TEOREETTISEN ASTROFYSIIKAN PERUSKURSSI

ŞISÄLLYS

Joł	ndant	o: Teoreettisen astrofysiikan paikka tähtitieteessä	1			
1.	TAI	VAANKAPPALEIDEN DYNAMIIKASTA JA MASSOISTA	4			
	1	Tähtienvälisen pilven kontraktio	4			
	2 Kaksoistähtien radat ja tähtien massanmääritys					
		.1 Kaksoistähtien liikeradat	6			
		.2 Kaksoistähtien säteisnopeuskäyrä	8			
		.3 Kaksoistähtien massat	14			
	3	Linnunradan rotaatio ja massajakautuma	21			
		.1 Linnunradan massamalli	21			
		.2 Linnunradan differentiaalirotaation kaavat	25			
	4	Tähtien sirottuminen ja dynaaminen jarrutus	29			
		.1 Tähtien sirottuminen 1/r ² – voimakentässä	29			
		.2 Tähden liikkeen dynaaminen jarrutus	32			
		.3 Stellaaridynamiikan perusyhtälö	35			
	5	Massajoukon stabiilisuus vuorovesivoiman vaikuttaessa	39			
		.1 Stabiilisuusehto, kun suurimassainen kappale ja	39			
		massajoukko ovat levossa toisiinsa nähden				
		2 Stabiilisuusehto, kun massajoukko liikkuu ympyräradalla	40			
	6	Viriaaliteoreema ja galaksijoukkojen massanmääritys	42			
		.1 Viriaaliteoreema	42			
	_	.2 Galaksijoukon massanmääritys	45			
2.	TÄH	TIEN ATMOSFÄÄRIT	48			
	1	Säteilyn emissio ja absorptio	48			
		.1 Säteilyn perusmääritelmiä	48			
		a) Säteilyn intensiteetti	48			
		b) Pintakirkkaus ja säteilyn intensiteetti	51			
		c) Säteilyvuon tiheys	52			
		d) Säteilytiheys (energiatiheys)	56			
		e) Säteilypaine	56			
		.2 Mustan kappaleen säteily	58			
		a) Planckin säteilylaki	58			
		b) Wienin siirtymälaki	62			
		c) Stefan-Boltzmannin laki	62			
		d) Mustan kappaleen säteilytiheys	63			

	.3	Säteilyn emissio- ja absorptiokerroin	64
		a) Säteilyn emissiokerroin	64
		b) Säteilyn absorptiokertoimet ja optinen syvyys	65
		c) Säteilypaine osittain absorboivassa väliaineessa	67
		d) Kirchhoffin laki	69
2	Sät	eilynkuljetus	70
	.1	Yleistä	70
	.2.	Säteilynkuljetusyhtälö	73
	.3	Lähdefunktio	74
		a) puhtaan absorption vallitessa	74
		b) puhtaan sironnan vallitessa	74
		c) absorption ja sironnan vaikuttaessa	76
	.4	Säteilytasapaino	77
	.5	Säteilynkuljetusyhtälön määräämä intensiteettilauseke	79
		a) Säteilynkuljetusyhtälön intensiteettilauseke	79
		b) Suureiden 🛠 ja J, yhteys säteilynkuljetusyhtälöön	81
	.6	Säteilynkuljetusyhtälön approksimatiivisista ratkaisu-	85
		menetelmistä	
		a) Eddington-Barbierin menetelmä	85
		b) Eddingtonin approksimaation antama likimääräinen	87
		ratkaisu harmaalle atmosfäärille	
		c) Schuster-Schwarzschildin menetelmä	93
		d) Chandrasekharin menetelmä	95
3	Kaa	sumaisen tilan fysiikkaa tähtien atmosfääreissä	98
	•1	Ideaalikaasun tilanyhtälö	98
	•2	Kaasun adiabaattinen tilanyhtälö	101
	.3	Kaasun paineen ja lämpötilan kineettinen tulkinta	103
	.4	Maxwellin nopeusjakautuma	105
	• 5	Boltzmannin hiukkasjakautuma potentiaalikentässä	111
	.6	Boltzmannin laki atomien viritystilojen miehityksille	112
	.7	Ionisaatioyhtälö (Sahan yhtälö)	116
	.8	Ionisaatioyhtälön verifiointi	122
		a) Auringonpilkut	122
		b) Spektriluokituksen selittäminen ionisaation ja	122
		virityksen avulla	
		c) Luminositeettiefektit	125
	.9	Kaasun paineen ja elektronipaineen välinen yhteys	126
	.10) Termodynaaminen tasapaino TE ja LTE	128

4	Täh	tien	atmosfäärimallien laskeminen	130
•	.1	Läm	pötilajakautuman T($ au_{\lambda}$) -empiirinen määritys	131
		Aur	ingon atmosfäärissä	
	.2	Aur	ingon fotosfäärimallin laskeminen	133
		a)	Riippuvuuden T = T($\tilde{\tau}$) laskeminen	133
		b)	Riippuvuuden P _g = P _g (\overline{r}) laskeminen	134
		c)	Riippuvuuksien S(Ŧ) ja P _e (Ŧ) laskeminen	137
		d)	Geometrisen syvyyden x ja optisen syvyyden	138
			välinen riippuvuus	
		e)	Auringon fotosfäärimallin tuloksia	138
	.3	Var	haisen spektriluokan tähden atmosfäärimalli	140
5	Eks	 stink	tioprosessit astrofysikaalisissa kohteissa	145
	.1	Yht	eenveto ekstinktioprosesseista	145
	.2	Kla	ssisen dipolin absorptio	147
		a)	Dipolisäteily	147
		b)	Dipolin säteilyteho	150
		c)	Klassisen oskillaattorin absorptiokerroin	151
		d)	Dipolin absorptiokertoimen 🕏 ja massa-absorptio-	155
			kertoimen k välinen yhteys	
		e)	Väliaineeseen absorboitunut säteilyteho	156
	, .3	Sät	eilyn sirottuminen klassisesta oskillaattorista	158
		a)	Thomsonin sironta	158
		b)	Rayleighin sironta	165
		c)	Valon sirottuminen pölyhiukkasista	167
	.4	Kon	tinuumiabsorptio	171
		a)	Kontinuumiabsorption päätekijät	171
		Ъ)	Vedyn bound-free absorptiokerroin	175
		c)	Vedyn free-free absorptiokerroin	179
		d)	Negatiivisen vetyionin kontinuumiabsorptio	183
		e)	Muiden alkuaineiden kontinuumiabsorptio	186
		f)	Keskimääräinen absorptiokerroin	188
	.5	Sid	oselektronien siirtymätodennäköisyydet	192
		a)	Elektronisiirtymien Einsteinin todennäköisyyskertoimet	192
		b)	Einsteinin kertoimien yhteys viiva-absorptiokertoimeen	196
		c)	Einsteinin kertoimien yhteys oskillaattori-	197
			voimakkuuksiin	
		d)	Säteilyvaimennuksen kvanttimekaaninen lauseke	199

	6	Spektriviivaprofiilit	202
		a) Säteilyvaimennuksen aiheuttama viivan luonnolli-	203
		nen leveneminen	
		b) Atomien lämpöliikkeen aiheuttama spektriviivan	205
		c) Atomien törmäyksistä siheutuva viivan leveneminen	208
		d) Yhdistetty luonnollinen Dopplerin ja törmäys-	209
		leveneminen	209
		e) Spektrivijvojen vojmakkuudet ja kasvukävrä	213
		f) Teoreettisen spektriviivaprofiilin laskeminen	216
		-,	
3. ТАН	TIEN	SISÄINEN RAKENNE	222
1	Per	rusyhtälöt	223
	· . 1	Tähden massajakautuma	223
	.2	Hydrostaattinen tasapaino	223
	.3	Energiankuljetus	224
		a) Säteilynkuljetus	224
		b) Konvektiivinen energiankuljetus	225
	.4	Energiantuotto	229
		a) Energialähteet	229
		b) Tähden energiatasapaino	230
		c) Luminositeetin muutos epätasapainon vallitessa	231
		d) Tähden massa-luminositeettirelaatio	231
	.5	Ratkaisun yksikäsitteisyys	232
2	Pla	asman keskimääräinen absorptiokerroin	233
3	P14	asman tilanyhtälö	234
	.1	Yleinen tilanyhtälö	234
	.2	Degeneroituneen elektronikaasun tilanyhtälö	236
		a) Paulin ki <mark>eltosä</mark> äntö ja elektronien Fermi-Diracin	236
		jakautuma	
		b) Degeneroituneen elektronikaasun paine	238
		1) Klassinen elektronikaasu (v << c)	238
		2) Relativistinen elektronikaasu (v≈c)	238
4	Yd	inenergian tuotto tähdissä	244
	.1	Energiantuottokerroin	244
	.2	Ydinreaktioiden reaktionopeudet	245
	.3	Tähtien tuottoisimmat ydinreaktiot	250
	.4	Neutriinojen aiheuttama energianmenetys	252
LIITE	I :	Kahden kappaleen probleema	A 1
LIITE I	: [:] I	Johdatus elektronien siirtymätodennäköisyyksien	
		kvanttimekaanisiin laskuihin	

ESIPUHE

Tämä moniste perustuu Helsingin yliopiston tähtitieteen aineopintoihin kuuluvan teoreettisen astrofysiikan peruskurssin luentoihin. Monistetta toimittaessani olen pääasiassa tukeutunut prof. Kalevi Mattilan luentoihin vuodelta 1981. Paikoitellen olen tehnyt myös omia lisäyksiä. Kuvia, taulukoita ja tiedon jyväsiä olen lainannut myös seuraavista lähteistä :

- M. Harwitt : Astrophysical Concepts, John Wiley. New York 1973.
- E. Novotny : Introduction to Stellar Atmospheres and Interiors. Oxford University Press 1973.
- L.H. Aller : Astrophysics. The Atmospheres of the Sun and Stars. Second Edition. Ronald Press, New York 1963.
- D. Mihalas : Stellar Atmospheres. Second Edition. W.H. Freeman and Company, San Francisco 1978.
- J. Andouze & S. Vauclair : An Introduction to Nuclear Astrophysics. D. Reidel Publishing Company, Dordrecht 1980.
- C. Pethick : Neutron Stars (NORDITA:n kesäkurssi v. 1982).
- H. Voigt : Abriss der Astronomie. 3. Auflage. Bibliographisches Institut, Mannheim 1980.
- K. Kurki-Suonio : Fysiikan cum laude luennot

Monisteen puhtaaksikirjoitus on tehty talkoovoimin mahdollisimman nopeasti. Konekirjoittajille Jukka Piiroselle, Matti Koivistolle ja Merja Karsmalle lausunkin parhaat kiitokseni.

> Joulukuussa 1984 Tarja Liljeström

TEOREETTISEN ASTROFYSIIKAN PERUSKURSSI

eration wy

JOHDANTO:

TEOREETTISEN ASTROFYSIIKAN PAIKKA TÄHTITIETEESSÄ

Tähtitiede voidaan karkeasti jakaa kahteen osa-alueeseen: <u>astrofysiikkaan</u> sekä <u>klassiseen tähtitieteeseen</u>, joka käsittää lähinnä positioastronomian ja taivaanmekaniikan. Astrofysiikka tutkii nimensä mukaisesti taivaankappaleita fysiikan menetelmin. **Pääasiallisesti ana**lysoidaan taivaankappaleiden lähettämää sähkömagneettista säteilyä. Tämän lisäksi havaitaan myös avaruudesta saapuvaa kosmista säteilyä (e⁻, \ll , ...), neutriinosäteilyä sekä toistaiseksi vielä hypoteettista gravitaatiosäteilyä. Tähtitieteen nykyisestä tutkimustyöstä varsin huomattava osa (noin 80 %) kuuluu astrofysiikan piiriin.

Teoreettinen astrofysiikka pyrkii yleisiin fysiikan teorioihin nojautuen selittämään taivaankappaleista saatuja havaintoja. Tätä varten on tunnettava

- 1) <u>säteilyn ominaisuudet</u>, sen syntymekanismit taivaankappaleissa, sen eteneminen ja absorptio sekä
- <u>taivaankappaleiden fysikaaliset ominaisuudet</u> kuten dynaamiset tekijät, rakenne ja kehitys.

Jotta havainnot voitaisiin tyydyttävästi selittää, laaditaan kohteesta <u>teoreettinen malli</u>, joka on aina yksinkertaistettu kuva todellisesta taivaankappaleesta (esim. tähtimallit, atmosfäärimallit, tähtienvälisten pilvien mallit, galaksien massamallit). Vertaamalla mallia havaintoihin voidaan mallia täsmentää. Toisinaan vertailu myös osoittaa, että kohteesta ei vielä voida laatia luotettavaa, yksityiskohtaisempaa mallia puutteellisten havaintojen vuoksi tai koska ilmiöön vaikuttavia tekijöitä ei vielä riittävästi tunneta.

<u>Astrofysiikka on sovellettua fysiikkaa</u> siinä mielessä, että laboratoriokokeisiin perustuvia fysiikan lakeja sovelletaan sellaisinaan taivaankappaleisiin. Voidaan tietysti kysyä, onko tämä oikeutettua, kun tarkastellaan ajallisesti ja paikallisesti hyvinkin kaukaisia kohteita. Kokemus on osoittanut, että näin menetellen on havainnot voitu selittää. Koska astrofysiikan kehitys on jo noin 100 vuoden ajan ollut hyvin menestyksekästä, ei ole mitään syytä luopua oletuksesta, että "taivaallista" fysiikkaa ja maanpäällistä fysiikkaa hallitsevat samat luonnonlait. Tuon tuostakin esiintyy tosin spekulointia siitä, että tähtitieteelliset havainnot voisivat johtaa "uuteen fysiikkaan". Tähän on viitattu mm. galaksien punasiirtymäilmiön, kvasaarien energiantuoton sekä pulsarien säteilymekanismin yhteydessä. Lähinnä voitaisiin "uutta fysiikkaa" ajatella löytyvän erittäin voimakkaista gravitaatiokentistä, joita esiintyy neutronitähtien ja toistaiseksi hypoteettisten mustien aukkojen yhteydessä.

Tähtitieteen piirissä luotiin viimeksi uutta fysiikkaa Kopernikuksen, Keplerin ja Galilein toimesta, joitten havaintoihin nojautuen Newton rakensi kokonaan uuden mekaniikan järjestelmän. Planeettojen liikelakien selvittämisen myötä muotoutuivat massojen yleisen vetovoiman käsite sekä dynamiikan periaatteet. Mekaniikka hallitsi sitten fysiikkaa ja taivaanmekaniikka tähtitiedettä aina 1800-luvun puoliväliin saakka. On jotenkin paradoksaalista, että juuri taivaanmekaniikkaa ei katsota astrofysiikkaan kuuluvaksi, vaikka taivaanmekaniikka tavallaan loi pohjan koko nykyiselle fysiikalle! Tällä on lähinnä historiallinen selityksensä: taivaanmekaniikan havainnot perustuvat taivaankappaleiden koordinaattimittauksiin, astrofysiikka sen sijaan käyttää "uudenaikaisempia", etupäässä säteilyä kuvaavia havaintosuureita.

ardolaly33as

antisiellas a

voe findel nedlingi

norse aliminations

Muutamia vuosilukuja astrofysiikan kehityksestä

1814	Fraunhofer keksi Auringon absorptioviivat
1823	Fraunhofer keksi tähtien absorptioviivat
1859	Kirchhoff ja Bunsen selittivät Fraunhoferin viivojen synnyn
1860	Kirchhoff muotoili säteilyreorian perusteet
	(Kirchhoffin lause)
1885-	Pickering, Cannon et al. laativat tähtien spektriluokittelun
	(Henry Draper Catalogue)
1900	Planckin säteilylaki
1906	Karl Schwarzschild kehitti stationääristen säteilykenttien
	teorian, joka muodostaa tähtien <mark>teorian perus</mark> pilarin:
	energiankuljetus tapahtuu säteilyn avulla
1908	Hale keksi auringonpilkkujen magneettiset kentät
1913	Hertzsprung-Russel diagramma
1916-20	Eddington loi tähtien sisäisen rakenteen teorian
1920	Saha esitti termisen ionisaation ja virittymisen teorian,
	joka on tähtien spektrien fysikaalisen tulkinnan perusta.
1927	Zanstra kehitti planetaari <mark>sten sumujen säteilyteorian:</mark>
	UV säteily (λ < 912 Å) ionisoi atomit
1930	Unsöld esitti konvektiivisen virtauksen tähtien atmosfääreissä
1938	Bethe ja Weizsäcker esittivät, että ydinreaktiot ovat tähtien
	energian lähde
1938	Strömgren esitti HII alueiden teorian
1950	Alfven, Herlofson, Kiepenheuer, Shklovski esittivät, että
	synkrotronisäteily on useiden radiolähteiden säteilyn mekanismi

1. TAIVAANKAPPALEIDEN DYMAMIIKASTA JA MASSOISTA

Kahden kappaleen probleemaan liittyvä teoria on kertauksenomaisesti esitetty liitteessä. Taivaanmekaniikan luennoilla käsitellään kahden kappaleen probleeman sovellutuksia aurinkokunnan piirissä. Tässä luvussa tarkastellaan lähinnä tähtien ja tähtijärjestelmien dynamiikkaa.

1.1 TÄHTIENVÄLISEN PILVEN KONTRAKTIO

Esimerkkinä yhden kappaleen probleemasta tarkastellaan oman gravitaatiovoimansa vaikutuksesta kokoon luhistuvaa pallomaista, homogeenista tähtienvälistä pilveä, jonka tiheys alkuhetkellä t=0 on S(0). Olkoon alkuhetkellä pilven mielivaltaisen pallonkuoren säde r(0)=a ja tämän kuoren sisäpuolelle jäävä massa M(a). Oletetaan lisäksi, että luhistumisen edistyessä turbulenttiset liikkeet eivät sekoita sisäkkäisten pallokuorien järjestystä, jolloin kuoren sisäpuolelle jäävä massa pysyy vakiona koko luhistumisen aikana. Koska pallomaisen massajakautuman M(a) gravitaatiovaikutus sen pinnalla tai ulkopuolella olevaan hiukkaseen on tunnetusti sama kuin pallon keskipisteeseen sijoitetulla M(a)-massaisella pisteellä, on a-säteisellä pallonkuorella olevan massahiukkasen liikeyhtälö alkuhetkellä:

$$\begin{aligned} \ddot{\tau} &= -\frac{G M(\alpha)}{r^2} \\ \frac{dv}{d\tau} \frac{d\tau}{dt} &= -G M(\alpha) \cdot \frac{1}{r^2} \\ \int_{0}^{r} \sqrt{dv} &= -G M(\alpha) \int_{0}^{r} \frac{1}{r^2} d\tau \\ \frac{v^2}{2} &= G M(\alpha) \left(\frac{1}{r} - \frac{1}{\alpha}\right) \end{aligned}$$

- 4 = -

$$\frac{v^{2}}{2} = G \cdot \frac{4\pi}{3} g(0) a^{3} \cdot \frac{4}{a} \left(\frac{a}{7} - 1\right) \left| \cdot \frac{2}{a^{2}} \right|$$

$$\frac{v^{2}}{a^{2}} = \frac{8\pi G g(0)}{3} \left(\frac{a}{7} - 1\right)$$

$$\frac{v}{a} = \frac{(+)}{\sqrt{\frac{8\pi G g(0)}{3} \left(\frac{a}{7} - 1\right)}} \left| \begin{array}{c} Huom. \ \overline{v} \uparrow \downarrow \overline{\tau}(0) = \overline{a} \\ Sij. \ \overline{a} = \cos^{2}\beta \Rightarrow \tau = a\cos^{2}\beta \\ \Rightarrow v = \frac{d\tau}{dt} = a \cdot 2\cos\beta(-\sin\beta)\frac{d\beta}{dt}$$

$$-2 \sin \beta \cos \beta \frac{d\beta}{dt} = -\sqrt{\frac{8\pi G \cdot g(o)}{3}} \sqrt{\frac{1}{\cos^2 \beta}} - 1$$

$$2 \sin \beta \cos \beta \frac{d\beta}{dt} = dt \sqrt{\frac{8\pi G g(o)}{3}} \sqrt{\frac{\sin^2 \beta}{\cos^2 \beta}} \qquad \left| \frac{\cos \beta}{\sin \beta} \right| \int$$

$$2 \int_{0}^{\pi/2} \cos^2 \beta \frac{d\beta}{dt} = \int_{0}^{t} dt \sqrt{\frac{8\pi G g(o)}{3}} \qquad \tau \to 0 \Rightarrow \beta \to \frac{\pi}{2}$$

$$2 \int_{0}^{\pi/2} (\beta + \sin\beta \cos\beta) = t_{f} \sqrt{\frac{8\pi G g(o)}{3}} \qquad \tau \to 0$$

$$\Rightarrow t_{f} = \sqrt{\frac{3\pi}{32 G g(o)}}$$

PILVEN LUHISTUMISAIKA

Luhistuvan pilven "vapaan putoamisajan" lausekkeen voit lyhyemmin johtaa Keplerin III lain avulla, kunhan ensin selität itsellesi, millaista "ellipsirataa" jokainen pallonkuoren piste liikkuu (harjoitustehtävä).

Oletetaan esimerkiksi, että pilvi koostuu yksinomaan vetymolekyyleistä. Tällöin pilven tiheys on

$$S_{H_2} = n_{H_2} \times m_{H_2}, \text{ missä } n_{H_2} = \text{vetymolekyylien lukumäärä/cm}^3$$

sijoittamalla
$$m_{H_2} = 2 \times 1.67 \times 10^{-27} \text{ kg}$$

$$G = 6.67 \ 10^{-11} \ \frac{\text{kgm}}{2} \text{ m}^2 \text{ kg}^{-2}$$

$$1 \text{ y} = 3.156 \times 10^7 \text{ s}$$

$$n_{H_2} = 3000 \text{ cm}^{-3} \text{ (tyypillinen arvo luhistuvassa}$$

molekyylipilvessä)

saadaan pilven luhistumisajaksi noin 10⁵ vuotta.

1.2 KAKSOISTÄHTIEN RADAT JA TÄHTIEN MASSANMÄÄRÄYS

1.2.1 Kaksoistähtien liikeradat

a) Kun m << M :

Probleema palautuu yhden kappaleen probleemaksi, jossa suurempimassainen komponentti (massa M) on inertiaalikoordinaatiston origona.

