

Learning Stellar Spectra with Deep Normalising Flows

Can generative machine learning find hidden atomic lines?

Ioana Ciucă (ANU & UCL) /w Yuan-Sen Ting (ANU)

Outline

- Brief Introduction to Deep Generative Modeling
- Why/what/how Normalising Flows?
- The unusual case of Galactic Archaeology
- Application I: find chemical outliers
- Application II: identify hidden atomic line transitions
- Summary

Deep Generative Modeling

Which one ain't real?

Karras, Laine & Avila 2019

Which one ain't real?

B

Supervised Learning

Unsupervised Learning

Input: Data X and label y

Goal: Learn how to map X to y

Examples: Classification, regression

Input: Just data X, no labels

Goal: Learn underlying structure of the data

Examples: Dimensionality reduction, clustering

Credit: Ava Soleimany (MIT)

Supervised Learning

Unsupervised Learning

Input: Data X and label y

Input: Just data X, no labels

Goal: Learn how to map X to y

Goal: Learn underlying structure of the data

Examples: Classification,

regression

Examples: Dimensionality reduction, clustering

Generative Models

- Solve an unsupervised learning task
- Given a set of input training sample, we want to learn a model that best represents the distribution from which the samples were generated
- * Formally, learn the probability distribution over random variable **X** from a set of observed data $\{x_i\}$ with probability density $p_X(x)$ parametrised by θ

The goals of generative modeling

Density Estimation

- ** Evaluate likelihood of new points under the model
- Powerful application for outlier detection
- Build informative priors

Sample Generation

- It's fun to sample new faces
- Uncover bias in data & create fairer models by debiasing
- For science, powerful method to identify correlation structure in very high-dimensional datasets

The goals of generative modeling

Density Estimation

- ** Evaluate likelihood of new points under the model
- Powerful application for outlier detection
- Build informative priors

Sample Generation

- It's fun to sample new faces
- Uncover bias in data & create fairer models by debiasing
- For science, powerful method to identify correlation structure in very high-dimensional datasets

How to learn $P_{model}(x)$ to be as similar to $P_{data}(x)$?

Generative Adversarial Networks (GANs)

How to learn $P_{model}(x)$ to be as similar to $P_{data}(x)$?

Variational AutoEncoders (VAEs)

Generative Adversarial Networks (GANs)

NormalisingFlows

All rights reserved: YST, J. Misiek, F. Albertelli

How to learn $P_{model}(x)$ to be as similar to $P_{data}(x)$?

Variational AutoEncoders (VAEs)

Generative Adversarial Networks (GANs)

Normalising Flows

- O Incredibly powerful generative modelling (e.g., Kingma & Dhariwal, 2018)
- O Straightforward to both sample and evaluate new samples

$$\begin{array}{c} \mathcal{Z} \\ \mathbb{R} \end{array}$$

$$p_X(x) | dx | = p_Z(z) | dz |$$

Conservation of mass

$$p_X(x) \mid dx \mid = p_Z(z) \mid dz \mid$$

Fundamental insight is *change of variable* formula: use neural networks as change of variables

2 criteria for NF: NN has to be invertible.

2 criteria for NF: The determinant of the Jacobian can be computed easily.

Training: PyTorch and supercomputers

The case for Galactic Archaeology

- ML spectroscopy has largely employed supervised learning, i.e. mapping observed spectra → chemical composition
- **Dangerous**: Data-driven abundances could lead to the wrong conclusions
- ◆ Powerful: By inferring chemical abundances for > 100,000 stars we can examine the dimensionality of the chemical space of the Milky Way, which is key to understanding galactic chemical evolution

RAVE-ON data-driven abundances

GALAH DR3 high-res measurements

RAVE-ON data-driven abundances

GALAH DR3 high-res measurements

The case for Galactic Archaeology

- ML spectroscopy has largely employed supervised learning, i.e.
 mapping observed spectra → chemical composition
- **Dangerous**: Data-driven abundances could lead to the wrong conclusions
- Powerful: By inferring chemical abundances for > 100,000 stars we can examine the dimensionality of the chemical space of the Milky Way, which is key to understanding galactic chemical evolution

Tinsley-Wallerstein Diagram

"How many elements matter?" (YST & D. Weinberg 2021)

Si/H]

What is minimal subset of elements you need such that, upon conditioning, your dispersion is reduced to noise?

[O/H]

[O/H]

Contradictory results!

- In APOGEE, can reduce all the APOGEE abundances to noise level using only Fe & Mg (or Fe and age) → dimension is 2 (e.g., Ness+19, Lu+21)
- Weinberg et al. 2019 & Griffith et al. 2020: [Mg/H] & [Mg/Fe] → [X/Mg]
- YST et al. (2012), Andrews et al. (2017) & Price-Jones & Bovy (2018): more than 2 components matter
 Cradit: VST (ANIII)

Credit: YST (ANU)

Conditioned on Fe & Mg

[Fe/H] = 0, [
$$\alpha$$
/Fe] = 0

Conditioned on Fe, Mg, O, Si, Ca and Al

[Fe/H] = 0,
$$[\alpha/\text{Fe}] = 0$$

High-dimensionality applications

I. Find chemical outliers

II. Identify hidden atomic transitions

I: one in a million

Log Likelihood, log p(x)

I: one in a million

Log Likelihood, log p(x)

Ciucă & Ting, In Prep.

II: what's lurking in starlight?

$$p(x_i|\text{Teff}, \text{logg}) \Rightarrow \text{Corr}(x_i, x_j)$$

All rights reserved: YST, J. Misiek, F. Albertelli

II: what's lurking in starlight?

All rights reserved: YST, J. Misiek, F. Albertelli

Ciucă & Ting, In Prep.

Ciucă & Ting, In Prep.

Dimension 1

Summary

- NF: flexible NN-based mapping & provide exact likelihood /w great potential for Galactic Archeology
- Stellar spectra: high-dimensional, up to 10,000 dimensions can be modelled via Normalising Flows
- 2 main applications: outlier detection and examine empirical line correlations
- Challenges ahead: noise, proper conditioning on labels

Kiitos paljon! Any questions?

ML Resources

- Andrew Ng: Intro to Machine Learning course on Coursera, notes here http://www.holehouse.org/mlclass/ (old), (new) http://www.holehouse.org/mlclass/ (old), (new) http://www.holehouse.org/mlclass/
- UCL & DeepMind deep learning course: https://deepmind.com/learning-resources/deep-learning-lecture-series-2020 (youtube also available)
- Deep Generative Modelling: https://
 deepgenerativemodels.github.io/notes/index.html
- Cool stuff on normalising flows https://github.com/janosh/ awesome-normalizing-flows