Final equation for growth of 
perturbations
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• Combining the previous equations we get:

• We get the final equation by seeking a wave solution for D of the form 

• This is a second order differential equation and describes the general 
evolution of small density perturbations D=dr/r in the Newtonian non-
relativistic case.
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1. In an expanding Universe the angular diameter and luminosity 
distances are not the same. This also means that the surface 
brightness is not conserved as a function of distance and instead it 
scales as ∝(1+z)4.

2. Starting from Einstein’s field equation, the Friedmann equations can 
be derived, which are equations of motion for the size of the 
Universe (scale factor a).

3. The evolution of the expansion rate (Hubble parameter) is 
determined by the energy content of the Universe.

4. In the Newtonian non-relativistic case we can derive a second order 
differential equation that describes the general evolution of small 
density perturbations D=dr/r in an expanding Universe.
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What have we learned?
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