2

Pienempimassaisen komponentin liikeyhtälö:

$$\frac{\ddot{\tau}}{\dot{\tau}} = -\frac{GM}{\tau^3} \, \bar{\tau}$$

b) Kun m_a≈ m_b :

Ratkaistava kahden kappaleen probleema, jossa inertiaalikoordinaatiston origona on systeemin painopiste. Komponenttien a ja b liikeyhtälöt:

$$m_a \overline{\tau}_a = - \frac{G m_a m_e}{\tau^3} \overline{\tau}$$

Komponenttien välinen etäisyysvektori on

$$\overline{\tau} = \overline{\tau}_{a} - \overline{\tau}_{b}$$
Massapisteen määritelmästä
$$m_{a} \overline{\tau}_{a} = -m_{b} \overline{\tau}_{b}$$

$$\Rightarrow \overline{\tau}_{b} = -\frac{m_{a}}{m_{b}} \overline{\tau}_{a}$$
joten
$$\overline{\tau} = \left(1 + \frac{m_{a}}{m_{b}}\right) \overline{\tau}_{a}$$

$$\frac{\ddot{\tau}_{a}}{\ddot{\tau}_{a}} = -\frac{G}{\left(1 + \frac{m_{a}}{m_{b}}\right)^{3} \tau_{a}^{3}} \cdot \frac{m_{a} + m_{b}}{m_{b}} \vec{\tau}_{a}$$

$$\frac{\ddot{\tau}_{a}}{\ddot{\tau}_{a}} = -\frac{G}{\left(1 + \frac{m_{a}}{m_{b}}\right)^{3}} \frac{\vec{\tau}_{a}}{\tau_{a}^{3}} = -\frac{G}{\left(\frac{M}{m_{b}}\right)^{3}} \frac{\vec{\tau}_{a}}{\tau_{a}^{3}}$$

$$\frac{\ddot{\tau}_{a}}{\ddot{\tau}_{a}} = -\frac{G}{M^{2}} m_{b}^{3} \frac{\vec{\tau}_{a}}{\tau_{a}^{3}}$$
missä $M = m_{a} + m_{b}$

Vastaavasti saadaan toiselle komponentille :

$$\ddot{\overline{\tau}}_{g} = -\frac{G}{M^{2}} m_{a}^{3} \frac{\overline{\tau}_{b}}{\tau_{b}^{3}}$$

Tarkastaeltaessa tähtien suhteellista liikettä on komponentin a kiihtyvyys komponentin b suhteen

Huomautettakoon, että origo on nyt kiihtyvässä liikkeessä, joten kyseessä ei ole inertiaalikoordinaatisto.

Liikeyhtälön $\frac{m}{r} = -\frac{GM}{r^3}r$ ratkaisu antaa ratakäyräksi ellipsin,jonka isoakseli**g**a saadaan Keplerin III lain avulla:

$$a^{3} = \frac{GM}{4\pi^{2}} \cdot P^{2}$$
, ts. $a \sim \sqrt[3]{GM}$

Kirjoittamalla lausekkeen GM paikalle edellisissä liikeyhtälöissä näkyvät vakiot $\frac{G}{M^2} m_k^3$, $\frac{G}{M^2} m_a^3$ ja $\frac{G}{M^2} (m_a + m_k)^3$ saadaan ellipsiratojen isoakselien suhteeksi

$$a_{a}: a_{b}: a_{rel} = \sqrt[3]{\frac{G}{M^{2}}} m_{b}^{3}: \sqrt[3]{\frac{G}{M^{2}}} (m_{a} + m_{b})^{3}$$

Nähdään, että edellä esitettyjen liikeyhtälöitten ratkaisuina saadaan kolme samanmuotoista ellipsiä, joitten koot suhtautuvat kuten

$$a_a: a_b: a_{rel} = m_b: m_a: (m_a + m_b)$$

Jos tähtien etäisyydeksi valitaan r_a+r_b=1, niin

1.2.2 Kaksoistähtien säteisnopeuskäyrä

Tarkastellaan tähden rataliikkeen projektiota taivaan tasolle, joka on kohtisuorasti havaitsemissuuntaa vasten. Kuvassa havaitsija on kaukana positiivisen z-akselin suunnassa.

- C = massakeskipiste
- r = tähden paikkavektori
- i = radan kaltevuus
- i'= tähden paikkavektorin ja taivaantason välinen kulma
- ω = periastronin argum. (=nousevan solmun ja periastronin välinen kulma)
- 𝔥 = tähden luonnollinen anomalia

<u>dz</u> dt

Johdetaan seuraavassa lauseke tähden säteisnopeudelle levossa olevan havaitsijan suhteen :

$$(\bigstar) \quad \lor = \lor_{o} +$$

, missä v_o= vakiona pysyvä säteisnopeus, jolla koko systeemi liikkuu auringon suhteen

Tähden paikkavektorin projektio z-akselille on

 $Z = \tau \sin i$

Pallokolmion sinilauseen mukaan

$$\frac{\sin L}{\sin 90} = \frac{\sin L}{\sin (\omega + v)} \iff \sin L^2 = \sin L \sin(\omega + v)$$

$$= 1$$

 $Z = \tau \sin i \sin(\omega + \vartheta)$

$$\Rightarrow \frac{dz}{dt} = \left[\frac{dt}{dt} \sin i \sin(\omega + \vartheta) + \left[\frac{dy}{dt} \right]^{T} \sin i \cos(\omega + \vartheta) \right]$$

$$KI : T = \frac{\alpha(1 - e^{2})}{1 + e \cos \vartheta}$$

$$\Rightarrow \left(\frac{dt}{dt} \right) = \frac{\alpha(1 - e^{2})e \sin \vartheta}{(1 + e \cos \vartheta)^{2}} \frac{d\vartheta}{dt} = \tau \frac{e \sin \vartheta}{1 + e \cos \vartheta} \frac{d\vartheta}{dt}$$

$$KI : \tau^{2} \frac{d\vartheta}{dt} = \frac{\alpha}{(1 + e^{2})e \sin \vartheta}$$

$$\frac{\alpha(1 - e^{2}) = \frac{d^{2}}{MG}}{MG} , M = m_{1} + m_{2}$$

$$\alpha(1 - e^{2}) = \frac{d^{2}}{MG}$$

$$\Rightarrow \frac{dz}{h} = \left[\sin i \sin(\omega + \vartheta) \cdot \left(\frac{e \sin \vartheta}{1 + e \cos \vartheta} + \frac{e \sin \vartheta}{\tau^{2}} \right) \right] \frac{1}{MG} \frac{\alpha(1 - e^{2})}{\tau^{2}}$$

$$= \left[\sin i \sin(\omega + \vartheta) \cdot \left(\frac{e \sin \vartheta}{1 + e \cos \vartheta} + \frac{e \sin (\omega + \vartheta)}{1 + e \cos \vartheta} + \frac{e \sin (\omega + \vartheta)}{\tau^{2}} \right] \frac{1}{\pi} \frac{1}{\pi} \frac{\alpha(1 - e^{2})}{\tau^{2}}$$

$$= \left[\sin i \sin(\omega + \vartheta) \cdot \left(\frac{e \sin \vartheta}{1 + e \cos \vartheta} + \sin i \cos(\omega + \vartheta) \right) \right] \frac{1}{MG} \frac{\alpha(1 - e^{2})}{\tau^{2}} + \frac{\alpha(1 - e^{2})}{\tau^{2}} \right]$$

$$= \left[\sin i \sin(\omega + \vartheta) \cdot \left(\frac{e \sin \vartheta}{1 + e \cos \vartheta} + \sin i \cos(\omega + \vartheta) \right) \right] \frac{1}{MG} \frac{\alpha(1 - e^{2})}{\pi^{2}} + \frac{\alpha(1 - e^{2})}{\tau^{2}} \right]$$

$$= \sin i \sqrt{\frac{MG}{\alpha(1 - e^{2})}} \left[\sin(\omega + \vartheta) e \sin \vartheta + \cos(\omega + \vartheta) \right] \frac{1}{(\log \alpha(1 - e^{2}))^{2}} \cdot (1 + e \cos \vartheta) \right]$$

$$= \sin i \sqrt{\frac{MG}{\alpha(1 - e^{2})}} \left[e \left(\cos \vartheta \cos(\omega + \vartheta) + \sin \vartheta \sin(\omega + \vartheta) \right) + \cos(\omega + \vartheta) \right]$$

$$= \sin i \sqrt{\frac{MG}{\alpha(1 - e^{2})}} \left[e \left(\cos \vartheta \cos(\omega + \vartheta) + \sin \vartheta \sin(\omega + \vartheta) \right) + \cos(\omega + \vartheta) \right]$$

Sijoittamalla tämä nopeuden lausekkeeseen (*) saadaan

$$V = V_{o} + \sqrt{\frac{MG}{a(1-e^{2})}} \sin i \left[e \cos \omega + \cos (\omega + \sqrt{2}) \right]$$

$$\left[KIII : P^{2} = \frac{4\pi^{2}}{MG} a^{3} \implies MG = \frac{4\pi^{2}a^{3}}{P^{2}}$$

$$\implies \sqrt{\frac{MG}{a(1-e^{2})}} = \frac{2\pi}{P} \sqrt{\frac{a^{3}}{a(1-e^{2})}} = \frac{2\pi a}{P} \cdot \frac{1}{\sqrt{1-e^{2}}}$$

$$V = V_0 + \frac{2\pi}{P} \frac{1}{\sqrt{1-e^2}} \operatorname{asini}\left[e\cos\omega + \cos(\omega + \vartheta)\right]$$

K

Tässä säteisnopeuden lausekkeessa ovat tuntemattomia suureita v_0 , P, asini, e, ω sekä periheliaika t_0 (sisältyy luonnolliseen anomaliaan $\sqrt[A]_0$). Tuntemattomat voidaan ratkaista mittaamalla kuusi säteisnopeusarvoa yhden kierroksen aikana (käytännössä mitataan usein kaksoistähden koko säteisnopeuskäyrä). Huomautettakoon, että säteisnopeuskäyrästä ei saada radan isoakselia?a eikä inklinaatiota i erikseen vaan ainoastaan suure asini. Jos kummallekin kaksoistähden komponentille säteisnopeuskäyrä on mitattu, saadaan havainnoista a_1 sini ja a_2 sini.

Alla olevissa kuvissa 1 ja 2 on esimerkkejä kaksoistähtien säteisnopeuskäyristä eri periastronin pituuksien ω ja eksentrisyyden e arvoilla. Pintalauseen mukaiset nopeudenvaihtelut sekä radan muoto ja asento havaitsijaan nähden aikaansaavat erinäköiset säteisnopeuskäyrät. Kuvassa 2 näkyvän katkoviivan kummankin puolen pinta-alat ovat yhtäsuuret, joten katkoviivan ilmoittama vakionopeus on systeemin massakeskipisteen nopeus v_o Auringon suhteen.

Kuva 1

- 11 -

Fig. 2. The shapes of radial-velocity curves for different values of the elements e and ω .

Fig. 3. The Radial Velocities of AR Lacertae. This is a spectroscopic (as well as an eclipsing) binary system, for which the spectra of both components are measurable. Black dois refer to the component designated H in the text, the white dots to component C. Crosses represent blended spectral lines of the two stars. The abscissa has the same zero point as in Fig. 1-8. [R. F. Sandford, 1951 (103).]

- .

.

- 12 -

2.

Fig. Correspondence between Positions in the Orbit and Points on the Radial Velocity Curve. The cases of a mass ratio of 2:1 for stars A and B is illustrated.

Upper Left: Orbits of the two components about the center of mass, marked +. Upper Right: Relative orbit of star B about star A.

Lower: The corresponding radial velocity curves. The amplitude of curve B is twice that of A.

Fig. The Orbits of the Components of the Visual Binary System 99 Herculis. Left: Relative orbit of star B about star A (larger ellipse) and of the center of mass of the system about star A (smaller ellipse).

Right: Orbits of the two components about their center of mass, located at the intersection of the lines connecting the stars.

The dots are much larger than the actual stars in relation to the size of the orbit. [Adapted from P. van de Kamp, 1958 (32), p. 213.]

1.2.3 Kaksoistähtien massat

Havaintotekniikan perusteella luokitellaan kaksoistähtiä seuraavasti:

- Visuaaliset kaksoistähdet Komponetit näkyvät (tai ovat interferometrisesti) erillään toisistaan. Havaitaan "tähtenä, jolla näkymätön Astrometriset kaksoistähdet seuralainen" lähinnä näkyvän komponentin jaksollisten paikanmuutosten perusteella (liike systeemin massakeskipisteen ympäri). Tämä ryhmä luokitellaan usein visuaalisten kaksoistähtien alaluokaksi. Kaksoistähti paljastuu spektroskoop-Spektroskooppiset kaksoistähdet : silla menetelmillä. Säteisnopeuden jaksollinen muutos havaitaan jaksollisina siirtyminä spektriviivoissa Doppler-efektin perusteella ($\frac{\Delta 2}{2} = \frac{\dot{v_r}}{c}$) Fotometriset kaksoistähdet Ratataso on kohtisuorasti taivaanpallon tangenttitasoa vasten, minkä johdosta tähdet vuorotellen peittävät toisensa (valominimit). Tätä ryhmää
- Röntgenkaksoistähdet : Systeemissä hyvin kompakteja komponentteja, jotka voivat olla erillään toisistaan (detached) tai kontaktissa keskenään (esim. Algol, W UMa), jolloin massaa siirtyy komponentista toiseen.

kutsutaan myös pimennysmuuttujiksi ja luokitellaan usein spektroskooppisten

kaksoistähtien alaluokaksi.

1) Visuaalisen kaksoistähden massanmääritys

Kepler III : $P^2 = \frac{4\pi^2}{MG}a^3$, missä $M = m_1 + m_2$

Havainnoista saadaan a" ja P.

- a) Jos toisen komponentin suhteellinen rata toisen ympäri on mitattu (a") ja etäisyys d tunnetaan (a = d×a") voidaan Keplerin III lain avulla <u>kokonaismassa M</u> = $m_1 + m_2$ määrittää.
- b) Jos komponenenttien absoluuttiset radat (komponettien liike massakeskipisteen ympäri on mitattu taustataivaan tähtien suhteen) on havaittu, saadaan komponenttien massojen suhde :

$$\frac{m_1}{m_2} = \frac{\alpha_2^n}{\alpha_1^n}$$

c) Jos sekä a) että b) ovat tiedossa, voidaan <u>kummankin komponentin</u> massa määrittää.

2) Astrometrisen kaksoistähden massanmääritys

Jos näkyvän komponentin absoluuttinen rata on mitattu, niin

$$\frac{a_1}{a} = \frac{m_2}{m_1 + m_2}$$

$$P^2 = \frac{4\pi^2}{(m_1 + m_2)G} a^3$$

$$\Rightarrow \frac{m_2^3}{(m_1 + m_2)^2} = \frac{4\pi^2}{G} \frac{a_1^3}{P^2}$$

3) Spektroskooppisen kaksoistähden massanmääritys

Ratatason inklinaation ollessa tuntematon saadaan havainnoista vain ratanopeuden v komponentti näkösäteen suunnassa : $v_r = v$ sini (esim. ympyräradan tapauksessa $v_r = (2\pi a/P)$ sini). Havaitsemalla v_r sekä kiertoaika P saadaan radan isoakselin projektio ja massafunktio seuraavasti:

a) Vain yksi komponentti näkyvissä (kun △m > 1^m) ja siten vain yksi spektri käytettävissä.

Radan isoakselin puolikkaan projektio : a₁sin i

Massafunktio:
$$\frac{(m_{2} \sin i)^{3}}{(m_{1} + m_{2})^{2}} = \frac{m_{2} \sin^{3} i}{(1 + \frac{m_{1}}{m_{2}})^{2}} = \frac{4\pi^{2}}{G} \frac{(\alpha_{1} \sin i)^{3}}{P^{2}}$$

missä m₁ = havaitun komponetin massa (Osoitus harjoitustehtävänä) b) Molempien komponenttien spektrit käytettävissä, mutta vain suhteelliset viivasiirtymät (suhteellinen rata) on mitattu. Tällöin (a₁+a₂) sini = a sini ja massafunktion lausekkeena on

$$(m_1 + m_2) \sin^3 i = \frac{4\pi^2}{G} \frac{(a \sin i)^3}{P^2}$$

c) Molempien komponettien spektrit käytettävissä ja absoluuttiset viivasiirtymät (absoluuttiset radat) mitattu:

$$\begin{array}{c} V_{1}(\max) \\ V_{2}(\max) \end{array} \Longrightarrow \begin{array}{c} a_{1}\sin i \\ a_{2}\sin i \end{array} \end{array} \Longrightarrow \begin{array}{c} \frac{m_{1}}{m_{2}} = \frac{a_{2}\sin i}{a_{1}\sin i} \\ P_{1} = P_{2} = P \end{array} \end{array} \xrightarrow{K \amalg} \begin{array}{c} K \amalg \\ K \amalg \\ m_{2}\sin^{2} i \\ m_{2}\sin^{2} i \\ m_{2}\sin^{2} i \\ m_{2}\sin^{2} i \end{array}$$

Massafunktiot eivät anna yksittäisten komponettien massoja, vaan niitten avulla saadaan ainoastaan tilastollista tietoa kaksoistähtien massoista. Olettamalla, että ratojen inklinaatiot ovat jakautuneet tasaisesti, voidaan sin**i** – lausekkeelle antaa keskimääräinen arvo: sin³i = 0.59 .. Todettakoon, että koska sini \leq 1, saadaan edellä esitetyllä menetelmällä vain alarajoja kaksoistähtien massoille.

4) Pimennysmuuttujan massanmääritys

Kummankin komponentin säteisnopeuskäyrä on mitattu. Huomioimalla, että inklinaatio i = 90⁰, voidaan kohdan 3c mukaisesti määrittää massat m₁ ja m₂ (harjoitustehtävä). Pimennysmuuttujien avulla määritetyt massa-arvot ovat erittäin luotettavia, koska pimennysmuuttujien etäisyyksiä ei tarvitse tuntea. Esimerkiksi ympyräradan tapauksessa

$$V_{T}(\max) = \frac{2\pi \alpha}{P} \implies \alpha = \frac{U_{T}(\max)}{2\pi} \cdot P$$

ts. a saadaan suoraan kilometreissä, vaikka etäisyys olisi tuntematon.

5) Kertymäkiekon omaavan kaksoistähden massanmääritys

Mikäli lähekkäisissä kaksoistähdissä toinen komponentti on kompakti tähti, virtaa ainetta toisesta tähdestä tähän kompaktiin komponenttiin k ertymäkiekon välityksellä. Jos tähdellä on voimakas magneettikenttä,

- 16 -

törmää kertymäkiekon aine suurella nopeudella tähden degeneroituneeseen materiaan synnyttäen röntgen- ja optista säteilyä, joka sirottuu kertymäkiekon vapaista elektroneista. Havaittu valo on siten polaroitunutta. Jos tähden magneettikenttä on hyvin voimakas (~ 10⁸ Gauss) lähettävät kertymäkiekon nopeat elektronit myös optista syklotronisäteilyä, jonka ympyräpolarisaatioaste voi olla jopa 20%. Koska tähden magneettikentän ja näkösäteen välinen kulma muuttuu kaksoistähden rataperiodin mukana, riippuu havaittu polarisaatioaste rataperiodin vaiheesta. Sovittamalla kolmiulotteinen numeerinen malli havaittuihin intensiteetti- ja polarisaatiokäyriin voidaan kaksoistähtisysteemin geometria (mm. inklinaatio) ratkaista. Näin saadun inklinaation sekä tähtien spektrien viivasiirtymien avulla voidaan edelleen määrittää kaksoistähtikomponenttien massat.

17

6) Tuloksia kaksoistähtien massanmäärityksistä

Aurinko on ainoa yksinkertainen tähti, jonka massa tunnetaan. Muitten tähtien massat perustuvat kokonaan kaksoistähtihavaintoihin. Ei ole epäilystä kuitenkaan siitä, etteivätkö yksinkertaisten tähtien massat olisi samaa suuruusluokkaa kaksoistähtikomponenttien massojen kanssa.

Tarkkoja ratamäärityksiä on tehty noin 25:lle <u>visuaaliselle kaksois-</u> <u>tähdelle</u>, joiden etäisyydet ovat luotettavasti mitattu trigonometristen parallaksien avulla. Näihin havaintoihin perustuvat <u>pienimassaisten</u> <u>tähtien massanmääritykset</u>. (Huom. Auringon ympäristössä suhteellisen runsaasti pienimassaisia tähtiä). <u>Suurimassaisten tähtien</u> massa-arvot on saatu <u>spektroskooppisten kaksoistähtien</u> havainnoista, jolloin etäisyyksiä ei tarvitse tietää. Jos kaksoistähti on samalla pimennysmuuttuja (i=90[°]) voidaan tähtien massat yksikäsitteisesti määrittää. Empiirinen massa-luminositeettirelaatio pääsarjan tähdille perustuu juuri visuaalisten ja spektroskooppisten kaksoistähtien massanmäärityksiin.

Tähtien sisäisen rakenteen teoria antaa stabiileille tähdille seuraavat massa-arvot: 0.09 M < M < 65 M Luotettavat havainnot puolestaan antavat massarajoiksi

$$0.06 M_{\odot} < M_{\odot} < 35 M_{\odot}$$

Muutamia epävarmoja tapauksia tunnetaan, joissa tähden massa Mpprox 65 M $_{
m G}$.

Fig. The empirical mass-luminosity relationship. The symbols distinguish results from visual components (high quality = dots; fair quality = circles) and from eclipsing components (crosses).

Seuraavat riippuvuudet kuvaavat parhaiten kuvan havaintopisteitä:

$$M_{bol} = 4.8 - 9.5 \ lg \ M \qquad lg \ (\frac{L}{L_{\odot}}) = 3.8 \ lg \ M \qquad ; \ M > 0.5 \ M_{\odot}$$
$$M_{bol} = 5.8 - 6.0 \ lg \ M \qquad lg \ (\frac{L}{L_{\odot}}) = 2.4 \ lg \ M - 0.4 \ ; \ M < 0.5 \ M_{\odot}$$

HUOM. Yllä olevia relaatioita voidaan käyttää vain pääsarjan tähdille.

