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Learning Stellar Spectra with 
Deep Normalising Flows 
Can generative machine learning find hidden atomic lines?
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Supervised Learning Unsupervised Learning

Input: Data X and label y


Goal: Learn how to map X to y 

Examples: Classification, 
regression


Input: Just data X, no labels


Goal: Learn underlying 
structure of the data  

Examples: Dimensionality 
reduction, clustering
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Generative Models

 Solve an unsupervised learning task


 Given a set of input training sample, we want to learn a model that 
best represents the distribution from which the samples were 
generated


 Formally, learn the probability distribution over random variable X 
from a set of observed data { } with probability density  
parametrised by 


xi pX(x)
θ



The goals of generative modeling

Density Estimation Sample Generation
 Evaluate likelihood of new points 
under the model


 Powerful application for outlier 
detection


 Build informative priors


 It’s fun to sample new faces


 Uncover bias in data & create fairer 
models by debiasing


 For science, powerful method to 
identify correlation structure in very 
high-dimensional datasets
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How to learn               to be as similar to            ? Pmodel(x) Pdata(x)

 Variational AutoEncoders (VAEs)


 Generative Adversarial Networks (GANs)
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Normalising Flows
Incredibly powerful generative modelling (e.g., Kingma & 
Dhariwal, 2018) 

Straightforward to both sample and evaluate new samples

Credit: Guandao Yang (Cornell)



xz f

 pX(x) |dx | = pZ(z) |dz |



xz f

 pX(x) |dx | = pZ(z) |dz |
Conservation of mass 



xz
Fundamental insight is change of variable formula: 

use neural networks as change of variables

 pX(x) = pZ(z) | (
∂z
∂x

) |

f



xz
2 criteria for NF: NN has to be invertible.

f
f−1



2 criteria for NF: The determinant of the 
Jacobian can be computed easily.

f



Training: PyTorch and supercomputers



The case for Galactic Archaeology
ML spectroscopy has largely employed supervised learning, i.e. 
mapping observed spectra      chemical composition 

Dangerous: Data-driven abundances could lead to the wrong 
conclusions 

Powerful: By inferring chemical abundances for > 100,000 stars 
we can examine the dimensionality of the chemical space of the 
Milky Way, which is key to understanding galactic chemical 
evolution 
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The case for Galactic Archaeology



In APOGEE, can reduce all the APOGEE abundances to noise level using only Fe & 
Mg (or Fe and age)  dimension is 2 (e.g., Ness+19, Lu+21) 

Weinberg et al. 2019 & Griffith et al. 2020: [Mg/H] & [Mg/Fe]        [X/Mg] 

YST et al. (2012), Andrews et al. (2017) & Price-Jones & Bovy (2018): more than 2 
components matter

“How many elements matter?” (YST & D. Weinberg 2021)

[O/H][O/H]

[S
i/H

]

Credit: YST (ANU)

Contradictory results!

What is minimal subset of elements 
you need such that, upon 

conditioning, your dispersion is 
reduced to noise?
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Conditioned on Fe, Mg, O, Si, Ca 
and Al

Conditioned on Fe & Mg

YST & D. Weinberg 2021

[Fe/H] = 0, [ /Fe] = 0α [Fe/H] = 0, [ /Fe] = 0α



High-dimensionality applications 

I. Find chemical outliers

II. Identify hidden atomic transitions
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II: what’s lurking in starlight? 
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II: what’s lurking in starlight? 



Modeling 2,000 dimensions Ciucă & Ting, In Prep.



Generating samples and conditioning Ciucă & Ting, In Prep.



Ciucă & Ting, In Prep.
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Summary
 NF: flexible NN-based mapping & provide exact 
likelihood /w great potential for Galactic Archeology

 Stellar spectra: high-dimensional, up to 10,000 
dimensions can be modelled via Normalising Flows 
 2 main applications: outlier detection and examine 
empirical line correlations

 Challenges ahead: noise, proper conditioning on labels




Kiitos paljon! Any questions?



ML Resources
• Andrew Ng: Intro to Machine Learning course on Coursera, notes 

here http://www.holehouse.org/mlclass/ (old), (new) http://
cs229.stanford.edu/syllabus.html


• UCL & DeepMind deep learning course: https://deepmind.com/
learning-resources/deep-learning-lecture-series-2020 (youtube 
also available)


• Deep Generative Modelling: https://
deepgenerativemodels.github.io/notes/index.html


• Cool stuff on normalising flows https://github.com/janosh/
awesome-normalizing-flows
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