- 18 -

TABLE I Some visual binaries

-

Star	Vis.	Mags.	Spectrum	P(yr)	a	c	πtrig	≭dyn	Mas	ses	
ADS 61	6.5	7.3	G4V, G8V	106.83	1.432	0.450	0.045	0.053	1.3	1.5	ι
ADS 490	5.6	6.3	F8V	6.94	0.20	0.73	0.058	0.039			s
ADS 520	6.3	6.4	G5V	25.0	0.670	0.22	0.070	0.065	0.9	0.9	d
η Cas	3.5	7.2	G0V, M0V	480	11.99	0.497	0.170		0.9	0.6	t
ADS 1538	6.8	6.8	G0V	158.4	1.00	0.69	0.025	0.025	1.3	1.3	d
48 Cas	4.8	6.6	AIV	60.44	0.653	0.345	0.024	0.028	2.1	1.2	d
10 Ari	5.9	7.7	F4V	288	1.256	0.56	0.024	0.020	1.8	1.2	ď
ADS 1709	6.7	7.1	F5V .	144.7	0.908	0.26	0.031	0.024	1.3	1.3	đ
ADS 1865	9.4	9.6	dM2	25.25	0.540	0.17	0.070	0.059	0.6	0.6	d
ε Cet	5.5	5.5	F5	2.67	0.114	0.28	0.059	0.044	1.3	1.3	đ
+68°278	11.6	11.6	dM2	57.7	0.67	0.65	0.054	0.050	0.4	0.4	d
ADS 2959	7.5	8.6	G5V	394.7	2.101	0.65		0.033	1.0	0.7	d
40 Eri BC	9.5	11.2	DB9, M4Ve	252.1	6.943	0.410	0.207		0.4	0.2	t
ADS 3135	7.2	8.2	dF7	91.04	0.561	0.604	0,028	0.021	1.3	1.0	d
ADS 3475	7.4	7.5	d177	16,30	0.202	0.440	0,024	0.024	1.1	1.1	t
ADS 4153	9.5	10.0	K0	60.60	0.309	0.75		0.017	0.8	0,8	d
σOriAB	4.1	5.1	09V	170	0.247	0.07		0.002	25	10	d
I Gem	4.9	5.2	G5III	13.17	0.19	0.325	0.026	0.019	2.5	2.3	ds
ADS 5234	7.1	8.9	dG2	114.8	0.860	0.71	0.027	0.030	1.1	0.7	d
α CMa	-1.4	8.6	AIV, DA	50.09	7.50	0.592	0.375		-2.3	0,9	t
1 65	6.9	7.1	F5	16.74	0.218	0.43	0.064	0.025	1.3	1.2	J
a Gem AB	1.9	2.9	AIV, A5m	420	6.295	0.33	0.070		2.1	2.1	ts
α CMi	0.5	12	F51V	40.65	4,548	0.40	0.287		1.8	0.7	t
9 Pup	5.6	6.2	G0V	23.18	0.58	0.69	0.067	0.056	0.6	0.6	ι
ADS 6483	7.0	7.1	dF6	57.04	0.440	0.77		0.022	1.3	1.3	d
ζ Cnc AB	5.6	5.9	F8V	59.7	0.884	0.32	0.047	0.042	1.0	0,9	t
ADS 6914	5.4	6.7	dG6	145.0	1.700	0.13	0.058	0.046	1.4	1.0	d
¢ Hya AB	3.8	5.0	G01V	15.05	0.238	0.67		0.027	1.7	1.4	d
Крг 37	4.2	6.1	F5V	21.85	0.619	0.15	0.074		0.8	0.4	t
⊼ UMa	4.3	4.5	B9n	70.1	0.27	0.04	0.010	0.009	4.9	4.8	đ
13 UMa	5.0	8.2	F7IV	1067	6.20	0.814	0.052	0.046	1.4	0.8	d
<i>ф</i> 347	7.2	7.2	G5	2.65	0.126	0.31	0.062	0.057	0.8	0.8	d
ADS 7284	7.9	8.0	dK4	34.20	0.660	0.35	0.057	0.055	0.7	0.7	t
¢ 363	6.2	6.2	F2	. 3.20	0.124	0.51	0.051	0.043	1.2	1.2	d
ωLeo	6.0	6.7	dF8	116.85	0.875	0.56	0,028	0.026	1.6	1.3	d
\dot{arphi} Vel	4.1	4.6	F2IV	34.11	0.920	、 0.440	0.059	0.061	1.6	1.4	d
7 Sex	5.7	6.2	A0n	75.60	0.385	0.70		0.012	2.8	2.5	d
ADS 7685	8.3	10.0	G5V	157.5	0.845	0.949		0.025	0.9	0.6	d
p Vel	4.4	5.3	F2, A3	16.30	0.340	0.73	0.033	0.034			S
ADS 7871	1.8	9.9	dF6	241.1	0.51	0.09	0.019	0.011	1.5	0.9	đ
χ ^ι Hya	5.8	5.9	d1-4	7.40	0.140	0.285	0.033	0.025	1.7	1.6	d
₹UMa Aa-B	4.4	4.9	GOLV	59.84	2.530	0.414	0,130		1.1	0.9	ts
(Leo	4.0	6.7	F2IV	204.5	1.960	0.55	0.047	0,039	2.1	0.1	d
Brs 5	7.6	8.6	K7V	421.6	5.760	0,68	0.085	0.099	0,6	0.5	d
ADS 8197	5.8	7.1	F6V	72.87	0.813	0.398	0.048	0.034	1.3	1.1	d
7 Cen	2.9	2.9	A0111	84.59	0.939	0.789	0.010	0.025	3.8	3.8	d
γ Vir	3.7	3.7	FOV, FOV	171.4	3.746	0.881	0.090	0.083	1.2	1.2	t
α Com	5.1	5.1	F5V	25.83	0.672	0.494	0.038	0.039	1.6	1.7	ŧ
ADS 8862	9.0	9.7	M2V	43,85	1.465	0.225	0.119	0.115	0.5	0.3	t
1 365	6.3	6.6	F8	34,80	0.498	0.80		0.035	1.2	1.2	<u>d</u>

,

.

۰.

.

THE COMBINED SPECTROSCOPIC-VISUAL ORBIT

TABLE II Some spectroscopic binaries

·							Min. Masses or
Star	Mag	Sp.	P(d)	e	K,	K,	Mass Function
a Phe	2.3	K0	3848.8	0.34	5.8		0.07
π And	4.4	B3, B3	143.61	0.56	47.5	117.4	26.9 10.9
ζ And	5.1	KO	17.77	0.02	26.0		0.03
ζ Phe	3.9	B6	1.67	0.03	121.4	247	6.0 3.0
γ Phe	3.4	K.5	193.79	0.00	16.0		0.08
ð Tri	4.9	G0	9.93	0.06	8.8		0.0007
o Per	3.8	BI	4.42	0.04	109.3	159,4	5.2 3.6
52 Per	4.7	G5, A2	1576.44	0.05	43.1		0.74
63 Tau	5.6	Am	8.42	0.10	37.6		0.05
66 Eri	5.2	B9	5.52	0.07	97.0	111.0	2.5 2.2
αAur	0.0	G5. G0	104.02	0.00	26.4	27.5	2.7 2.5
ð Ori	2.2	BI	5.73	0.08	101.0	263	20.5 7.9
θ Ori B	7.8	BÓ	6.50	0.14	81		0.35
(Ori	2.8	08	29.14	0.76	115.2	195.8	159 94
136 Tau	4.6	· A0	5.97	0.02	48.9	71	06 04
ð Col	3.9	GS	868.78	0.70	10.6		0.04
т Рир	2.8	ко	1066.0	0.09	41	•	0.008
19 Lvn	5.6	B8. B8	2.26	0.08	106.4	199.1	43 73
63 Gem	5.2	F5	1.93	0.00	94.6	116.8	10 08
ð Gem	43	KO	19.60	0.00	74.2		0.0
l Hya	5.6	FI	1.56	0.05	30.3		0.004
c Hya C	6.9	FS	9.90	0.62	35.0		0.004
elco	35	F5 A3	14 50	0.00	54.1	63.1	13 11
30 UMa	5.0	A0	11 58	0.00	34.1	· · · · ·	0.04
a Uma	47	A0	15.93	0.20	27.1		0.07
é IlMa A		G	1 0.3	0.56	93		08 03
E IIMa R	4.4	G	3.98	0.00	5.0		0.0 0.5
95 T co	55	A7 A7	6.63	0.00	. 57.6	80	10 07
7 IIMa A	2.2	A2, A2	20.54	0.54	67.6	8 83	17 16
a Vir	10	R7 R3	4.01	0.15	1172	103.6	75 45
3 Boo	5.8	5	36 0.1	0.15	\$4.0	45.8	23 19
a Dra	3.0	40 5	51.04	0.39	46.0	05.0	0.44
17 Boo	4.8	ES ES	9.60	0.17	68.4	72.0	14 13
8 CrB	37	F0 n	3834	0.41	Q 7	12.0	1.4 1.5 f) 74
d ² Lun	45	B6	12.26	0.10	63.3	66.4	13 13
y Lup y Her	30	A7	4.07	0.02	70.7	117	16 10
y Dra	3.6	F8	780 33	0.45	18.0		012
δ ² Tel	5.3	B6	21.71	0.22	34.9		0.09
46 Dra	5.1	A0. A0	9.81	0.02	28.1	34.1	0.1 0.1
2 Sec	6.0	A3	7 39	0.05	57.8	77.6	1.0 0.7
a Aal	3.2	B9 B9	17.12	0.61	51.0	63.7	0.8 0.6
18 Vol	5.5	A?	9.32	0.01	78.5	86.3	2.3 2.1
35 Cva	5.2	ES 1	2440	0.51	9.6	00.0	0.14
n Pav	20	R1	11 75	0.01	72		0.0005
57 Cve	4 8	B3 B3	2.85	0.01	117	176	2.1 2.0
77 Cvg	55	A0	1 73	0.03	109.7	110 3	0.9 0.9
14 Peg	5.0	ÂÔ	5 30	0.05	37.0	40.4	0.1 0.1
7 Tac	5.0 4 K	RS BC	2.50	0.00	74.9	-0. - 96	0.8 0.6
HD 214479	-1.0 Q 1	MI MI	2.02 A AQ	0.00	2 28	52 1	03 02
74 Peg	6.1	A0	11.23	0.04	26.7	J0,1	0.02

1.3 LINNUNRADAN ROTAATIO JA MASSAJAKAUTUMA

1.3.1 Linnunradan massamalli

Probleema: Miten tähdet liikkuvat kaikkien muitten tähtien aikaansaamassa gravitaatiokentässä?

Teoreettisesti probleemaa olisi käsiteltävä n-kappaleen probleemana, jossa massakappaleen m. liikeyhtälö on

$$m_{i}\frac{\ddot{\tau}_{i}}{\tau_{i}} = -\sum_{k=1}^{n} G m_{i}m_{k}\frac{\overline{\tau_{i}}-\overline{\tau_{k}}}{\tau_{ik}^{3}}$$

Siis periaatteessa 3n kappaletta 2. kertaluvun differentiaaliyhtälöä, joitten ratkaisemiseksi joudutaan suorittamaan 6n integrointia, joista vain 10 voidaan ratkaista suljetussa muodossa.

Onneksi on havaintoja Linnunradan tähtitiheyksistä sekä rotaatiokäyrästä, jolloin probleemaa voidaan lähestyä seuraavasti. Havaitsemalla Linnunradan (tai muun galaksin) rotaatiokäyrä (tähden ratanopeus galaksikeskuksen ympäri tähtien ja galaksikeskuksen välisen etäisyyden funktiona) voidaan laatia ensimmäinen karkea malli Linnunradan massajakautumalle. Vertaamalla massamallin teoreettista rotaatiokäyrää havaintoihin saadaan massamallia täsmennettyä.

Galaksin massajakautuma määräytyy tähtijakauman perusteella. Linnunradassa kasvaa tähtitiheys (=tähtien lukumäärä/pc³) ja siten massatiheys (g/cm³)

- 1) Linnunradan tasoa kohden
- Linnunradan keskustaa kohden

Tarkastellaan seuraavassa aksiaalisymmetristä massamallia, jossa tähdet liikkuvat ympyräradalla galaksin tasossa (z=0) ratanopeudella v = 🕁 (r) (perinteinen merkintätapa Linnunradan dynamiikassa). Kiihtyvyyden radiaalikomponetti:

$$a_{\tau} = \ddot{\tau} - \tau \dot{\vartheta}^{2} \qquad \text{ympyrälikkeessä:} \ddot{\tau} = 0$$

$$a_{\tau} = -\frac{(\tau \dot{\vartheta})^{2}}{\tau} = -\frac{\Theta^{2}(\tau)}{\tau}$$

Toisaalta radiaalikiihtyvyys voidaan lausua gravitaatiopotentiaalin ø gradienttina:

$$a_{\gamma}(\tau) = -\left[\frac{\partial \mathscr{Q}(\tau, z)}{\partial \tau}\right]_{z=0} \implies \mathscr{Q}(\tau, o) = \int \vec{a}_{\gamma} \cdot d\vec{\tau} \quad \left| a_{\tau} = -\frac{GM}{\tau^2} \right|_{z=0}$$
$$\mathscr{Q}(\tau, z) = -G\int_{\substack{boko\\galaksi}} \frac{g(\tau, z)}{|\vec{\tau} - \vec{\tau}|^2}$$

Kun massajakauma (keskimääräinen tiheys g) tunnetaan tai oletetaan tunnetuksi,voidaan gravitaatiopotentiaali laskea galaksin jokaisessa pisteessä. Kytkentä gravitaatiopotentiaalin ϕ ja rotaatiokäyrän $\Theta(r)$ välillä on:

$$\alpha_{\tau} = -\frac{\partial \emptyset}{\partial \tau} = -\frac{\Theta^2(\tau)}{\tau}$$

- ESIM: Määritä rotaatiokäyrän muoto, kun massamallina on homogeeninen, ro-säteinen pallo.
 - a) Pallon sisäpuolella

säteen r sisäpuolelle jäävä massa:

$$r) = \frac{4}{2}\pi r^3 \cdot s$$

Μ(

$$\alpha_{\tau} = -G \frac{M(\tau)}{\tau^{2}}$$
$$-\frac{\Theta^{2}(\tau)}{\tau} = -G \frac{4\pi\tau^{3}g}{3\tau^{2}}$$
$$\Theta(\tau) = \tau\sqrt{\frac{4}{5}}\pi g^{2} \sim \tau^{2}$$

$$a_{\tau} = -G \frac{M}{\tau^2} , M = \frac{4}{3}\pi\tau_0^3 \cdot S$$

Seuraavalla sivulla on esitetty muutamien galaksien havaittuja rotaatiokäyriä.

Linnunradan vanhemmissa massamalleissa on käytetty -pallomaista massajakaumaa (pistemassa galaksin keskustassa) -homogeenista pyörähdysellipsoidia -pallomaista jakaumaa + litteä ellipsoidi Ehkä eniten käyetty malli on Schmidtin massamalli vuodelta 1965:

epähomogeeninen pyörähdysellipsoidi+ massapiste Linnunradan keskustassa

Epähomogeeninen pyörähdysellipsoidi kuvataan samankeskisillä ellipsoidikuorilla, joilla jokaisella on oma tiheytensä.

Massamallin avulla voidaan laskea esimerkiksi Linnunradan kokonaismassa (katso harjoi tustehtävää). Schmidtin massamalli antaa tulokseksi:

Figure The rotation curve $\Theta(R)$ for the inner parts of our Galaxy as derived from 21-cm observations by W. W. Shane and G. P. Bieger-Smith (S4). Individual data points are plotted as dots, and the smooth eurve is from dynamical models. [From (B15). Reproduced with permission from the Annual Review of Astronomy and Astrophysics, Volume 14. Copyright © 1976, Annual Reviews, Inc.]

Figure Rotation curves of spiral galaxies, obtained from optical measurements. [From (R8), by permission. Copyright © 1978 by the American Astronomical Society.]

Figure Rotation curves for spiral galaxies (including our Galaxy) from 21-cm line radio measurements. Notice that the rotation curves of M31 and IC 342 show no evidence for an outward decline and that we have no reliable information about our Galaxy's rotation curve beyond the solar radius. [Data from (H3, 331), (H4), (R1), and (R5).]

1.3.2 Linnunradan differentiaalisen rotaation kaavat

Linnunrata ei pyöri jäykän kappaleen tavoin, vaan eri etäisyyksillä galaksin keskustasta olevat tähdet liikkuvat eri nopeuksilla. Ulompana olevan tähden kiertonopeus galaksin keskustan ympäri on pienempi kuin lähempänä keskustaa kiertävän tähden nopeus

$\leftrightarrow \rightarrow \rightarrow$	~ ~ ~ ~	5	٠	K	4	÷	7
$\rightarrow \odot \rightarrow \rightarrow$	• ⊙ •	-	O	•	٠	\odot	•
$\longrightarrow \longleftrightarrow \longleftarrow$	$\rightarrow \rightarrow \rightarrow$	7	•	Ŕ	لأ	↔	1
absoluuttinen nopeuskenttä	suhteellinen nopeuskenttä (Auringon suhteen)	radi kent sunt	aalin tä Au een	opeus- ringon	tan nop Aur	gentia eusker ingon	aali- nttä suht.

Määritellään Auringon lähiympäristölle nopeuskoordinaatisto LSR (=local standard of rest), joka kiertää galaksin keskustaa ympyrärataa pitkin. Jos siis tähden v_{LSR}=0, kiertää tähti galaksin keskustaa ympyräradalla.

Auringon v_{LSR} ei ole tarkalleen nolla HUOM. 1

LSR voidaan myös määritellä Auringon lähiympäristön nuorten HUOM. 2 tähtien kinemaattisena painopisteenä.

S = tarkasteltava tähti

 $\Theta_{o}(R_{o}) = v_{o}$ = Auringon ratanopeusgalaksin keskustan suhteen

R = Auringon etäisyys galaksin keskustasta

R = tarkasteltavan tähden etäisyys galaksin keskustasta

 $\Theta(R) = v_{\perp} = t$ ähden ratanopeus galaksin keskustan suhteen

d = tähden etäisyys LSR:stä

1 = galaktinen pituus

C = galaksin keskus

Olkoon tähden S <u>radiaalinopeus LSR:n suhteen v</u>r

Vastaavasti on tähden tangentiaalinopeus LSR:n suhteen

Auringon lähiympäristössä d << R_o ja |R-R_o| << R_o, joten kulmanopeuksien erotuslauseke voidaan kirjoittaa (R-R_o):n sarjakehitelmänä, josta huomioidaan vain 1. kertaluvun termit (harjoitustehtävä). Näin saadaan <u>Oortin kaavat</u>, jotka kuvaavat Auringon kiertoliikettä galaksin keskustan ympäri ensimmäisessä approksimaatiossa:

 $v_{t} = A \cdot d \cdot \sin 2l$ $v_{t} = (A \cos 2l + B)d$

missä Oortin vakiot A ja B on määritelty seuraavasti:

$$A = \frac{1}{2} \left[\frac{\Theta_{o}}{R_{o}} - \left(\frac{d\Theta}{dR} \right)_{R_{o}} \right]$$
$$B = -\frac{1}{2} \left[\frac{\Theta_{o}}{R_{o}} + \left(\frac{d\Theta}{dR} \right)_{R_{o}} \right]$$

$$\Rightarrow \begin{vmatrix} \frac{\Theta_{o}}{R_{o}} = \omega(R_{o}) = A - B \\ \frac{(d\Theta)}{dR_{R_{o}}} = -(A + B) \end{vmatrix}$$

A ja B saadaan havainnoista, joten R_o ja ⊖_o voidaan määrittää. Nykyisin hyväksytyt arvot: A = 15 (km/s)/kpc

> B =-10 (km/s)/kpc $\Theta_{o} = 250 \text{ km/s}$ R_o = 10 kpc

Oortin vakioitten perusteella on LSR:n kulmanopeus $\omega(R_0) = 0.0053/vuosi,$ joten LSR:n kiertoajaksi saadaan 246×10⁶ vuotta. Kun Auringon ikä on noin 4.5×10⁹ vuotta, on Aurinko ehtinyt tähän saakka tehdä noin 20 kierrosta Linnunradan keskustan ympäri. HUOM. Jos Linnunradan massamallina käytettäisiin pallomaista massajakautumaa (jolloin koko galaksin massa voidaan korvata keskustaan sijoitetulla massapisteellä) olisi Auringon liike Keplerin liikettä. Galaksin kokonaismassa olisi tällöin:

Havainnoista saadut Oortin vakiot A ja B osoittavat kuitenkin, että (1/R)-potentiaalin oletus ei aivan päde:

$$\frac{\mathbf{m} \Theta^{2}}{R} = \frac{GMm}{R^{2}}$$

$$\Theta^{2} = \frac{GM}{R}$$

$$\Rightarrow \frac{d\Theta}{dR} = -\frac{GM}{R^{2}} \frac{1}{2\Theta}$$

$$\Rightarrow \frac{d\Theta}{dR} = -\frac{1}{2} \frac{\Theta}{R}$$

$$\Rightarrow \frac{\Theta/R}{d\Theta/dR} = -2$$

$$\Rightarrow \frac{\Theta/R}{d\Theta/dR} = -2$$

$$\Rightarrow \frac{\Theta/R}{d\Theta/dR} = -\frac{1}{2} \frac{\Theta}{R}$$

$$\Rightarrow \frac{\Theta/R}{d\Theta/dR} = -\frac{1}{2} \frac{\Theta}{R}$$

$$\Rightarrow \frac{\Theta/R}{d\Theta/dR} = -\frac{1}{2} \frac{\Theta}{R}$$

Sijoittamalla tähän havaintojen perusteella määritetyt Oortin vakiot A ja B saadaan kuitenkin

$$\left(\frac{A-B}{A+B}\right)_{hav} = 5$$

1,4 TÄHTIEN SIROTTUMINEN JA DYNAAMINEN JARRUTUS

Edellisessä luvussa tarkasteltiin säännöllisten voimien vaikutusta tähtien liikkeeseen. Seuraavassa tarkastellaan epäsäännöllisten voimien aiheuttamia häiriöitä tähtien liikeradoissa (esim. tähtien "kohtaamiset") sekä palautumista tilastolliseen nopeustasapainoon.

1.4.1 Tähtien sirottuminen (1/r²)-voimakentässä

Tarkastellaan tähteä, joka lähestyy suunnasta ϑ_{∞} toista tähteä. Kyseessä on kahden kappaleen probleema, jossa kuvataan lähestyvän kappaleen <u>suhteellista rataa</u> "paikallaan" olevaan kappaleeseen nähden.

HUOM. Todettakoon, että tähden sirottumisen kaavat pätevät myös Coulombin kentässä (esim. elektroni ohittaa protonin) kunhan gravitaatiovoima korvataan Coulombin voimalla.

ᢢ

- Θ = sirontakulma
- 5 = törmäysparametri
- **2** a = hyperbelin isoakseli
- 26 = hyperbelin pikkuakseli = $2a\sqrt{e^2-1}$

Kahden kappaleen probleeman ratkaisuna saadaan kartioleikkauksen yleinen yhtälö (kts. liite s. A7)

$$\begin{aligned} \star &= \frac{1}{\frac{MG}{R^2} + \sqrt{\frac{M^2G^2}{R^4} + \frac{2E}{R^2}} \cos(\vartheta - \vartheta_0)} \implies \frac{1}{\gamma} = \frac{MG}{R^2} + \sqrt{\frac{M^2G^2}{R^4} + \frac{2ER^2}{R^4}} \cos(\vartheta - \vartheta_0) \\ &= \frac{1}{\gamma} = \frac{MG}{R^2} \left[1 + \sqrt{1 + \frac{2ER^2}{M^2G^2}} \cos(\vartheta - \vartheta_0) \right] \end{aligned}$$

Kun
$$r \rightarrow \infty$$
 , niin $1/r \rightarrow 0$

$$\Rightarrow \sqrt{1 + \frac{2 \in \mathbb{A}^2}{M^2 G^2}} \cos\left(\sqrt[n_{\infty}] - \sqrt[n_{0}]\right) = -1$$

$$\Rightarrow -\frac{1}{\sqrt{1+\frac{2ER^2}{M^2G^2}}} = \cos\left(\vartheta_0^2 - \vartheta_0^2\right) = -\frac{\alpha}{\sqrt{\alpha^2+\vartheta_0^2}} = -\frac{1}{e}$$

Tätä kosiniarvoa vastaa kaksi $\sqrt[4]{0}_{\infty}$:n arvoa: lähestyvän tähden $\sqrt[4]{0}_{\infty}$ ja etääntyvän tähden $\sqrt[4]{0}_{\infty}$.

$$\frac{\text{Sirontakulma }\Theta}{\text{kuviosta ilmenevästä relaatiosta :}}$$

$$\Theta = 2\left(\vartheta_{\infty} - \vartheta_{0}\right) - \Pi$$

$$\Rightarrow \sin \frac{\Theta}{2} = \sin \left[\left(\vartheta_{\infty} - \vartheta_{0}\right) - \frac{\Pi}{2}\right] = -\cos\left(\vartheta_{\infty} - \vartheta_{0}\right)$$

$$\sin \frac{\Theta}{2} = \sqrt{1 + \frac{2\xi R^{5}}{M^{2}G^{2}}}$$

$$Kytketään pintanopeus h törmäys-parametriin s:$$

$$\left(\begin{array}{c} \mathcal{H} = r^{2}\vartheta = sv_{0} & v_{0} = tähden lähes-tymisnopeus suu-rella etäisyydellä\\ \Rightarrow \int_{2}^{2} = \frac{1}{\sqrt{1 + \left(\frac{2\xi \xi S}{M}\right)^{2}}} \\ \end{array}\right)$$

$$\sin \varphi = \frac{1}{\sqrt{1 + \left(\frac{2\xi \xi S}{M}\right)^{2}}}$$

$$\sin \varphi = \frac{1}{\sqrt{1 + \left(\frac{2\xi \xi S}{M}\right)^{2}}} \\ \sin \varphi = \frac{1}{\sqrt{1 + c_{0}t^{2}} d}$$

$$\operatorname{SironTakulman \ KAAVA}$$

Tähden sirontakulma riippuu täten lähestyvän tähden alkuperäisestä liike-energiasta massayksikköä kohden ($\mathcal{E} = \frac{1}{2} \sigma_{e}^{2}$), törmäysparametrista s sekä systeemin kokonaismassasta (M=m₁+m₂).

- 30 -

Tähtitiheys määrää sen, kuinka usein tähtien kohtaamisia tapahtuu. Oletetaan seuraavassa, että saapuvien kappaleiden massat ovat yhtäsuuret (\Rightarrow M=vakio) ja että niillä on sama lähestymisnopeus v_o (\Rightarrow sama \mathcal{E}). Sironnan differentiaalinen vaikutusala $\mathcal{L}(\Theta)$ määritellään seuraavasti:

δ(Θ)**d**Ω = <u>aikayksikössä sironneiden kappaleiden lukumäärä/cm</u>² aikayksikössä saapuvien kappaleiden lukumäärä/cm²

missä avaruuskulma-alkio $d\Omega = \frac{dA}{r^2}$

 $d\Omega = \frac{r d\Theta \cdot r \sin \Theta \, d\Psi}{r^2}$ $d\Omega = 2\pi \sin \Theta \, d\Theta \quad (integroitu \\ \Psi : n \ yli)$

Tarkasteltavaa tähteä lähestyvistä kappaleista siroavat kulmaan dΩ. ne, joitten törmäysparametrien arvot ovat välillä s,...s+ds.

Toisinsanoen aikayksikössä avaruuskulma-alkioon dΩ sironneiden kappaleiden lukumäärä/cm² on oltava sama kuin ds-paksuisen renkaan läpi menneitten kappaleitten lukumäärä.

$$\begin{split} & \delta(\Theta) \cdot 2\Pi \sin \Theta \, d\Theta = - 2\Pi \, \text{sds} & \text{minusmerkki, koska s ja } \Theta \text{ kasvavat} \\ & \text{vastakkaisiin suuntiin} \\ & \Rightarrow \quad \delta(\Theta) = - \frac{\text{sds}}{\sin \Theta \, d\Theta} & \text{cot} \frac{\Theta}{2} = \frac{2 \, \mathcal{E} \, \text{s}}{\text{M} \, \text{G}} \implies \text{s} = \frac{\text{M} \, \text{G}}{2 \, \mathcal{E}} \, \text{cot} \frac{\Theta}{2} \\ & \frac{\text{d} \, \text{s}}{\text{d} \, \Theta} = \frac{1}{2} \, \frac{\text{M} \, \Theta}{2 \, \mathcal{E}} \left(- \frac{1}{\sin^2 \Theta} \right) \\ & \frac{\text{d} \, \text{s}}{\text{d} \, \Theta} = \frac{1}{2} \, \frac{\text{M} \, \Theta}{2 \, \mathcal{E}} \left(- \frac{1}{\sin^2 \Theta} \right) \\ & \Rightarrow \quad \delta(\Theta) = - \frac{\text{M} \, \text{G}}{2 \, \mathcal{E}} \, \frac{\text{cot} \frac{\Theta}{2}}{\sin \Theta} \left[-\frac{1}{2} \, \frac{\text{M} \, \text{G}}{2 \, \mathcal{E}} \, \frac{1}{\sin^2 \Theta} \right] \\ & 2 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2} \end{split}$$
$$6(\Theta) = \left(\frac{MG}{2E}\right)^2 \frac{\frac{\cos \frac{2}{5}}{\sin \frac{2}{5}}}{2 \cdot 2\sin \frac{2}{5}\cos \frac{2}{5}\sin^2 \frac{2}{9}}$$

$$\delta(\theta) = \frac{1}{4} \left(\frac{MG}{2E} \right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$$

SIRONNAN DIFFERENTIAALINEN VAIKUTUSALA

1.4.2 Tähden liikkeen dynaaminen jarrutus

Tarkastellaan seuraavassa "levossa" olevaa tähtijärjestelmää, jonka läpi kulkee tähti alkunopeudella v_o. Tämä tähti siroaa periaatteessa jokaisen levossa olevan tähden vetovoimakentässä (sirontakulma tosin erittäin pieni), jolloin sen nopeus alkuperäiseen liikesuuntaan nähden pienenee määrällä

$$\Delta v = v_{r} - v_{r} \cos \Theta \xrightarrow{\overline{v_{r}}} \times \xrightarrow{\overline{$$

Tähden liikettä jarruttava voima on siten

$$F = \sum \frac{\mu_1 \Delta v_1}{\Delta t} ; \text{ missä } M = \frac{m_1 m_2}{m_1 + m_2} \quad (pp-koordinaatistossa käytettävä redusoitua massaa)}$$
$$\Delta t = tähden i "ohitusaika"$$

Siirrytään jatkuvasti jakautuneeseen "tähtiväliaineeseen", jossa on n tähteä/tilavuusyksikkö. Tällöin

nv = "törmäävien" tähtien lukumäärä aika- ja pinta-alayksikköä kohden. o = saapuvien " " " " " " " Kulmaan ⊖ ,... ⊖ + d⊖ sironneiden tähtien lukumäärä/aikayksikkö on

 $N = nv_{p} \cdot \delta(\Theta) d\Omega$ sironneiden $tähtien lkm/cm^{2}s = \delta(\Theta) l\Omega \cdot saapuvien tähtien$ $lkm/cm^{2}s$ $N = nv_{p} \cdot \delta(\Theta) 2\pi \sin \Theta d\Theta$

Sironnoissa $\Theta, \ldots \Theta + d\Theta$ menetetty liikemäärä alkuperäiseen suuntaan nähden on ajassa dt :

$$\frac{dp(\theta)}{dt} = \mu \Delta \upsilon \cdot N$$
$$= \mu \upsilon_0 (1 - \cos \theta) \cdot n \upsilon_0 d(\theta) = \pi \sin \theta d\theta$$

Kaikissa sironnoissa $\Theta_{min} < \Theta < \Theta_{max}$ on menetetty liikemäärä/aikayksikkö eli tarkasteltavaa tähteä jarruttava voima (stellar friction):

Tämä kaava on voimassa, kun muitten tähtien nopeudet ovat pieniä. Törmäysparametrin ylärajana on käytetty tähtien keskimääräistä välimatkaa : $s_{max} \approx n^{-1/3}$ (Chandrasekhar & Neumann osoittivat 1942 että tapaukset $s > n^{-1/3}$ eivät merkittävästi vaikuta). Jos halutaan huomioida myös kaukaisten tähtien aiheuttamat gravitaatiofluktuaatiot, olisi s_{max} -arvoksi valittava systeemin koko.
$$T = \frac{\Delta p}{F} = \frac{M v_0 - 0}{F}$$

$$= \frac{v_0^2}{2\pi v_0 n \ln (1 + \alpha^2 S_{max}^2)}$$

$$T = \frac{v_0^3}{2\pi M^2 G^2 n \ln (1 + \frac{v_0^4}{M^2 G^2} S_{max}^2)}$$

sij. $\alpha = \frac{v_0^2}{MG}$

TÄHDEN RELAKSAATIOAIKA

Tämän ajan kuluessa on tähti menettänyt alkuperäisen nopeutensa. Relaksaatioajan kuluttua on $\sum (\Delta E)^2 \approx E^2$, missä

△E = tähtien kohtaamisessa tapahtuva energian vaihto

E = kineettinen kokonaisenergia alkuhetkellä

ESIM. 1 Auringolle: $v_0 = 20 \text{ km/s} = 2 \times 10^4 \text{ m/s}$ $\propto = (v_0^2/\text{MG}) = 3 \times 10^{-12} \text{ 1/m}$ $n = 3.7 \times 10^{-56} \text{ cm}^{-3} = 0.1 \text{ pc}^{-3}$ Jos s_{max} = 3 pc $\approx 10^{17}$ m (\approx tähtien välimatka), niin $\gamma \approx 8 \times 10^{19}$ s $\approx 10^{12}$ y. Jos s_{max} $\approx 10^4 \text{ pc} \approx 3 \times 10^{20}$ m, niin $\gamma \approx 5 \times 10^{19}$ s $\approx 10^{12}$ y. Todetaan, että s_{max}:n arvo ei merkittävästi vaikuta: tulokset

poikkeavat toisistaan noin tekijällä 2. Tärkeä tulos sen sijaan on, että Auringon ympäristössä γ >> Linnunradan ikä (15×10⁹y).

Auringon ympäristössä ovat tähtien kohtaamiset vaikuttaneet sangen vähän. Näin ollen tähdet kiertävät Auringon lähiympäristössä omaa häiriintymätöntä rataansa Linnunradan keskustan ympäri. Sen sijaan kohtaamiset molekyylipilvien kanssa saattavat olla merkityksellisiä.

ESIM. 2 Massiivisen molekyylipilven $M \approx 10^6 M_{\odot}$ $n \approx (1.5 \text{ kpc})^{-3} = 10^{-59} \text{ m}^{-3}$ $s_{\text{max}} \approx 3000 \text{ pc} \approx 10^{20} \text{m}$ Muut parametrit kuten edellisessä esimerkissä.

⇒ 7 ≈ 10¹⁰ y (≈ Linnunradan ikä)

ESIM. 3 Tiheimmissä tähtijoukoissa ovat tähtien kohtaamiset merkityksellisiä:

Plejadeilla $\gamma \approx 2 \times 10^7$ y (vrt. Plejadien ikä 6-10 10^7 y)

ESIM. 4 Pallomaiselle tähtijoukolle

$$∼ ≈ 4.5 \times 10^9
 y$$
 (vrt. ikä ≈ 10-20×10⁹ γ)

1.4.3 Stellaaridynamiikan perusyhtälö

Johdetaan seuraavassa Boltzmannin yhtälö, joka pätee kaikissa satunnaisissa prosesseissa kuten esimerkiksi kaasumolekyylien, kosmisten hiukkasten ja tähtien liikkeissä. Tarkastellaan tilavuusalkiossa dxdydz (lyhyemmin d^3x) olevia hiukkasia, joitten nopeudet ovat tietyllä nopeusvälillä, jota kuvaa alkio dudvdw (lyhyemmin d³u). Oletetaan lisäksi, että tässä faasiavaruuden alkiossa d χ = d $\frac{3}{x}$ d $\frac{3}{u}$ ei synny uusia hiukkasia. Hiukkasten lukumäärä tässä faasiavaruuden alkiossa on

$$q N(f) = f(\underline{x}, \underline{x}, f) \cdot q \lambda$$

 $\Rightarrow f = \frac{dN(t)}{d\chi} = \frac{dN(t)}{d^3x d^3u}$ = hiukkasten tiheys faasiavaruudessa

Katsotaan miten funktio f muuttuu ajan mukana. Tarkastellaan ensin muutosta yhden koordinaatin suhteen:

pinta-ala" on dydzdudvdw

Ajassa dt on sisääntulevien hiukkasten lukumäärä tässä tapauksessa $N_{x}(sisaan) = \frac{dx}{dt} f(x,y,...,w) dy dz du dv dw dt$ = u f(x,y,...,w)dydzdu dvdwdt

- 36 -

$$N_{x}(ulos) = u f(x+dx, y, ..., w) dydzdudvdw dt$$

Faasiavaruuden alkiossa d γ on siten hiukkasten lukumäärän muutos ajassa dt:

$$dN_{x} = u \left[f(x,y,...,w) - f(x+ax,y,...,w) \right] dy dz du dv dw dt$$

= $u \left[- \frac{\partial f}{\partial x} dx \right] dy dz du dv dw dt$
= $- u \frac{\partial f}{\partial x} dx dt$

Vastaava tulos saadaan myös faasiavaruuden alkion muille koordinaateille. $\Rightarrow dN_{tot} = dN_x + dN_y + \dots + dN_w$

$$\Rightarrow \frac{dN}{dg} = f = \left(-\left(\sum_{i=1}^{3} \overline{\tau}_{i} \frac{\partial f}{\partial \tau_{i}} + \sum_{i=1}^{3} \overline{\tau}_{i} \frac{\partial f}{\partial \tau_{i}} + \sum_{i=1}^{3} \overline{\tau}_{i} \frac{\partial f}{\partial \tau_{i}}\right) dt = \left(\frac{\partial f}{\partial t}\right) dt$$

Vertaamalla tätä lauseketta funktion f kokonaisdifferentiaalilausekkeeseen - 34 edelli**sen** mukaan

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_{i=1}^{3} \frac{\partial f}{\partial \tau_i} \frac{d\tau_i}{dt} + \sum_{i=1}^{3} \frac{\partial f}{\partial \tau_i} \frac{d\tau_i}{dt}$$

havaitaan, että

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + w \frac{\partial f}{\partial z} + u \frac{\partial f}{\partial u} + v \frac{\partial f}{\partial w} = 0$$
eli
f = vakio

Mikäli uusia hiukkasia ei muodostu, säilyy hiukkasten tiheys faasiavaruudessa vakiona.

HUOM. Edellä on oletettu, että tähtiin vaikuttavat voimat ovat
konservatiivisia. Tällöin

$$u_i = -\frac{\partial V}{\partial x_i}$$
, jolloin yllä oleva yhtälö voidaan kirjoittaa
muotoon:
 $\frac{\partial f}{\partial t} + \sum_{i=1}^{n} \left[u_i \frac{\partial f}{\partial x_i} - \frac{\partial V}{\partial x_i} \frac{\partial f}{\partial u_i} \right] = 0$
=0 stationaarisessa tapauksessa

<u>Sirottuneet tähdet</u> "diffundoituvat" ulos tarkasteltavasta alkiosta faasiavaruudes a. Tällöin on edellä esitetyn yhtälön oikealle puolelle <u>lisättävä törmäykset huomiova termi $(\frac{\Im f}{\Im t})_{coll}$:</u>

$$\frac{d\ell}{dt} = \frac{\partial\ell}{\partial t} + \sum_{i=1}^{3} \left[u_i \frac{\partial\ell}{\partial x_i} + \dot{u}_i \frac{\partial\ell}{\partial u_i} \right] = \left(\frac{\partial\ell}{\partial t}\right)_{cold} \qquad \text{BOLTZMANNIN}$$

Sovellettaessa tätä yhtälöä stellaaridynamiikkaan kutsutaan sitä stellaaridynamiikan perusyhtälöksi.

Koska tähtien liike nopeuskoordinaatistossa on törmäysten tapauksessa hyvin epäsäännöllistä, voidaan törmäysterminä käyttää klassisen diffuusioteorian Fokker-Planckin yhtälöä:

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = -\sum \frac{\partial (\alpha_i f)}{\partial u_i} + \frac{1}{2} \sum \frac{\partial^2 (\beta_i f)}{\partial u_i^2}$$

;

missä
$$a_i = \lim_{\Delta t \to 0} \frac{[u_i(t) - u_i(t + \Delta t)]}{\Delta t} = dynaamisen kitkan kerroin
 $b_i = \lim_{\Delta t \to 0} \frac{[u_i(t) - u_i(t + \Delta t)]^2}{\Delta t} = diffuusiokerroin$$$

ESIM. Auringon ympäristössä on tähtien relaksaatioaika huomattavasti suurempi kuin Linnunradan ikä. Tällöin voidaan olettaa, että

$$\begin{pmatrix} \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} = 0$$

Faasiavaruuden hiukkastiheys voidaan ratkaista seuraavasti:

Oletetaan seuraavassa yksinkertaisuuden vuoksi, että kaikilla tähdillä on sama massa m. Tällöin

Massajakautuma aiheuttaa potentiaalikentän V(x,y,z), joka toteuttaa Poissonin yhtälön:

$$\Delta V = \nabla^2 V = 4\pi G S$$
 POISSONIN YHTÄLÖ

$$\iff V(\overline{\tau}, t) = -G \iiint \frac{g(\overline{\tau}, t)}{|\overline{\tau} - \overline{\tau}|} dx' dy' dz$$

kun reunaehto on: $V \rightarrow 0$, kun $|r| \rightarrow \infty$ Seuraavilla perusyhtälöillä pyritään ratkaisemaan tähtien jakauma faasiavaruudessa.

Boltzmannin yhtälö
Poissonin yhtälö
$$\mathbf{g} = m \iiint f(x,y,z,u,v,w) d^{3}u$$
 $\Rightarrow f(x,y,z,u,v,w)$

1.5 MASSAJOUKON STABIILISUUS VUOROVESIVOIMAN VAIKUTTAESSA

Gravitaation sitoman massapistesysteemin (esim. tähtijoukko) tullessa liian lähelle massiivista kappaletta M, pyrkii massajoukko hajoamaan. Samoin voi käydä kiinteälle taivaankappaleelle (esim. kuu), jos se tulee riittävän lähelle suurimassaista kappaletta (esim. planeetta).

1.5.1 Stabiilisuusehto, kun suurimassainen kappale ja massajoukko ovat levossa toisiinsa nähden

Parven säde = r'

 $\overline{OP}_{OP} = \overline{r}$ $\overline{OP}_{1} = \overline{r} - \overline{r}'$

M:n aiheuttama gravitaatiokiihtyvyys pisteessä P₀: $\Im_{P_0} = -\frac{GM}{r^2}$ M:n aiheuttama gravitaatiokiihtyvyys pisteessä P₁: $\Im_{P_1} = -\frac{GM}{(r-r^2)^2}$ $\Im_{P_1} - \Im_{P_0} = -GM\left[\frac{1}{(r-r^2)^2} - \frac{1}{r^2}\right] = -GM\left[\frac{1}{r^2(1-2\frac{r}{r}+\frac{r^2}{r^2})} - \frac{1}{r^2}\right]$ $= -GM\left[\frac{1}{r^2}(1+2\frac{r}{r}+...) - \frac{1}{r^2}\right]$

$$\begin{split} & \Im_{P_{n}} - \Im_{P_{n}} = -GM \cdot \Im \frac{\tau}{\tau^{3}} \\ & \text{m:n aiheuttama gravitaatiokiihtyvyys pisteessä P}_{1} = \frac{Gm}{\tau^{3}} \\ & \text{Stabiilisuusehto:} \\ & \frac{Gm}{\tau^{3}} > \left| \Im_{P_{n}} - \Im_{P_{n}} \right| = \frac{\Im GM \tau^{3}}{\tau^{3}} \\ & \Rightarrow \left| \frac{m}{\tau^{3}} > \frac{\Im M}{\tau^{3}} \right| \\ & \text{MASSAJOUKON m STABIILISUUSEHTO} \end{split}$$

1.5.2 Stabiilisuusehto, kun massajoukko liikkuu ympyräradalla

Napakoordinaatistossa kiihtyvyys = $r - r \sqrt[3]{2}$ Ympyräradan tapauksessa r = vakio $\Rightarrow r = 0$

Keskeisvoiman kiihtyvyys pisteessä P_0 : $a_{P_0} = -r \sqrt[A]{2}$ Keskeisvoiman kiihtyvyys pisteessä P_1 : $a_{P_1} = -(r - r')\sqrt[A]{2}$ M:n aiheuttama gravitaatiokiihtyvyys pisteessä P_0 : $g_{P_2} = -\frac{GM}{r^2}$ M:n aiheuttama gravitaatiokiihtyvyys pisteessä P_1 : $g_{P_1} = -\frac{GM}{(r - r')^2}$ m:n aiheuttama gravitaatiokiihtyvyys pisteessä P_1 : $g_{P_1} = -\frac{GM}{(r - r')^2}$

Stabiilisuusehto :

$$\frac{G m}{\tau^{32}} > \left| \left(\frac{g_{P_1} + \alpha_{P_1}}{T^{32}} \right) - \left(\frac{g_{P_2} + \alpha_{P_2}}{T^{32}} \right) \right|$$

$$\frac{G m}{\tau^{32}} > \left| \alpha_{P_1} - \alpha_{P_2} \right| + \left| \frac{g_{P_1} - g_{P_2}}{T^{32}} \right|$$

$$\frac{g G m \tau^3}{\tau^3}$$

$$\frac{g G m$$

$$\frac{G m}{\tau^{3}} > \frac{G M}{\tau^{3}} \cdot \tau^{3} + \frac{2 G M}{\tau^{3}} \cdot \tau^{3}$$

$$\frac{m}{\tau^{3}} > \frac{3 M}{\tau^{3}} \tau^{3}$$

$$\Rightarrow \boxed{\frac{m}{\tau^{3}} > \frac{3 M}{\tau^{3}}}_{T^{3}} \qquad \text{STABIILISUUSENTO YMPYRÄLIIKKEESSÄ}$$

$$OLEVALLE MASSAPARVELLE m$$

ESIM. Ympyrärataa kiertävä tähtijoukko Linnunradan vetovoimakentässä. Stabiilisuusehto:

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta} \left(\frac{u}{\Theta} - \frac{du}{\Theta}\right)$$

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta} \left(\frac{u}{\Theta} - \frac{du}{\Theta}\right)$$

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta}^{\frac{1}{d}} - 3^{\frac{1}{d}} = \frac{u}{2}, \frac{u}{\Theta}^{\frac{d}{d}} + \frac{u}{\Theta}^{\frac{d}{d}}$$

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta}^{\frac{1}{d}} - 3^{\frac{1}{d}} = \frac{u}{2}, \frac{u}{\Theta}^{\frac{d}{d}} + \frac{u}{\Theta}^{\frac{d}{d}}$$

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta}^{\frac{1}{d}} - 3^{\frac{1}{d}} = \frac{u}{2}, \frac{u}{\Theta}^{\frac{d}{d}} + \frac{u}{\Theta}^{\frac{d}{d}}$$

$$\frac{C}{C}\frac{u}{u}^{1,\frac{d}{d}} > 3^{\frac{1}{d}}, \frac{u}{\Theta}^{\frac{1}{d}} - 3^{\frac{1}{d}} = \frac{u}{2}, \frac{u}{\Theta}^{\frac{d}{d}} + \frac{u}{\Theta}^{\frac{1}{d}}$$

$$\frac{G_{m}}{r^{3}} > 4A(A-B)$$
, missä A ja B ovat Oortin vakioita

1,6 VIRIAALITEOREEMA JA GALAKSIJOUKKOJEN MASSANMÄÄRITYS

1.6.1 Viriaaliteoreema

Johdetaan seuraavassa lauseke äärellisessä tilavuudessa olevien kappaleitten liike-energian aikakeskiarvon ja potentiaalienergian välille

Massapistesyteemissä olkoon massan m paikkavektori \overline{r}_{j} ja liikemäärä $\overline{p}_{j} = m \overline{r}_{j}$ Massaan m_j vaikuttaa voima $\overline{F}_{j} = \overline{p}_{j}$.

$$\begin{split} \frac{d}{dt} \sum \overline{P}_{\dot{\delta}} \cdot \overline{\tau}_{\dot{\delta}} &= \sum \overline{P}_{\dot{\delta}} \cdot \overline{\tau}_{\dot{\delta}} + \sum \overline{P}_{\dot{\delta}} \cdot \overline{\tau}_{\dot{\delta}} \\ &= \sum \overline{F}_{\dot{\delta}} \cdot \overline{\tau}_{\dot{\delta}} + \sum \overline{m} \overline{v}_{\dot{\delta}} \cdot \overline{v}_{\dot{\delta}} \\ &= \sum \overline{F}_{\dot{\delta}} \cdot \overline{\tau}_{\dot{\delta}} + 2T , \text{ missä } T = \text{koko systeemin liike-} \\ &= \text{energia} \end{split}$$

Ajallinen keskiarvo:

$$\frac{1}{r} \int_{at}^{r} \frac{d}{dt} \sum_{i} \overline{P}_{i} \cdot \overline{r}_{i} dt = \langle 2T + \sum_{i} \overline{F}_{i} \cdot \overline{F}_{i} \rangle$$

$$\frac{1}{r} \left[\sum_{i} \overline{P}_{i}(r) \cdot \overline{F}_{i}(r) - \sum_{i} \overline{P}_{i}(0) \cdot \overline{F}_{i}(0) \right] = 2 \langle T \rangle + \langle \sum \overline{F}_{i} \cdot \overline{F}_{i} \rangle$$

<u>Oletetaan sidottu massapistesysteemi</u>, jolloin r_j ja p_j saavat äärellisiä arvoja kaikkina aikoina.

$$\Longrightarrow \lim_{\tau \to \infty} \frac{1}{\tau} \left[\sum \overline{p}_{\delta}(\tau) \cdot \overline{r}_{\delta}(\tau) - \sum p_{\delta}(o) \cdot r_{\delta}(o) \right] = 0$$

$$\Rightarrow 2\langle T \rangle + \langle \Sigma \overline{F}_{i} \cdot \overline{F}_{i} \rangle = 0$$

$$\Rightarrow \langle T \rangle = -\frac{1}{2} \langle \Sigma \overline{F}_{i} \cdot \overline{V}_{i} \rangle \quad \text{VIRIAAL ILAUSE}$$

Jos voima on johdettavissa potentiaalista V. (ts. $\overline{F} = -\nabla V(r_j)$), saadaan $\langle T \rangle = - \frac{1}{2} \langle \nabla - \nabla V(r_i) \cdot \overline{T} \rangle = \frac{1}{2} \langle \nabla \nabla V(r_i) \cdot \overline{T} \rangle$

0let. keskeisvoimakenttä:
$$V(\tau_{i}) = C \tau_{i}^{n}$$

 $\nabla V(\tau_{i}) = C \frac{\lambda}{2\tau_{i}} \tau_{i}^{n} \cdot \overline{\tau^{o}} = C n \tau_{i}^{n-1} \cdot \frac{\overline{\tau}_{i}}{\tau_{i}}$
 $\Rightarrow \nabla V(\tau_{i}) \cdot \overline{\tau_{i}} = \sum n C \tau_{i}^{n} \cdot \frac{1}{\tau_{i}} \left(\frac{\overline{\tau}_{i}}{\tau_{i}} \cdot \overline{\tau_{i}} \right)$
 $= n \sum C \tau_{i}^{n}$
 $= n \sum V(\tau_{i})$
 $= n \bigvee$
koko systeemin potentiaalie

$$\Rightarrow \langle \top \rangle = \frac{n}{2} \langle \vee \rangle$$

energia

Gravitaatiopotentiaalin V= C·(1/r) tapauksessa eksponentti n=-1

$$\Rightarrow \langle T \rangle = -\frac{1}{9} \langle V \rangle \iff 2 \langle T \rangle + \langle V \rangle = 0$$

Tämä viriaaliteoreeman muoto on saatu olettamalla, että massa-HUOM. pisteet ovat <u>ulkoisessa (1/r²)-vetovoimakentässä</u> (esim. pikkuplaneetat Auringon vetovoimakentässä). Todettakoon, että massojen m, väliset vetovoimat on tässä jätetty huomioimatta.

Oletetaan seuraavassa, että ulkoinen vetovoimakenttä puuttuu, ja tarkastellaan yksinomaan massapisteiden välisiä gravitaatiovoimia. Tällöin

 $\sum_{\lambda} \overline{F}_{\lambda} \cdot \overline{T}_{\lambda} = \sum_{\lambda} \sum_{i \neq j} \overline{F}_{i} \cdot \overline{T}_{\lambda}, \text{ missä} \qquad \overline{F}_{j} = \text{tähteen j vaikuttava tähden i} \\ aiheuttama vetovoima$

 $= \sum_{j} \sum_{\substack{i \neq j \\ i \neq j}} \left[-\frac{Gm_im_j}{\tau_{ij}^3} (\overline{\tau}_j - \overline{\tau}_j) - \overline{\tau}_j \right]$ Kahden massapisteen (esim m_k ja m₁) väliset termit:

$$-\frac{Gm_{k}m_{\ell}}{\tau_{k\ell}^{3}}\left[\left(\overline{\tau}_{k}-\overline{\tau}_{\ell}\right)\cdot\overline{\tau}_{k}+\left(\overline{\tau}_{\ell}-\overline{\tau}_{k}\right)\overline{\tau}_{\ell}\right]$$

$$= - \frac{Gm_{k}m_{\ell}}{\tau_{k\ell}^{3}} \left(\frac{\overline{\tau}_{k} - \overline{\tau}_{\ell}}{|\overline{\tau}_{k} - \overline{\tau}_{\ell}|^{2}} - \frac{\overline{\tau}_{k\ell}}{|\overline{\tau}_{k} - \overline{\tau}_{\ell}|^{2}} - \frac{Gm_{k}m_{\ell}}{\tau_{k\ell}} \right)$$

$$\Rightarrow \sum \overline{F}_{\delta} \cdot \overline{r}_{\delta} = \sum_{j=1}^{N} \sum_{\substack{i=1 \ i\neq j}}^{N} - \frac{G m_{i} m_{i}}{r_{ij}^{3}} \delta(\overline{r}_{\delta} - \overline{r}_{i}) \cdot \overline{r}_{i} = \sum_{j=1}^{N} \sum_{\substack{i=1 \ i\neq j}}^{N} - \frac{G m_{i} m_{i}}{r_{ij}} \delta(\overline{r}_{\delta} - \overline{r}_{i}) \cdot \overline{r}_{i} = \sum_{j=1}^{N} \sum_{\substack{i=1 \ i\neq j}}^{N} - \frac{G m_{i} m_{i}}{r_{ij}} \delta(\overline{r}_{\delta} - \overline{r}_{i}) \cdot \overline{r}_{i}$$

$$= \bigvee$$
Viriaalilause:
$$\langle T \rangle = -\frac{1}{2} \langle \Sigma \overline{T}_{\delta} \cdot \overline{r}_{\delta} \rangle$$

$$\Rightarrow \left| \langle T \rangle = -\frac{1}{2} \langle \nabla \rangle \right|$$

Systeemin kokonaisenergia keskeisvoimakentässä:

SYSTEEMIN SIDOSENERGIA

HUOM. Vain koossa pysyvissä systeemeissä, joissa siis E < 0, pätee viriaalilause. Mitä negatiivisempi kokonaisenergia on (ts. mitä suurempi sidosenergia), sitä paremmin pätevät viriaalilauseen oletukset.

1.6.2 Galaksijoukon massanmääritys

Oletetaan yksinkertaisuuden vuoksi, että joukon kaikilla galakseilla on sama massa, jolloin joukon kokonaismassa M =∑m. Tällöin

$$Q \langle T \rangle = \sum_{i} \langle m_{i} v_{j}^{2} \rangle = n \cdot m \langle \overline{v^{2}} \rangle$$
, missä $\overline{v^{2}} = \frac{1}{n} \sum_{i} v_{j}^{2}$
ja keskiarvo

 $\langle V \rangle = \langle \Sigma - \frac{Gm_{im}}{r_{ij}} \rangle$

$$= -Gm^{2}\langle \frac{1}{r} \rangle \cdot \underbrace{\sum_{kaikki parit n:stä kohteesta}}_{\underline{n(n-1)}} 1. \text{ komponentti}$$

1. komponentti voidaan valita n:llä tavalla, 2. komponentti (n-1):llä Tällöin jokainen kohde lask. 2 kertaa mukaan ⇒ tulos jaettava kahdella,

$$\langle \vee \rangle = - \frac{n(n-1)}{2} G m^2 \langle \overline{T} \rangle$$

Viriaaliteoreema: $2\langle \tau \rangle + \langle v \rangle = 0$ $2\langle \tau \rangle = - \langle V \rangle$

$$\Rightarrow nm \langle \overline{v^2} \rangle = \frac{n(n-1)}{2} Gm^2 \langle \overline{\frac{1}{\tau}} \rangle \qquad \text{Kun n} \gg 1 \qquad n(n-1) \approx n^2$$
$$\Rightarrow nm \langle \overline{v^2} \rangle = \frac{G}{2} (nm)^2 \langle \overline{\frac{1}{\tau}} \rangle \qquad M = nm$$
$$\boxed{M = \frac{2 \langle \overline{v^2} \rangle}{G \langle \overline{\frac{1}{\tau}} \rangle}$$

- 46 -

$$\upsilon^{2} = (\upsilon_{r_{1}} - \upsilon_{r_{0}})^{2} + (\upsilon_{x_{1}} - \upsilon_{x_{0}})^{2} + (\upsilon_{y_{1}} - \upsilon_{y_{0}})^{2}$$

näkösäde

Oletetaan, että nopeusjakauma on isotrooppinen, jolloin

$$\overline{\left(\upsilon_{\tau_{i}}-\upsilon_{\tau_{o}}\right)^{2}}=\overline{\left(\upsilon_{x_{i}}-\upsilon_{x_{o}}\right)^{2}}=\overline{\left(\upsilon_{x_{i}}-\upsilon_{y_{o}}\right)^{2}}=\frac{1}{3}\overline{\upsilon^{2}}$$

Mikäli galaksijoukko on stationaarinen, pätee :

$$\langle \overline{v^2} \rangle = \overline{v^2} = 3 \left(\overline{v_r} - \overline{v_r} \right)^2$$

Karkeasti arvioituna on:

$$\langle \frac{\overline{1}}{r} \rangle = \overline{\left(\frac{1}{r} \right)}$$

Havainnoista voidaan arvioida galaksien keskimääräinen välimatka r parhaiten mittaamalla kaikki välimatkat r

$$\gamma = \frac{1}{N} \sum \tau_{ij}$$

On kuitenkin huomioitava, että valokuvauslevyltä mitatut välit r_{ij} ovat taivaalle projisioituja välimatkoja. Vain harvoin on galaksien yhdysjana kohtisuorasti näkösädettä vasten. Useinmiten todellinen välimatka on suurempi:

Kuviosta: r sin 🖓 = r' = valokuvasta mitattu projisioitu etäisyys

$$\Rightarrow \frac{1}{T} = \frac{1}{T}, \sin \vartheta$$

$$\left(\frac{1}{T}\right) = \left(\frac{1}{T^{3}}\right) \overline{\sin \vartheta}$$

$$= \left(\frac{1}{T^{3}}\right) \frac{\sin \vartheta}{\sin \vartheta}$$

$$= \left(\frac{1}{T^{3}}\right) \frac{\sin \vartheta}{\sin \vartheta}$$

$$= \left(\frac{1}{T^{3}}\right) \frac{\sin \vartheta}{\sin \vartheta}$$

$$= \left(\frac{1}{T^{3}}\right)$$

Galaksijoukon massaksi saadaan täten

$$M = \frac{2\langle \overline{v}^2 \rangle}{G\langle \overline{\frac{1}{\tau}} \rangle} = \frac{2\cdot 3(v_{\tau_1} - v_{\tau_0})^2}{G \cdot \frac{2}{\pi}(\frac{1}{\tau_1})}$$

$$M = \frac{3\pi \left(\overline{\upsilon_{\tau_i}} - \overline{\upsilon_{\tau_b}}\right)^2}{G\left(\frac{1}{\tau_i}\right)}$$

Viriaaliteoreeman mukaan laskettu galaksijoukon kokonaismassa on noin 10 kertaa suurempi kuin joukon yksittäisten galaksien massa-arvioiden summa. Tätä ristiriitaista tulosta kutsutaan "missing mass"-probleemaksi. Alla on lueteltu muutamia ratkaisuehdotuksia :

- Galaksijoukossa on näkymätöntä massaa (esim. tiiliskiven kokoisia kappaleita ei pystytä havaitsemaan).
- Mikäli neutriinon (tai jonkin muun massattoman alkeishiukkasen) lepomassa onkin nollasta poikkeava, saattaa galaksijoukkoon kuulua paikallinen neutriinotihentymä.
- Mikäli galaksijoukko hajaantuu, ei viriaaliteoreemaa voida soveltaa!

2. TÄHTIEN ATMOSFÄÄRIT

2.1 SÄTEILYN EMISSIO JA ABSORPTIO

Lähes kaikki taivaankappaleista saatava tieto tulee säteilyn välityksellä. Siksi astrofysiikan kannalta tärkein materian ominaisuus on, että se absorboi ja emittoi säteilyä.

2.1.1 Säteilyn perusmääritelmiä

a) Säteilyn intensiteetti I, (Specific Intensity)

Tarkastellaan pinta-alkion dA läpi menevää säteilyenergiaa. Pinta-alkio voi olla "tyhjässä" avaruudessa tai taivaankappaleen pinnan osa. **Pinta**alkion läpäissyt säteilyenergian määrä dE, on verrannollinen säteilyn taajuuskaistaan (γ , γ +d γ), avaruuskulma-alkioon d ω , tarkastelusuuntaa (Θ , ϕ) vasten kohtisuorasti olevaan pinta-alkioon dA, sekä tarkasteluajan pituuteen dt

Säteilyenergian lausekkeessa esiintyvälle verrannollisuuskertoimelle I_v saadaan täten seuraava määritelmä.

<u>MÄÄR</u>. Säteilyn intensiteetti I_v tarkastelusuunnassa (Θ, ϕ) on (Θ, ϕ) -keskisessä avaruuskulma-alkiossa d ω oleva säteilyteho taajuusyksikköä ja pinta-alayksikkö**ä (dA 1 säteilyn s**uunta) kohti.

$$I_{\nu}(\Theta, \phi) = \frac{dE_{\nu}}{dt dA_{\perp} d\nu d\omega} = \frac{P_{\nu}}{\cos \Theta dA d\nu d\omega}$$
 MONOKROMAATTISEN
SÄTEILYN INTENSITEETTI

(huom.sr = steradiaani)

 $\begin{bmatrix} I_{v} \end{bmatrix} = \frac{erg}{S \cdot cm^{2} \cdot HZ \cdot ST}; \frac{W}{m^{2} \cdot HZ \cdot ST}$

Säteilyn intensiteetti I_y riippuu tarkastelupisteen paikasta (x,y,z) tähden atmosfäärissä sekä säteilyn suunnasta (säteilyn ei nimittäin tarvitse olla isotrooppista:

 $I_{y} = I_{y}(x,y,z,\Theta,\phi)$

Pallosymmetrisissä geometrioissa riittää argumenteiksi kulma ⊖ sekä tarkastelupisteen syvyys x tähden atmosfäärissä (tähden pinnalla x = 0).

$$I_{y} = I_{y} (x, \Theta)$$

Säteilyn <u>kokonaisintensiteetti</u> <u>suunnassa</u> Θ saadaan integroimalla I_y yli kaikkien taajuuksien:

$$I = \int_{0}^{\infty} I_{\nu} d\nu$$

KOKONAISINTENSITEETTI

HUOM. Mikäli intensiteetti Ι, halutaan ilmoittaa aallonpituusväliä dλ kohden, on differentioitava yhtälö

 $\gamma = \frac{c}{\lambda} \implies d\gamma = -\frac{c}{\lambda^2} d\lambda$

sekä huomioitava, että kummassakin tapauksessa on säteilyn kokonaisintensiteetti oltava sama:

$$I = \int_{\alpha}^{\infty} I_{\nu} d\nu = \int_{\alpha}^{\infty} I_{\lambda} d\lambda$$
$$I_{\lambda} = I_{\nu} \left| \frac{d\nu}{d\lambda} \right|$$
$$I_{\lambda} = I_{\nu} \frac{c}{\lambda^{2}}$$
Vastaavasti
$$I_{\nu} = I_{\lambda} \frac{c}{\nu^{2}}$$

Tämän johdosta saman kohteen (esim. galaksin) I_{λ} - ja I_{ν} spektrit poikkeavat toisistaan:

- 49 -

Säteilyn <u>keskimääräinen intensiteetti</u> J, määritellään intensiteetin keskiarvona yli kaikkien suuntien:

$$J_{y}(x) = \frac{\oint I_{y}(0,\phi)d\omega}{\oint d\omega} = \frac{1}{4\pi} \oint I_{y}(0,\phi)d\omega$$

MONOKROMAATTISEN SÄTEILYN KESKIMÄÄRÄINEN INTENSITEETTI

<u>HUOM</u>. Avaruuskulma ω määritellään seuraavasti. Kun yksikkösäteiseen palloon sijoitetaan kartio siten, että kartion kärki (jonka kulma = ω) on pallon keskipisteessä, leikkaa kartio pallosta alueen, jonka pinta-ala = ω . Jos pallon säde on mielivaltainen säde r, pätee

Näin ollen keskimääräinen säteilyintensiteetti voidaan kirjoittaa muotoon

1 (1)	- 1 ((T (0) ch 0	beac
Jym	- 4TT] Ly (8) SING	abay

Havaittaessa pintamaista kohdetta (esim. Aurinkoa, kaasusumua, galaksia, taustasäteilyä) puhutaan <u>pintakirkkaudesta</u>, joka mitataan yksiköissä $Wm^{-2}HZ^{-1}sr^{-1}$ (radioastronomiassa) tai erg $s^{-1} cm^{-2} A^{-1} sr^{-1}$ (optisessa astronomiassa) tai 10^m tähteä/ \square^o ($\equiv S_{10}$) (taustataivaan fotometriassa).

Kun tarkastellaan lähteen pinnasta ulos tulevaa säteilyä, puhutaan säteilyn intensiteetistä. Merkitään seuraavassa kohteen säteilemää intensiteettiä $I(\Theta, \phi)$ ja havaitsijan rekisteröimää pintakirkkautta $I'(\Theta, \phi)$. Seuraavassa osoitetaan, että I = I'

Lähteen pinta-alkion emittoima teho: $dE_{\nu}/dt = I_{\nu}\cos\Theta dA d\nu d\omega$ Havaîtsijan rekisteröimä pintakirkkaus:

$$I_{\nu}^{\prime} = \frac{dE_{\nu}/dt}{\cos \theta' dA' d\nu d\omega'} = \frac{I_{\nu} \cos \theta dA d\nu d\omega}{\cos \theta' dA' d\nu d\omega'} \qquad d\omega = \frac{\cos \theta' dA'}{\tau^{2}} d\omega' = \frac{\cos \theta dA}{\tau^{2}} I_{\nu}^{\prime} = I_{\nu} \frac{\cos \theta dA}{\cos \theta' dA'} \frac{\cos \theta dA}{\tau^{2}} \Rightarrow I_{\nu}^{\prime} = I_{\nu}$$

Voidaan todeta, että <u>havaittu pintakirkkaus on sama kuin lähteen</u> <u>säteilyintensiteetti</u> sekä <u>riippumaton havaitsijan ja lähteen</u> <u>välisestä etäisyydestä</u> (niin kauan kuim absorptiota ei esiinny). ESIM. Jos Auringon etäisyys olisi puolet nykyisestä olisi pintakirkkaus edelleen sama

I' = I

Pinta-alkion dA läpi mennyt säteilyteho sen sijaan kasvaisi nelinkertaiseksi (d $\omega \sim \frac{1}{r^2}$).

- 52

c) Säteilyvuon tiheys 🏠 (Flux density)

Tarkastellaan <u>kaikista suunnista</u> pinnan dA läpi menevää säteilytehoa, jonka taajuus on välissä $(\nu, \nu + d\nu)$.

$$d\mathcal{F}_{y} = \frac{dE_{y}}{dt dA dy} = \frac{dE_{y}}{dt dA \cos \theta} \cos \theta d\omega$$
$$= I_{y} \cos \theta d\omega$$

$$\mathcal{F}_{\mathcal{F}}(\mathbf{x}) = \int_{\Omega} \mathbf{I}_{\mathcal{F}} \cos \theta \, d\omega = \int_{\Omega} \int_{\Omega} \mathbf{I}_{\mathcal{F}} \cos \theta \, \sin \theta \, d\theta \, d\varphi$$

MONOKROMAATTISEN SÄTEILYVUON TIHEYS (pintatiheys)

Säteilyn <u>kokonaisvuon tiheys</u> saadaan integroimalla yli kaikkien taajuuksien:

$$\mathcal{F}(x) = \int_{0}^{\infty} \mathcal{F}_{\nu}(x) d\nu$$

[∓] =

KOKONAISVUON TIHEYS

- <u>HUOM. 1</u> <u>Optisessa</u> <u>astronomiassa</u> kutsutaan säteilyvuon tiheyttä usein lyhyesti vain säteilyvuoksi (flux).
- <u>HUOM. 2</u> <u>Radioastronomiassa</u> merkitään muodollisesti säteilyvuon tiheyttä symbolilla <u>Sy</u> ja lähteen pintakirkkausjakautumaa symbolilla $b_{y}(\alpha, \delta)$, missä α = rektaskensio ja δ = deklinaatio.

- 53 -

Optisessa astronomiassa Radioastronomiassa $dS_{y} = \frac{P_{y}}{dA \, dy} = b_{y}(\alpha, \delta) \cdot \frac{d\omega}{\cos \delta \delta \delta \, d\alpha}$ $d\mathcal{F}_{\mu} = \frac{P_{\mu}}{dA d\nu} = I_{\mu} \cos \theta d\omega$ $(\cos \Theta = 1)$ $S_{y} = \iint B_{y}(\alpha, \delta) d\omega$ I, cososinododø säteilyteho: $P = \frac{1}{2} A_0 \Delta \mathcal{Y} \int B_{\mathcal{Y}}(\alpha, \delta) \cdot f(\alpha - \alpha', \delta - \delta') d\omega$ P = SSS I cosodwdAdu missä A_o = antennin efektiivinen pinta-ala $\Delta \mathcal{V}$ = vastaanottimen kaistaleveys f = antennin keilakuvio, joka kuvaa miten tehokkaasti antenni vastaanottaa radiosäteilyä eri

suunnissa.

Normalisointi: $f(\Theta = 0) = 1$

Tekijä ½ johtuu siitä, että radioteleskoopilla saadaan vain toinen polarisaatiosuunta havaittua

Yhdistettäessä antenni kohinaputkeen, antaa kohinaputki tietyssä lämpötilassa T saman tehon kuin havaittu radiolähde: P_{1 ähde = $P_{kohinaputki} = k \cdot \Delta y \cdot T$, missä k = Boltzmannin vakio Kun yo. ehto on täytetty, kutsutaan kohinaputken lämpötilaa <u>antennilämpötilaksi T_A</u>.

 $P_{1\ddot{a}hde} = \frac{1}{2} A_0 \Delta \mathcal{Y} \int \mathcal{G}_{\mathcal{Y}}(\alpha, \delta) \cdot f(\alpha - \alpha', \delta - \delta') \cos \delta d\delta d\alpha = k \cdot \Delta \mathcal{Y} \cdot T_A$

Mittaamalla radiolähteen teho saadaan dekonvoluutiolla lähteen pintakirkkaus määritettyä.

Erotetaan seuraavassa tarkastelupinnasta ulos tuleva säteilyvuo $(0 < \Theta < \frac{\pi}{2})$ pinnan sisään menevästä säteilyvuosta $(\frac{\pi}{2} < \Theta < \pi \Rightarrow \cos \Theta < 0)$. Tällöin on

$$\mathcal{F}_{out} = \mathcal{F}^+(x) = \int_{0}^{\pi/2} \int_{0}^{2\pi} I \cos \theta \sin \theta d\theta d\phi$$
$$= \mathcal{F}^-(x) = -\int_{\pi/2}^{\pi} \int_{0}^{2\pi} I \cos \theta \sin \theta d\theta d\phi$$
$$= \int_{0}^{\pi/2} \int_{0}^{2\pi} I \cos \theta \sin \theta d\theta d\phi$$

(huom. miinus-merkki, jotta saataisiin positiivinen tulos)

Nettosäteilyvuon tiheys on täten

$$\mathcal{F}_{\mathcal{F}}(x) = \mathcal{F}_{\mathcal{F}}^{+}(x) - \mathcal{F}_{\mathcal{F}}^{-}(x)$$

ESIM.1 Isotrooppisessa säteilykentässä intensiteetti ei riipu kulmasta: $I(x, \Theta, \phi) = I(x)$. Tällöin

$$\mathcal{F}_{out}(x) = I(x) \int_{0}^{\pi/2} \int_{0}^{4\pi} \sin \theta \cos \theta \, d\theta \, d\phi$$

= $I(x) \cdot 2\pi \int_{0}^{\pi} \frac{1}{2} \sin 2\theta \, \frac{d(2\theta)}{2} = I(x) \cdot \frac{\pi}{2} \int_{0}^{\pi} -\cos 2\theta$
 $\mathcal{F}_{out}(x) = \pi \cdot I(x)$

<u>HUOM.</u> Isotrooppisessa säteilykentässä on kokonaisvuon tiheys $\mathcal{F} = 0$: $\mathcal{F}_{in} = \mathcal{F}_{out} \implies \mathcal{F}(x) = \mathcal{F}_{out}(x) - \mathcal{F}_{in}(x) = 0$

Kun oletetaan, että tähden ulkopuolella ei ole säteilylähteitä, on <u>tähden</u> <u>pinnalla</u> $\mathcal{F}_{in} = 0 \implies \mathcal{F}(pinnalla) = \mathcal{F}_{out}$. Tällöin

$$\frac{\mathcal{F}_{v}}{\pi} = \frac{\int_{0}^{W_{Q}} 2\pi}{\int_{0}^{W_{Q}} 2\pi} \frac{1}{\cos \Theta \sin \Theta d\Theta d\phi} = \mathbf{I}_{out}$$

Toisaalta on tähtikiekon yli havaittu keskimääräinen intensiteetti

$$\overline{I}_{out} = \frac{\int \overline{I}_{\nu} dA}{A} , \text{ missä } dA = R^{2} d\omega$$

$$dA_{1} = \cos \theta dA$$

$$= \frac{\int \sqrt{2\pi}}{\int \sqrt{2\pi}} \frac{2\pi}{I_{\nu} \cos \theta \cdot R^{2} \sin \theta d\theta d\phi}{\pi R^{2}}$$

$$\overline{I}_{out} = \frac{\widehat{T}_{out}}{\pi} = \frac{\widehat{T}_{\nu}}{\pi}$$

Koska molemmat tarkastelut antoivat saman lopputuloksen, voidaan tulos tulkita seuraavasti : <u>tähden pinnalla</u> esittää

 $J_{y} = \overline{I}_{y} = \frac{\mathcal{R}_{y}}{\pi}$ keskimääräistä säteilyn intensiteettiä

- a) <u>yhdestä</u> pisteestä <u>kaikkiin suuntiin</u>
- b) kaikista pisteistä yhteen suuntaan
- ESIM. 2 Auringon kokonaisvuon tiheys Maan ilmakehän ulkopuolella (ns. aurinkovakio) on 1.39×10⁶ erg s⁻¹cm⁻². Määritä Auringon säteilyintensiteetti sekä kokonaisvuon tiheys Auringon pinnalla, kun oletetaan, että säteilyn intensiteetti on suunnasta riippumaton.

$$\mathcal{F}_{\odot}^{i} = 1.39 \times 10^{3} \text{ W/m}^{2}$$

$$\omega_{\odot}^{i} = \frac{\pi R^{2}}{\gamma^{2}} = \pi \left[\underline{\text{trigon. parallaksi}} \right]^{2} = 6.8 \times 10^{-5} \text{ sr}$$

$$16^{i} \text{ Auringolle}$$
Havaittu pintakirkkaus I' = $\frac{\mathcal{F}_{\odot}^{i}}{\omega_{\odot}^{i}}$
I' = 1.998 $10^{7} \text{ W/m}^{2} \text{ sr}$

Säteilyn kokonaisintensiteetti Auringon pinnalla on siten

 $I = I' \approx 2.0 \times 10^7 \text{ W/m}^2 \text{sr}$

Kokonaisvuon tiheys Auringon pinnalla:

$$\hat{\tau}_{o} = \pi \cdot I$$

 $\hat{\tau}_{o} = 6.28 \times 10^{7} \text{ W/m}^{2} = 62.8 \text{ MW/m}^{2}$

Auringon energian tuotto on siten melko tehokasta : 10 m^2 alue Auringon pinnalla säteilee 628 MW (vrt. Loviisan ydinvoimalat I ja II tuottavat kumpikin noin 300 MW). d) Säteilytiheys u (Radiation Density or Energy Density)

Säteilytiheys u on se säteilyenergian määrä <u>tilavuusyksikköä kohti</u>, joka mielivaltaisena hetkenä kulkee avaruudessa tarkastelupisteen tilavuusalkion läpi.

du = <u>säteilyenergia</u> tilavuusalkio
$du = \frac{dE}{dV} = \frac{P \cdot dt}{dA \cdot ds}$, missä teho $P = I \cos \Theta dA d\omega$
$du(\Theta, \phi) = \frac{I(\Theta, \phi) \cdot dA d\omega dt}{dA \cdot c dt} = \frac{1}{2} I(\Theta, \phi) d\omega$
$u = \int du$
$u = \frac{1}{c} \int_{\Omega} I(0, \phi) d\omega$ SÄTEILYTIHEYS (avaruustiheys)
$[u] = \frac{\text{erg}}{\text{cm}^3} \text{tai} \frac{J}{\text{m}^3}$
<u>e) Säteilypaine P_R (Radiation pressure)</u>
paine = <u>pintaa vasten kohtisuora voima</u>
$dP_{R} = \frac{dp_{2}/dt}{dA} = \frac{dp \cos \Theta}{dt dA}$
missä fotonin liikemäärä p = $\frac{h\nu}{c} = \frac{E}{c}$ dp = $\frac{dE}{c} = \frac{I\cos\Theta d\omega dA dt}{c}$
$dP_{R} = \frac{1}{C} I \cos^{2} \Theta d\omega$
$P_{R} = \frac{1}{C} \int I \cdot \cos^{2} \Theta d\omega \qquad \text{SÄTEILYPAINE}$

Mikäli tarkastelukohteessa <u>säteily absorboituu ja emittoituu sata-</u> prosenttisesti (ts. kyseessä on ns. musta kappale), on kohteessa vallitseva paine $\underline{P} = \underline{P}_{R}$.

ESIM. 1. Määritä säteilypaine täysin mustalle pinnalle, kun säteily tulee kohtisuorasti pintaa vasten.

ESIM. 2. Määritä säteilypaine täysin heijastavalle pinnalle isotrooppisessa säteilykentässä $(I(\Theta, \phi) = I)$ $\pi 2\pi$

$$P_{R} = \frac{I}{C} \iint_{\Theta} \cos^{2}\Theta \frac{\sin\Theta d\Theta d\Phi}{d\omega}$$
$$= \frac{2\pi I}{C} \int_{\Theta} -\frac{1}{3} \cos^{3}\Theta = \frac{2\pi}{3C} I \left[-(-1)^{3} + 1 \right]$$
$$= \frac{4\pi}{3C} I$$

Verrattaessa tätä säteilytiheyteen u = $\frac{4\pi}{c}$ I havaitaan, että

$$P_R = \frac{u}{3}$$

Määritellään lopuksi vielä pari funktiota, joita tullaan käyttämään säteilynkuljetusluvussa (Eddingtonin käyttämät merkinnät)

$$H_{\nu}(x) = \frac{a \int I_{\nu}(\theta) \cos \theta \, d\omega}{\int d\omega} = \frac{1}{4\pi} \mathcal{F}_{\nu}$$
$$K_{\nu}(x) = \frac{a \int I_{\nu}(\theta) \cos^{2} \theta \, d\omega}{\int d\omega} = \frac{c}{4\pi} P_{R}$$

Näitten hieman keinotekoisten suureitten avulla saadaan säteilyintensiteetille "matemaattisesti kauniita" cos0 - momentteja:

$$J_{\nu} = \frac{1}{4\pi} \int I_{\nu}(\Theta) d\omega$$

$$H_{\nu} = \frac{1}{4\pi} \int I_{\nu}(\Theta) \cos \Theta d\omega = \frac{1}{4\pi} \mathcal{F}_{\nu}$$

$$K_{\nu} = \frac{1}{4\pi} \int I_{\nu}(\Theta) \cos^{2}\Theta d\omega = \frac{C}{4\pi} \mathcal{P}_{R}$$

2.1.2. Mustan kappaleen säteily

Musta kappale määritellään kappaleeksi, joka absorboi (ja vastaavasti

Esimerkiksi säteily, joka tulee ulos pienen aukon omaavasta mustasta laatikosta vastaa melko hyvin mustan kappaleen säteilyä.

myös emittoi) kaiken siihen osuvan säteilyn.

a) Planckin säteilylaki

Max Planck havaitsi v. 1900, että mustan kappaleen säteilyintensiteetti riippuu yksinomaan säteilyn taajuudesta ja lämpötilasta (T=T_{bb}) :

PLANCKIN LAKI (v. 1900) (mustan kpl:een säteilyintensiteetti

Planckin vakio $h = 6.626 \cdot 10^{-27} \text{ erg} \cdot \text{s} = 6.626 \cdot 10^{-34} \text{ Js}$ Boltzmannin vakio $k = 1.380 \cdot 10^{-16} \text{ erg/K} = 1.380 \cdot 10^{-23} \text{ J/K}$

 $\begin{bmatrix} B_{\nu} \end{bmatrix} = \frac{\operatorname{erg} \cdot \mathbf{s} \cdot \mathbf{s}^{2}}{\mathbf{s}^{3} \cdot \mathbf{cm}^{2}} \cdot \frac{1}{\mathbf{s} \cdot \frac{1}{\mathbf{s}} \cdot \mathbf{sr}} = \frac{\operatorname{erg}}{\mathbf{s} \cdot \mathbf{cm}^{2} \cdot \mathbf{Hz} \cdot \mathbf{sr}} \quad \operatorname{tai} \frac{W}{\mathbf{m}^{2} \cdot \mathbf{Hz} \cdot \mathbf{sr}}$

- HUOM. 1. Kaiken säteilyn absorboivan ja emittoivan kappaleen säteilyintensiteettiä merkitään omalla symbolilla B, (B kuten <u>b</u>rightness tai <u>b</u>lack body), jotta se heti erottuisi ei-termisistä säteilyintensiteettilausekkeista.
 - 2. Mustan kappaleen <u>säteily ei riipu kappaleen materiaalista</u>. Jos esimerkiksi kahden eri mate-

riaalista tehdyn mustan kappaleen väliin pannaan suodatin, joka läpäisee vain taajuuden Y sekä oletetaan, että kappaleiden säteilyintensiteetit ovat erisuuret, mutta lämpötila sama, niin

taajuus-suodatin

I₁(𝒴) > I₂(𝒴) ⇒ energia siirtyisi kappaleesta 1 kappaleeseen 2 vaikka kappaleilla on sama lämpötila ⇒ ristiriita termodynamiikan II pääsäännön kanssa

Ts. <u>musta kappale säteilee samassa lämpötilassa</u> aina <u>samalla</u> intensiteetillä riippumatta kappaleen koostumuksesta. Johdetaan seuraavassa <u>Planckin laki aallonpituusyksiköissä</u>. Kokonaisintensiteetti oltava sama kummassakin tapauksessa:

$$I = \int_{0}^{\infty} B_{\nu} d\nu = \int_{0}^{\infty} B_{\lambda} d\lambda$$

$$\Rightarrow B_{\nu}(T) | d\nu | = B_{\lambda}(T) | d\lambda |$$

$$B_{\lambda}(T) = B_{\nu}(T) | \frac{d\nu}{d\lambda} |$$

$$V = \frac{c}{\lambda} \Rightarrow | \frac{d\nu}{d\lambda} | = \frac{c}{\lambda^{2}}$$

$$B_{\lambda}(T) = \frac{g_{h}\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/RT} - 1} \cdot \frac{c}{\lambda^{2}} = \frac{g_{h}c^{3}}{c^{2}} \cdot \frac{c}{\lambda^{2}} \cdot \frac{1}{e^{hc/\lambda RT} - 1}$$

$$B_{\lambda}(T) = \frac{g_{h}c^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda RT} - 1}$$

<u>HUOM</u>. $B_{\lambda} \neq B_{\nu}$

Tarkasteltaessa mustan kappaleen lähettämää suurtaajuista tai hyvin pienitaajuista säteilyä voidaan Planckin lakia approksimoida seuraavasti.

1) Wienin approksimaatio, kun hy/kT >> 1

UV-, röntgen- ja <u>v</u>-säteilyn</u> tapauksessa $B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - \mathcal{K}}$ $B_{\nu}(T) \approx \frac{2h\nu^3}{c^2} e^{-h\nu/kT}$

2) Rayleigh-Jeansin approksimaatio, kun hv/kT << 1

$$e^{h\nu/kT} = 1 \approx (1 + \frac{h\nu}{kT} + ...) - 1 = \frac{h\nu}{kT}, \text{ joten}$$

$$B_{\nu}(T) \approx \frac{2h\nu^{3}}{c^{2}} \cdot \frac{kT}{h\nu} = \frac{2\nu^{2}kT}{c^{2}}$$

$$B_{\nu}(T) \approx \frac{2kT}{\lambda^{2}}$$

Tämä approksimaatio pätee käytännöllisesti katsoen koko <u>radioalueella</u>. Esim. arvoilla λ = 1 m ja T = 1 K on virhe vasta noin 1 %. HUOM. Koska <u>radioalueella</u> säteilyn intensiteetti on verrannollinen lämpötilaan, käytetään radioastronomiassa yleensä <u>lämpötilaa</u> säteilyn <u>intensiteetin mittana</u>. Rayleigh-Jeans approksimaatio määrittelee ns. <u>kirkkauslämpötilan</u> T_b (brightness temperature):

KIRKKAUSLÄMPÖTILA

Mustalle kappaleelle $I_{y} = B_{y} = \frac{2kT}{2^{2}}$

 $T_{b,\nu} = \frac{\lambda^2}{2k} I_{\nu}$

 $T_{k,\nu} = \frac{\lambda^2}{2k} \cdot \frac{2kT}{\lambda^2} = T = mustan kpl:een lämpötila$

Myös silloin, kun kyseessä ei ole terminen, mustan kappaleen säteily, käytetään kirkkauslämpötilaa intensiteetin muodollisena mittana. Tällöin T_b vastaa sitä lämpötilaa, mikä mustalla kappaleella pitäisi olla, jotta sen säteilyn intensiteetti kyseisellä taajuudella olisi sama kuin havaittu, ei-termisen kohteen intensiteetti.

Fig. Planck-law radiation curves to logarithmic scales with brightness expressed as a function of frequency B(r) (left and bottom scales) and as a function of wavelength B_{λ} (right and top scales). Wavelength increases to the right.

Fig. The Rayleigh-Jeans-radiatio law curve coincides with the Planck-radi tion-law curve at long wavelengths, wh the Wien-radiation-law curve coincides wi the Planck curve at short wavelengths.

- 62 -

b) Wienin siirtymälaki

Wien havaitsi, että mustan kappaleen säteilyintensiteetin maksimi siirtyy lämpötilan kasvaessa kohti pienempiä aallonpituuksia siten, että

 $\lambda_{\text{max}} \cdot T = \text{vakio} = 0.289782 \text{ cm} \cdot K$

WIENIN SIIRTYMÄLAKI

missä λ_{\max} = Planckin funktion(B_{λ}) maksimikohdan aallonpituus

ESIM. 3K-taustasäteilyn $\lambda_{max} = \frac{0.29 \text{ cm} \cdot \text{K}}{3 \text{ K}} \approx 1 \text{ mm}$

<u>HUOM</u>. λ_{max} on nimenomaan B_{λ} -funktion maksimikohta: $\frac{dB_{\lambda}(T)}{d\lambda} = 0$ $\nu_{\text{max}} \neq \frac{c}{\lambda_{\text{max}}}$ koska $B_{\nu} \neq B_{\lambda}$ ν_{max} saadaan maksimoimalla funktio $B_{\nu} = \frac{c}{\nu^2} \cdot B_{\lambda}$ $\Rightarrow \nu_{\text{max}} = 5.8787 \cdot T \frac{H_{\Xi}}{\kappa}$

c) Stefan-Boltzmannin laki

Säteilyn kokonaisvuon tiheys on $\mathcal{R} = \int_{\mathcal{S}}^{\mathcal{S}} \mathcal{R}_{\mathcal{A}} d\mathcal{V}$ Mustan kappaleen isotrooppisessa säteilykentässä $\mathcal{R}_{\mathcal{A}}^{+} = \pi \cdot I_{\mathcal{V}}$ joten

$$\mathcal{F}_{out} = \pi \int_{B_v}^{\infty} B_v dv = 6 T_{eff}^{4}$$

STEFAN-BOLTZMANNIN LAKI eli mustan kappaleen kokonaisvuon tiheys

Stefan-Boltzmannin vakio
$$\mathcal{G} = \frac{2 \pi^5 k^4}{15 c^2 h^3}$$

 $\mathcal{G} = 5.6687 \times 10^{-5} \frac{\text{erg}}{\text{s} \cdot \text{cm}^2 \text{K}^4} = 5.6687 \times 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$

national appropriate of a matth with data prices transferrary grad to

California Trave And

Kokonaisvuon tiheys on siten verrannollinen lämpötilan 4. potenssiin. Stefan-Boltzmannin lain avulla määriteltyä lämpötilaa kutsutaan efektiiviseksi lämpötilaksi T_{eff}:

$$\mathcal{F}_{out} = \mathcal{E} T_{eff}^{4} \implies T_{eff} = \sqrt{\frac{\mathcal{F}_{out}}{\mathcal{E}}}$$

HARJ.TEHT. Johda Planckin laista lähtien Stefan-Boltzmannin laki sekä Wienin siirtymälaki.

d) Mustan kappaleen säteilytiheys

Isotrooppisessa säteilykentässä on säteilyn energiatiheys

$$u_{\gamma} = \frac{1}{c} \int_{\Omega} I_{\gamma} d\omega = \frac{I_{\gamma}}{c} \int_{\Omega} d\omega = \frac{4\pi}{c} I_{\gamma}$$

Mustan kappaleen monokromaattinen energiatiheys on siten

$$u_{\nu} = \frac{4\pi}{c} \cdot B_{\nu}(\tau) = \frac{8\pi h \nu^{3}}{c^{3}} \frac{1}{e^{h\nu/k\tau} - 1}$$

MONOKROMAATTISEN SÄTEILYN ENERGIATIHEYS

 $[u_{y}] = \frac{e_{ray}}{cm^{3} \cdot HZ} ; \frac{1}{m^{3} \cdot HZ}$

Integroitaessa yli kaikkien taajuuksien sekä huomioimalla Stefan-Boltzmannin laki saadaan

$$u = \int_{0}^{\infty} u_{\nu} d\nu = \frac{4\pi}{c} \int_{0}^{\infty} B_{\nu} (\tau) d\nu = \frac{4}{c} \cdot \leq \tau^{4}$$

$$u(\tau) = a \tau_{eff}^{4}$$
MUSTAN KAPPALEEN SÄTEILYTIHEYS

vakio
$$a = \frac{46}{c} = 7.5634 \cdot 10^{-15} \frac{\text{erg}}{\text{cm}^3 \cdot \text{K}^4} = 7.5634 \cdot 10^{-16} \frac{\text{J}}{\text{m}^3 \cdot \text{K}^4}$$

ESIM. Määritä säteilypaine Auringon atmosfäärissä (T = 5700 K), kun oletetaan, että Aurinko on isotrooppisen säteilykentän omaava musta kappale.

- 64 -

$$P_{R} = \frac{u}{3} = \frac{1}{3} aT^{4}$$

$$P_{R} = \frac{1}{3} \times 7.5634 \times 10^{-15} \times 5700^{7} \frac{erg}{cm^{3}} = 2.65 \frac{dyn \cdot cm}{cm^{3}}$$

$$P_{R} = 2.65 \frac{dyn}{cm^{2}}$$

Auringon atmosfäärissä on kaasunpaine P_{gas} $\approx 80\,000 \frac{dyn}{cm^2}$, joten säteilypaineella ei merkitystä Auringon atmosfäärissä. (Sen sijaan Auringon keskustassa, jossa T $\approx 15 \cdot 10^6$ K on P_R = 1.18 \cdot 10¹⁴ dyn cm⁻²)

ESIM. Säteilypaine ylijättiläisen atmosfäärissä, jossa T = 10000 K.

$$P_{\rm R} = \frac{1}{3} \, {\rm aT}^4 = 25 \, {\rm dyn \, cm}^{-2}$$

Koska kaasunpaine P \approx 100 dyn cm⁻² on säteilypaine huomioitava ylijättiläisten atmosfääreissä.

2.1.3 Säteilyn emissio- ja absorptiokerroin

a) Säteilyn emissiokerroin

Tähden tilavuusalkion dV avaruuskulmaan d ω säteilemä energia taajuusvälissä $(\nu, \nu + d\nu)$ on verrannollinen alkion massaan dm = ξ dV.

Tämä määrittelee verrannollisuuskertoimen $\dot{\chi}_{\nu}$, jota kutsutaan emissiokertoimeksi

$$\begin{bmatrix}
\frac{1}{2}\nu = \frac{1}{4\pi} \frac{dE_{\nu}}{dt d\nu dm} \\
\begin{bmatrix}
\frac{1}{2}\nu
\end{bmatrix} = \frac{erg}{s Hz g} = \frac{erg}{g} ; \frac{J}{g}$$
EMISSIOKERROIN
(massayksikköä kohti)

<u>HUOM</u>. Keskimääräinen intensiteetti: $J_{\nu} = \frac{1}{4\pi} \quad \S_{\mu} \quad J_{\nu} \quad d\omega$ $\Rightarrow dJ_{\nu} = \frac{1}{4\pi} \quad I_{\nu} \quad d\omega = \frac{1}{4\pi} \quad \frac{dE_{\nu} \quad d\omega}{dt \quad d\nu \quad dA_{\mu} \quad d\omega}$ $= \frac{1}{4\pi} \quad \frac{dE_{\nu}}{dt \quad d\nu} \quad \frac{dE_{\nu}}{dA_{\mu} \quad dx} \quad \frac{dE_{\nu}}{dm}$ $dJ_{\nu} = \frac{1}{3} \quad S \quad dx$

b) Säteilyn absorptiokertoimet ja optinen syvyys

Käytetään seuraavia merkintöjä:

$$\begin{array}{l} \swarrow & \mathcal{V} &= \text{ yhden atomin absorptiokerroin} \\ \hline \begin{bmatrix} \boldsymbol{\alpha}_{\mathcal{V}} \end{bmatrix} &= & \mathrm{cm}^{2} \\ \hline \underline{\mathrm{HUOM}}. & \mathrm{Atomin ns. \ efektiivinen \ pinta-ala \ (vaikutusala)} &= \int_{0}^{\infty} \boldsymbol{\alpha}_{\mathcal{V}} \ d\mathcal{V} &= \ \overline{m_{e} \cdot c} \\ \hline \underline{\mathrm{K}}_{\mathcal{V}} &= & \mathrm{tilavuusabsorptiokerroin} \end{array}$$

$$\begin{array}{l} (\mathrm{kts. \ luku \ 2.5.2.e}) \end{array}$$

 $\kappa_{\nu} = N \alpha_{\nu}$, missä N = taajuudella ν absorboivien hiukkasten lukumäärä kuutiosenttimetrissä

$$\left[\kappa\right] = \frac{\mathrm{cm}^2}{\mathrm{cm}^3} = \frac{1}{\mathrm{cm}}$$

 $\kappa_{m{
u}}$ riippuu materian kemiallisesta koostumuksesta, säteilyn taajuudesta, paineesta ja lämpötilasta.

 $k_{y} = \frac{\kappa_{y}}{s} , \text{ missä } g = \text{absorboivan väliaineen tiheys}$ $\left[k_{y}\right] = \frac{1}{cm} : \frac{g}{cm^{3}} = \frac{cm^{2}}{g}$

k, kuvaa siten säteilyn absorptiovaikutusta väliaineen yhtä grammaa kohti.

....

Absorption johdosta pienenee intensiteetti säteilyn kulkiessa väliaineen läpi:

$$dI_{\nu} = -\kappa_{\nu}dXI_{\nu} \implies \kappa_{\nu} = -\frac{dI_{\nu}/I_{\nu}}{dX}$$

Tilavuusabsorptiokerroin ilmoittaa täten intensiteetin suhteellisen vähenemisen matkalla dx

Käytettäessä massa-absorptiokerrointa k $_{\mathbf{y}}$ on

$$dI_{y} = -SR_{y} dx I_{y}$$

$$\frac{dI_{y}}{I_{y}} = -SR_{y} dx \left| \int \right|$$

$$ln \frac{I_{y}}{I_{oy}} = -\int_{o}^{x} S(x')R_{y}(x') dx'$$

$$I_{y}(x) = I_{oy} e^{-\int_{o}^{x} S(x')R_{y}(x')dx'}$$

Määritellään väliaineen optinen syvyys :

$$T_{\nu}(x) = \int_{x}^{x} g(x^{2}) k_{\nu}(x^{2}) dx^{2}$$

Tiheyden ja massa-absorptiokertoimen ollessa vakioita on $\Upsilon_{\nu}(x) = \Im k_{\nu} \chi$

 $\Rightarrow I_{\nu}(x) = I_{\nu} e^{-\gamma_{\nu}(x)}$

ESIM. Kun
$$\gamma_{\nu} = 1 \implies I_{\nu} = \frac{1}{e} I_{o\nu}$$
 ts. intensiteetti pienentynyt osaan
 $\frac{1}{e} = 0.37$

Optinen syvyys kuvaa väliaineen "läpinäkyvyyttä". Mitä suurempi γ , sitä suurempi ekstinktio (ts. absorptio ja sironta) kyseisessä väliaineessa eli sitä huonompi "läpinäkyvyys".

c) Säteilypaine osittain absorboivassa väliaineessa

Säteilypaineen aiheuttaman mekaanisen voiman suuruus riippuu siitä, kuinka suuri osa säteilystä absorboituu tarkastelukohteeseen. Jos kaikki säteily absorboituu tarkastelukohteeseen, on paine P yhtäsuuri kuin mustan kappaleen säteilypaine (kts. luku 2.1.1.e) :

$$P = P_R = \frac{1}{c} \int I(\theta, \phi) \cos^2 \theta \, d\omega$$

Mutta, jos tarkasteltavaan massa-alkioon absorboituu vain osa säteilystä, on tietystä suunnasta Θ tulevan säteilyn synnyttämä paine

$$d\mathcal{P}_{\nu}(\Theta) = \frac{1}{c} I_{\nu}(\Theta, \phi) \cos^{2}\Theta d\omega d\nu d\gamma, , \text{ missä optinen syvyys } d\gamma,$$
kuvaa absorption osuutta

Tasapaksulle levymäiselle massa-alkiolle on optinen syvyys

Levymäisessä väliainekerroksessa on suunnasta Θ tulevan säteilyn synnyttämä paine siten

$$dP_{y}(\theta) = \frac{gk_{y}dx}{c} I_{y}(\theta, \phi) \cos \theta d\omega dy$$

Huomioimalla kaikista suunnista saapuvaa säteilyä saadaan

$$dP_{y} = \frac{g k_{y} dx dy}{c} \int I_{y}(\theta, \phi) \cos \theta d\omega = \frac{g dx}{c} k_{y} \tilde{r}_{y} dy$$

$$\tilde{r}_{y}$$

Integroimalla yli säteilyn kaikkien taajuuksien saadaan

1

$$dP = \frac{s k dx}{c} \mathcal{P}$$

SÄTEILYPAINE OSITTAIN ABSORBOIVASSA VÄLIAINEKERROKSESSA

Tarkastelukohteeseen vaikuttava mekaaninen voima on siten

$$F_{R} = P \cdot A = \frac{S \times A \Delta X}{c} \mathcal{R}$$

$$F_{R} = n \frac{m k \mathcal{R}}{c}$$
m:

$$V = A \cdot \Delta x$$
$$S = \frac{n m}{V}$$

missä n = hiukkasten lukumäärä tilavuusalkiossa V m = yhden hiukkasen massa

Voima yhtä hiukkasta kohden on täten

MASSAHIUKKASEEN m VAIKUTTAVA VOIMA

Säteilypaineen ansiosta saa massahiukkanen m kiihtyvyyden

$$a_R = \frac{F_R}{nm}$$

$$a_R = \frac{\overline{k} \cdot \overline{r}}{c}$$

SÄTEILYPAINEESTA JOHTUVA HIUKKASEN KIIHTYVYYS ESIM. AO-luokan tähden atmosfäärissä on

T = 10 000 K

$$\overline{k} = 27$$

 $\overline{\tau} = 6 \overline{\tau}^{4} = 5.67 \cdot 10^{11} \frac{\text{erg}}{\text{s} \cdot \text{cm}^{2}} = 5.67 \cdot 10^{8} \frac{\text{W}}{\text{m}^{2}}$

Säteilypaineen gradientti on tällöin

$$\frac{dP}{dx} = \frac{g \cdot \overline{k} \cdot \mathcal{P}}{c} = \frac{g \overline{k} \cdot g T^4}{c} = 2 \times 10^4 \times g \frac{dyn}{cm^3} = 2 \times 10^5 \times g \frac{N}{m^3}$$

ja hiukkasen saama kiihtyvyys

$$a_{R} = \frac{k \cdot 2}{c} = 510 \frac{cm}{s^{2}} = 5.1 \frac{m}{s^{2}} \quad (vrt. havaittuun aurinkotuulen efektiin a $\approx 1 \frac{m}{s^{2}}$)$$

d) Kirchhoffin laki

Säteilyintensiteetin nettomuutos tähden atmosfäärissä syvyydessä x olevassa tilavuusalkiossa on

dI, = emittoitunut keskimäär. intensiteetti – | absorboitunut intensiteetti
dJ, =
$$\frac{4}{4\pi}$$
 I, d ω
= $3\frac{1}{3}$, dx (kts. a-kohtaa)
 F_{y} dx I, (kts. b-kohtaa)

 $d I_y = Sj_y dx - Sk_y dx \cdot I_y$

<u>Mikäli</u> kohteen emittoima <u>säteily riippuu vain lämpötilasta on</u> $I_{y} = B_{y}(T) = Planckin funktio. Tällöin intensiteetin <u>nettomuutos dI_{y} = 0</u>$ Jos esimerkiksi tarkasteltava tilavuusalkio pantaisiin mustan kappaleen $sisälle, olisi saapuvan säteilyn intensiteetti <math>I_{y} = B_{y}(T)$. Ko. tilavuusalkio asettuisi silloin myös lämpötilaan T ja sen emittoima säteily olisi myöskin mustan kappaleen säteilyä.

- 70 -

2.2 SÄTEILYNKULJETUS

2.2.1 Yleistä

Fotonien liikkuessa väliaineessa tapahtuu törmäyksiä väliaineatomien kanssa. Näissä vuorovaikutusprosesseissa fotoni voi vastaanottaa energiaa sekä jälleen luovuttaa sen väliaineelle takaisin myöhemmissä törmäyksissä. Energian kuljetus säteilyn avulla perustuu siihen, että tähden kuumemmassa osassa emittoituneet fotonit absorboituvat kylmemmässä osassa siirtäen näin energiaa ulospäin. Esimerkiksi Auringon keskustassa syntynyt energiapulssi tarvitsee keskimäärin noin 10⁶ vuotta, ennen kuin se fotonien ja kaasuatomien satunnaisten törmäysprosessien välityksellä kulkeutuu Auringon pinnalle.

(v. 1860)

Vuonna 1906 Karl Schwarzschild osoitti, että Auringon fotosfäärissä <u>ener-</u> <u>gia siirtyy säteilyn avulla</u>. Hänen stationääristen säteilykenttien teoriansa kuuluu tähtien teorian peruspilareihin.

Energia voi siirtyä paitsi säteilyn avulla myös konvektiolla (massavirtausten avulla) sekä johtumalla. Lämmön johtuminen on merkityksetön tavallisissa tähdissä, valkoisissa kääpiöissä sen sijaan se on tärkeä. Vuonna 1930 Unsöld esitti Auringon <u>konvektiokerroksen</u> olemassaolon. Auringon energiankuljetuksen rakennemalli oli tällöin seuraava:

säteilynkuljetus
konvektio
säteilynkuljetus

Auringon havaittu säteily on peräisin Auringon eri pintakerroksista. Se, mitenkä syvältä säteily on peräisin, riippuu ylempien kerrosten absorptioominaisuuksista – eri kerroksilla on nimittäin erilainen lämpötila, emissio- ja absorptiokerroin.

- 71 -

Toisentyyppinen säteilynkuljetusprobleema esiintyy tähtienvälisessä pilvessä, jossa on huomioitava pilven oma emissio sekä pilven takaa tulevan säteilyn heikentyminen. Lisäksi osa pilvessä syntyneestä säteilystä ehtii absorboitua pilveen ennen kuin se saapuu havaitsijalle.

Säteilynkuljetuksen probleema voidaan lyhimmässä muodossa formuloida seuraavasti:

$\left(\frac{dN}{dt}\right)_{kulj.} = \left(\frac{dN}{dt}\right)_{t \text{ orm.}}$, missä N = fotonien siavaruu
$\frac{\partial N}{\partial t} + \frac{\partial N}{\partial \overline{t}} + \frac{\partial N}{\partial \overline{t}} + \frac{\partial N}{\partial \overline{k}} = \left(\frac{dN}{dt}\right)_{\text{torm.}}$	k = aaltolu

nissä N = fotonien lukumäärä faasiavaruuden alkiossa (d³r d³k)

= aaltoluku = $\frac{2\pi}{\lambda}$ ($\tilde{P} = \pi \bar{k}$)

Säteilynkuljetusprobleeman yleinen ratkaisu johtaa "hankaliin" differentiaali-integraaliyhtälöihin. Sopivilla fysikaalisilla approksimaatioilla ratkeaa probleema matemaattisesti yksinkertaisellakin tavalla. Käytännössä nämä likimääräiset ratkaisumenetelmät ovat osoittautuneet optimaalisiksi tarkkuuden suhteen tähtitieteen tietyissä tarkastelukohteissa. Astrofysiikan peruskurssilla tutustutaan vain säteilynkuljetusyhtälön approksimatiivisiin ratkaisumenetelmiin.

2.2.2 Säteilynkuljetusyhtälö

Tarkastellaan tähden atmosfäärissä syvyydessä x olevaan sylinterimäiseen tilavuusalkioon ($dV = dA \cdot ds$) saapuvaa säteilyä sekä tästä tilavuusalkiosta avaruuskulmaan d ω emittoituvaa säteilyä, jonka taajuus on välissä (\mathcal{V} , \mathcal{V} + $d\mathcal{V}$).

 $\cos\Theta \frac{dI_{\nu}(\tau_{\nu,\Theta,\nu})}{d\tau} = I_{\nu}(\tau_{\nu,\Theta,\nu}) - S_{\nu}(\tau_{\nu,\nu})$

SÄTEILYNKULJETUS-YHTÄLÖ

Lähdefunktion muoto riippuu tarkastelupisteessä vallitsevista fysikaalisista olosuhteista. Seuraavassa eräitä tärkeitä rajatapauksia.

 a) <u>Oletetaan puhdas absorptio ja paikallinen termodynaaminen tasa-paino</u> (LTE = local thermodynamic equilibrium, kts. luku 2.3.10) Riippumatta saapuvasta säteilystä ja absorptiotavasta emittoituu säteily aina ympäristönsä vastaavassa lämpötilassa Planckin funktion mukaisesti. Tällöin pätee Kirchhoffin laki:

$$S_{\nu} = \frac{\frac{1}{k_{\nu}}}{k_{\nu}} = B_{\nu} = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\frac{e^{h\nu/kT}}{1}}$$

$$S_{\nu} = B_{\nu}$$
PLANCKIN FUNKTIO

b) Oletetaan pelkkä sironta tai monokromaattinen säteilytasapaino

Koherentissa sironnassa emittoituu jokainen kvantti välittömästi samalla taajuudella, jolla se absorboituu. Sironta riippuu siten saapuvasta säteilystä.

Lähdefunktio on tällöin = saapuvan säteilyn keskimääräinen intensiteetti (keskiarvo otettu yli kaikkien suuntien)

missä <u>vaihefunktio $p(\cos \chi)$ </u> on todennäköisyys, jolla säteily emittoituu suuntaan χ . Normeeraus: $\frac{1}{4\pi} \oint p(\cos \chi) d\omega = 1$ Esim. Isotrooppisessa sironnassa $p(\cos \chi)=1$ Rayleigh-sironnassa $p(\cos \chi)=\frac{3}{4}(1+\cos^2 \chi)$

HUOM. 1 Kun tämä lähdefunktio sijoitetaan säteilynkuljetusyhtälöön, saadaan integraali-differentiaaliyhtälö (ns. Milnen integraaliyhtälö)

sironta

10,¢

kulma

(koko≪λ)

- <u>HUOM. 2</u> Kun atmosfäärissä tapahtuu yksinomaan sirontaa käytetään absorptiokeroimen k, asemasta <u>sirontakerrointa</u>, jolloin d $\gamma_{\nu} = -\delta_{\nu} \cdot \Im \cdot \Im \cdot \Im$. Elektronisironnassa $\delta_{\nu} = \delta$.
- <u>HUOM. 3</u> Sironta tärkeä planeettojen atmosfääreissä sekä tähtienvälisessä pölyssä. Tähtien atmosfääreissä on sironta elektroneista huomioitava vain kuumimmissa tähdissä sekä tietyissä ylijättiläisissä.

sironta : p(cosy)=1

KUVA : Vaihefunktion p(cos χ) muoto erityyppisissä sironnoissa.

(koko $\approx \lambda$)

c) Oletetaan, että atmosfäärissä tapahtuu sekä absorptiota että sirontaa

- 76 -

Tällöin

Olettamalla isotrooppinen sironta ja huomioimalla $d\Upsilon_{y} = -(k_{y} + \delta_{y})\Im d\chi$ saadaan

$$dI_{y} = -(k_{y} + \delta_{y}) gds I_{y} + k_{y} gds B_{y} + \delta_{y} gds J_{y} = -(k_{y} + \delta_{y}) gds I_{y} + k_{y} gds B_{y} + \delta_{y} gds J_{y} = -(k_{y} + \delta_{y}) gds I_{y} + k_{y} gds B_{y} + \delta_{y} gds J_{y}$$

$$\cos\theta \frac{dI_{\nu}}{dT_{\nu}} = I_{\nu} - \left(\frac{k_{\nu}}{k_{\nu} + \epsilon_{\nu}} \cdot B_{\nu} + \frac{\epsilon_{\nu}}{k_{\nu} + \epsilon_{\nu}} \cdot \overline{\beta_{\nu}}\right)$$

Merkitsemällä $\Im_{o} = \frac{\delta_{v}}{k_{v} + \epsilon_{v}} = \frac{\text{sirontakerroin}}{\text{ekstinktiokerroin}} = 'single scattering albedo'$

jolloin 1 - $\widetilde{\omega}_{i}$ ilmoittaa todellisen absorption osuuden,

saadaan säteilynkuljetusyhtälön lähdefunktion lausekkeeksi :

830939 1007391

$$S_{\nu} = \frac{k_{\nu}}{k_{\nu} + 6_{\nu}} B_{\nu} + \frac{6_{\nu}}{k_{\nu} + 6_{\nu}} J_{\nu}$$
$$S_{\nu} = (1 - \widetilde{\omega}_{o}) B_{\nu} + \widetilde{\omega}_{o} J_{\nu}$$

2.2.4 Sateilytasapaino

Mikäli energiankuljetus tähdessä tapahtuu yksinomaan säteilyn avulla (ts. konvektiota ei esiinny), vallitsee säteilytasapaino. Energiaperiaatteen mukaisesti on tähdessä tällöin säteilyn kokonaistehon pysyttävä vakiona, ts. säteilyn kokonaisintensiteetin nettomuutoksen on oltava = 0 tarkasteltavassa tilavuusalkiossa, jossa itsessään ei oleteta syntyvän ydinenergiaa. Säteilynkuljetusyhtälö ilmoittaa säteilyintensiteetin nettomuutoksen ds-pituisessa sylinterimäisessä tilavuusalkiossa:

$dI_{y} = j_{y}sds - k_{y}sds I_{y}$

Integroimalla yli kaikkien suuntien ja taajuuksien saadaan säteilyn kokonaisintensiteetin muutos dI_{tot} . Säteilytasapainossa on siis $dI_{tot} = 0$

$$O = ds \cdot s \oint j_{\nu} \frac{d\omega}{4\pi} d\nu - ds \cdot s \oint j_{k_{\nu}} I_{\nu} \frac{d\omega}{4\pi} d\nu = s ds$$

$$\Rightarrow \int (k_{\nu}) \frac{d\nu}{k_{\nu}} d\nu = \int k_{\nu} J_{\nu} d\nu$$

$$\int (k_{\nu}) \frac{d\nu}{k_{\nu}} d\nu = \int (k_{\nu}) J_{\nu} d\nu$$

Harmaassa atmosfäärissä :
$$k \int S_{\nu} d\nu = k \int J_{\nu} d\nu \Leftrightarrow S = J$$

(k, =k)

- HUOM. 1 Kun säteilysuureesta jätetään alaindeksi V pois, tarkoittaa se, että ko. säteilysuure on integroitu yli kaikkien taajuuksien.
- <u>HUOM. 2</u> Tietyllä taajuudella γ ei yleensä päde: $ds \cdot j_{\nu}s = ds k_{\nu}s \, S I_{\nu} \frac{d\omega}{4\pi}$ Tällöin nimittäin ei olisi säteilygradienttia tilavuusalkion päiden välissä, ja mitään säteilynkuljetusta ei tapahtuisi.

<u>Säteilytasapainon seurauksena pysyy</u> tasomaisessa atmosfäärissä säteilyn <u>kokonaisvuon tiheys $\stackrel{\text{r}}{}$ vakiona</u>. (Pallogeometrisisssa tilanteissa L_r=4 π r². $\stackrel{\text{r}}{}$ = vakio, olettaen, että pallokuoressa ei ole säteilylähteitä).

19/2

Fig. The intensities I_1 and I_2 increase with depth while maintaining a constant difference 4H.

- 79 -

a) Säteilynkuljetusyhtälön intensiteettilauseke

Säteilynkuljetusyhtälö kirjoitetaan yleensä differentiaaliyhtälön muotoon, mutta se voidaan esittää myös integraalina.

SÄTEILYNKULJETUSYHTÄLÖN INTENSITEETTILAUSEKE

Tarkasteltaessa tilannetta tähden pinnalla, jossa $\Upsilon_{\nu} = 0$, saadaan säteilyintensiteetin lausekkeeksi :

$$I_{\nu}(0,\theta) = \int_{0}^{\infty} S_{\nu}(\tau, t) e^{-\tau_{\nu}^{t} \sec \theta} \sec \theta d\tau_{\nu}^{t}$$

INTENSITEETTI TÄHDEN PINNALLA

Äskeinen yhtälö voidaan 'johtaa'myös suoraan oheisen kuvan avulla

Optisessa syvyydessä γ olevan $d\gamma$ paksuisen tilavuusalkion emissio on

 $S_{\nu}(\tau_{\nu}) \cdot \underbrace{d\tau_{\nu} \sec \Theta}_{\text{optinen matka-alkio suunnassa}} \Theta$ -ૠœ⊖ Tämä emissio heikentyy tekijällä e säteilyn kulkiessa kohti tähden pintaa. Integrointi yli koko kuljetun matkan antaa edellä esitetyn yhtälön $I_{\nu}(0,\Theta)$

Erikoistapauksia :

1) Näkösäde
$$\perp$$
 kohteen pinta ($\Theta = 0$)
 $\Rightarrow I(0,0) = \int_{0}^{\infty} S_{\mu}(\tau_{\mu}) e^{-\tau_{\mu}^{2}} d\tau_{\mu}^{2}$

2) Lähdefunktio S, ei riipu optisesta syvyydestä T,

$$\Rightarrow I(0,0) = 5_{\nu} \int_{0}^{\infty} e^{-\tau_{\nu}} d\tau_{\nu}^{\lambda}$$
$$I(0,0) = 5_{\nu} (1 - e^{-\tau_{\nu}})$$

Kun $\Upsilon_{y} >> 1$: $I_{y}(0,0) \approx S_{y}$ Kun $\Upsilon_{y} << 1$: $I_{y}(0,0) \approx S_{y} [1 - (1 - \Upsilon_{y} + ...)]$ $I(0,0) \approx S_{\nu} \cdot \gamma_{\nu}$

<u>HUOM</u>. Kun $\gamma \rightarrow 0$, niin myös $I_{\gamma} \rightarrow 0$

Täten esimerkiksi koronan korkea lämpötila ei juuri lainkaan lisää säteilyn intensiteettiä.

Edellisellä sivulla esitetyn säteilynkuljetusyhtälön intensiteettilausekkeen avulla voidaan selvittää lähdefunktion riippuvuus optisesta syvyydestä sekä kytkeä se havaitun Ι_ν(0, Θ) intensiteetin Θ-riippuvuuteen (kts. luku 2.2.6.b : Auringon reunatummumisilmiö) sekä emissio- ja absorptiokertoimien väliseen yhteyteen.

b) Suureitten 🌤, ja J, yhteys säteilynkuljetusyhtälöön

Säteilynkuljetusyhtälön mukaisesti on intensiteetti tähden pinnalla

$$I_{v}(0,\theta) = \int_{0}^{\infty} S_{v}(\tau_{v}) e^{-\tau_{v}^{*} \sec \theta} \sec \theta d\tau_{v}^{*}$$

Kun tämä sijoitetaan pinnasta ulos tulevan säteilyvuon tiheyden lausekkeeseen, saadaan دىم

$$\mathcal{F}_{jout}(0) = \int_{\omega} I_{j}(0,\Theta) \cos \Theta d\omega = \int_{\omega} \int_{$$

huom. avaruuskulma integroidaan yli puolipallon ($0 \in \Theta \leq \frac{\pi}{2}$)

MUKAINEN VUONTIHEYS TÄHDEN PINNALLA

Kun lähdefunktio S, tunnetaan optisen syvyyden funktiona, voidaan integrointi suorittaa. Olettamalla, että tähden atmosfäärissä vallitsee paikallinen termodynaaminen tasapaino, voidaan $S_{\lambda}(\gamma_{\lambda})$ korvata Planckin funktiolla B, (T). Jotta yo. integrointi voitaisiin suorittaa, on tällöin tunnettava T = T(γ_{y}). Mikäli myös sirontaprosessit on huomioitava, on lämpötilariippuvuuden T(γ) lisäksi tunnettava sironta- ja ekstinktiokeroimien suhde $\widetilde{\omega}_{p} = \frac{\varepsilon_{y}}{k_{..} + \epsilon}$. sekä vaihefunktio $p(\cos \gamma)$.

Ratkaisutien idea esitetty seuraavassa kaaviokuvassa ja siihen palataan vielä luvussa 2.4 (tähtien atmosfäärimallien laskeminen).

$$I_{\nu}^{+}(\Upsilon_{\nu},\Theta) = \int_{\Upsilon_{\nu}}^{\infty} S_{\nu}(\Upsilon_{\nu}^{\prime}) e^{-(\Upsilon_{\nu}^{\prime}-\Upsilon_{\nu})\sec\Theta} \frac{1}{\sec\Theta d\Upsilon_{\nu}^{\prime}} \qquad (\text{huom.} \Upsilon_{\nu}^{\prime} > \Upsilon_{\nu})$$

Ylemmistä kerroksista alaspäin etenevän säteilyn intensiteetti tarkastelupisteessä P on

$$I_{\nu}^{\tau}(\tau_{\nu},\Theta) = - \int_{0}^{\tau_{\nu}} S_{\nu}(\tau_{\nu}') e^{-(\tau_{\nu} - \tau_{\nu}') \sec \Theta} \operatorname{sec} \Theta A\tau_{\nu}' \quad (huom. \tau_{\nu}' < \tau_{\nu})$$
jotta saataisiin posit. lauseke (cos $\Theta < 0$)

Keskimääräinen intensiteetti :

$$\begin{aligned} \mathcal{J}_{\nu}(\tau_{\nu}) &= \frac{1}{4\pi} \oint \mathbb{I}_{\nu}(\theta, \tau_{\nu}) \underbrace{d\omega}_{\text{sin}\Theta \, d\Theta \, d\phi} &= \frac{\mathbb{I}_{\nu}^{+} + \mathbb{I}_{\nu}}{2} \\ \mathcal{J}_{\nu}(\tau_{\nu}) &= \frac{2\pi}{4\pi} \int_{0}^{\pi/2} \mathbb{I}_{\nu}^{+} \sin \Theta \, d\Theta \, + \, \frac{2\pi}{4\pi} \int_{\pi/2}^{\pi} \mathbb{I}_{\nu}^{-} \sin \Theta \, d\Theta \\ \text{ylöspäin suuntautuva} & \text{alaspäin suuntautuva} \\ \text{säteily: integroitava} & \text{säteily: integroitava} \\ \text{ylemmän puolipallon yli} & \text{alemman puolipallon yli} \end{aligned}$$

Sijoittamalla tähän säteilynkuljetusyhtälön mukaiset lausekkeet I^+_{ν} ja I^-_{ν} saadaan

$$J_{\nu}(\tau_{\nu}) = \frac{1}{2} \int_{\tau_{\nu}}^{\infty} S_{\nu}(\tau_{\nu}) d\tau_{\nu} \int_{\Theta}^{\pi/2} \frac{\tau_{\nu} - \tau_{\nu}}{\cos \Theta} \frac{\sin \Theta}{\cos \Theta} d\Theta - \frac{1}{2} \int_{\Theta}^{\tau_{\nu}} S_{\nu}(\tau_{\nu}) d\tau_{\nu} \int_{\Theta}^{\pi} \frac{\tau_{\nu} - \tau_{\nu}}{\cos \Theta} \frac{\sin \Theta}{\cos \Theta} d\Theta$$

Merkitään 1. termissä $y = \frac{1}{\cos \Theta} \Rightarrow dy = -\frac{(-\sin \Theta)}{\cos^2 \Theta} d\Theta \Rightarrow \sin \Theta d\Theta = \frac{dy}{y^2}$ 2. termissä $y = -\frac{1}{\sqrt{\cos \Theta}} \Rightarrow dy = -\frac{\sin \Theta}{\cos^2 \Theta} d\Theta \Rightarrow \sin \Theta d\Theta = -\frac{dy}{y^2}$

integraalieksponettifkt:n argumentin oltava positiivinen

$$J_{\mu}(T_{\nu}) = \frac{1}{2} \int_{T_{\nu}}^{\infty} S_{\mu}(T_{\nu}^{\nu}) dT_{\nu}^{\nu} \int_{1}^{\infty} \frac{e^{-(T_{\nu}^{\nu} - T_{\nu})y}}{y} dy - \frac{1}{2} \int_{0}^{\infty} S_{\mu}(T_{\nu}^{\nu}) dT_{\nu}^{\nu} \int_{0}^{\infty} \frac{e^{-(T_{\nu}^{\nu} - T_{\nu}^{\nu})(-y)}}{y^{2}} (-y)(-dy)$$

Jotta viimeinen integraali olisi integraalieksponenttifunktion E, muotoinen, on integroimisrajat. vaihdettava keskenään

$$\begin{aligned}
\int_{\mathcal{V}} (\tau_{\nu}) &= \frac{1}{2} \int_{\mathcal{V}}^{\infty} S_{\nu} (\tau_{\nu}) d\tau_{\nu} \int_{1}^{\infty} \frac{e^{-(\tau_{\nu}) - \tau_{\nu}) y}}{y} dy + \frac{1}{2} \int_{0}^{\infty} S_{\nu} (\tau_{\nu}) d\tau_{\nu} \int_{1}^{\infty} \frac{e^{-(\tau_{\nu}) - \tau_{\nu}) y}}{y} dy \\
\end{bmatrix}$$
SÄTE ILYNKULJETUSYHTÄLÖN
MUKAINEN KESKIM. INTENSITEETTI

Integrointia varten on jälleen tunnettava lähdefunktio S (γ). Kun termodynaamisessa tasapainossa olevassa atmosfäärissä säteily sekä absorboituu että sirottuu, on lähdefunktio

$$S_{\nu}(\tau_{\nu}^{\prime}) = \frac{k_{\nu}}{k_{\nu} + \epsilon_{\nu}} B_{\nu}(\tau_{\nu}^{\prime}) + \frac{\epsilon_{\nu}}{k_{\nu} + \epsilon_{\nu}} J_{\nu}(\tau_{\nu}^{\prime})$$

$$= (1 - \omega_{o}) B_{\nu}(\tau_{\nu}^{\prime}) + \omega_{o} J_{\nu}(\tau_{\nu}^{\prime})$$

$$S_{\nu}(\tau_{\nu}^{\prime}) = (1 - \omega_{o}) B_{\nu}(\tau_{\nu}^{\prime}) + \frac{\omega_{o}}{2} \int_{0}^{\infty} S_{\nu}(\tau_{\nu}^{\prime}) \cdot E_{1}(\tau_{\nu}^{\prime} - \tau_{\nu}) d\tau_{\nu}^{\prime}$$

Tämä integraaliyhtälö voidaan ratkaista, kun \mathfrak{S}_{o} , \mathbf{E}_{1} ja $\mathbf{B}_{v}(\boldsymbol{\gamma}')$ (eli T = T($\boldsymbol{\gamma}'$)) tunnetaan.

HARJ.TEHT. Osoita, että tähden atmosfäärissä (optinen syvyys 🍡) säteilyvuon tiheys on

$$\mathcal{F}_{\mathcal{F}}(\mathcal{T}_{\mathcal{F}}) = \mathfrak{A}\pi \int_{\mathcal{T}_{\mathcal{F}}}^{\infty} (\mathcal{T}_{\mathcal{F}}') \cdot \mathsf{E}_{\mathfrak{g}}(\mathcal{T}_{\mathcal{F}}' - \mathcal{T}_{\mathcal{F}}') \mathfrak{d}\mathcal{T}_{\mathcal{F}}' - \mathfrak{I}\pi \int_{\mathcal{F}}^{\mathcal{T}_{\mathcal{F}}} (\mathcal{T}_{\mathcal{F}}') \cdot \mathsf{E}_{\mathfrak{g}}(\mathcal{T}_{\mathcal{F}}' - \mathcal{T}_{\mathcal{F}}') \mathfrak{d}\mathcal{T}_{\mathcal{F}}'$$

a) Eddington-Barbierin menetelmä

Säteilynkuljetusyhtälön määräämä intensiteetti tähden pinnalla ($\gamma_{y} = 0$) on

$$I_{v}(0,\Theta) = \int_{0}^{\infty} S_{v}(\gamma_{v}) e^{-\frac{\gamma_{v}}{\cos\Theta}} \cdot \frac{1}{\cos\Theta} d\gamma_{v}^{2}$$

and ann

Integrointi voidaan suorittaa, kun lähdefunktio S_y(γ_y) tunnetaan. Nykyään lähdefunktio johdetaan nemeerisin menetelmin. Aikaisemmin se esitettiin analyyttisten funktioitten sarjakehitelmänä. Esimerkkinä Eddington-Barbierin menetelmä, jossa S_y(γ_y) kehitetään Taylorin sarjaksi tietyn optisen syvyyden γ_y^* ympäristössä :

$$S_{\nu}(\tau_{\nu}) = S_{\nu}(\tau_{\nu}^{*}) + (\tau_{\nu} - \tau_{\nu}^{*}) \frac{dS_{\nu}}{d\tau_{\nu}}(\tau_{\nu}^{*}) + \frac{\tau_{\nu} - \tau_{\nu}^{*}}{2} \frac{d^{2}S_{\nu}}{d\tau_{\nu}^{2}}(\tau_{\nu}^{*}) + \dots$$

Sijoittamalla tämä säteilynkuljetusyhtälöön sekä integroimalla termeittäin saadaan

$$I_{v}(0, \Theta) = S_{v}(\tau_{v}^{*}) + (\cos \Theta - \tau_{v}^{*}) \frac{dS_{v}}{d\tau_{v}}(\tau_{v}^{*}) + \frac{\cos^{2}\Theta + (\cos \Theta - \tau_{v}^{*})}{2} \frac{d^{2}S_{v}}{d\tau_{v}^{*}}(\tau_{v}^{*}) + \dots$$

Kun $\gamma^* = \cos \Theta \implies \begin{cases} 2. \text{ termi } = 0 \\ 3. \text{ termi minimissään} \end{cases}$

Näin ollen arvolla Υ , $= \cos \Theta$ saadaan hyvä likiarvo säteilyintensiteetille tähden pinnalla:

$$I_{\nu}(0,\theta) \approx S_{\nu}(\tau_{\nu} = \cos\theta)$$

Tämä on yksinkertaisin yhteys, joka selittää Auringon reunantummumisilmiön (Auringon kiekon keskipisteessä $\Theta = 0^{\circ} \Longrightarrow \cos \Theta = 1$ ja reunalla $\Theta = 90^{\circ} \Longrightarrow \cos \Theta = 0$) sekä lähdefunktion riippuvuuden atmosfäärin syvyydestä. Tähden pinnalla on säteilyvuo yksikköpinnan läpi

$$\mathcal{F}_{s}(o) = 2\pi \int_{0}^{\infty} S_{s}(r, \cdot) \cdot E_{s}(r, \cdot) dr',$$

Esittämällä S,(γ) Taylorin sarjakehitelmänä sekä integroimalla termeittäin saadaaan

$$\mathcal{F}_{s}(o) = \pi \left[S_{s}(\gamma_{s}^{*}) + \left(\frac{g}{3} - \gamma_{s}^{*}\right) \frac{dS_{s}}{d\gamma_{s}}(\gamma_{s}^{*}) + \dots \right]$$

Hyvä likiarvo tälle lausekkeelle saadaan arvolla Υ_{y}^{\star} = 2/3

$$\mathcal{F}_{(o)} \approx \pi S_{v} (\tau_{v} = \frac{2}{3})$$

Ts. tähden pinnalla vallitsevan säteilyvuon tiheyden avulla voidaan arvioida lähdefunktion suuruus optisella syvyydellä Υ = 2/3 . Yhdistämällä molemmat tulokset saadaan

$$\left\{ I_{\mathcal{Y}}(0,\theta) = S_{\mathcal{Y}}(\gamma_{\mathcal{Y}} = \cos\theta) \\ \mathcal{F}_{\mathcal{Y}}(0) = \pi S_{\mathcal{Y}}(\gamma_{\mathcal{Y}} = \frac{9}{3}) \right\} \Rightarrow \left\{ \mathcal{F}_{\mathcal{Y}}(0) = \pi I_{\mathcal{Y}}(0,\cos\theta = \frac{9}{3}) \right\}$$

- <u>HUOM. 1</u> Eddington-Barbierin relaatiot pätevät tarkasti, kun lähdefunktio on lineaarinen (S, = $a + b \gamma$) ja pysyy vakiona fotonien vapaan matkan aikana.
- <u>HUOM. 2</u> Eddington-Barbierin relaatiot pätevät likimääräisesti (virhe < 10%) lähdefunktioille, joiden muoto on

$$S_{\nu}(\gamma_{\nu}) = a + b\gamma_{\nu} + Le^{-\beta\gamma_{\nu}}$$

missä a,b, β ja L ovat vakioita. Tämäntyyppinen lähdefu**nktio** vastaa tilannetta reaalisessa tähtiatmosfäärissä. b) Eddingtonin approksimaation antama likimääräinen ratkaisu harmaalle atmosfäärille

Eddingtonin approksimaatiolla saadaan moniin tähtitieteen säteilynkuljetusprobleemoihin käyttökelpoinen likimääräinen ratkaisu.

Eddington määritteli seuraavat säteilyintensiteetin cos &-momentit:

- $J = \frac{1}{4\pi} \oint I d\omega$ (keskimääräinen kokonaisintensiteetti)
- $H = \frac{1}{4\pi} \oint I \cos \Theta \, d\omega \qquad (H = \frac{1}{4\pi} \mathcal{F} , \text{ missä } \mathcal{F} = \text{yksikk} \ddot{\Theta} \text{pinnan läpi kulkeva nettovuo ulospäin})$

$$K = \frac{1}{4\pi} \oint I \cos^2 \Theta d\omega$$
 ($K = \frac{C}{4\pi} P_R$, missä P_R = säteilypaine)

Isotrooppisessa säteilykentässä I = I (ts. suunnasta riippumaton), joten

$$J = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I_{o} \sin \theta \, d\theta \, d\phi = \frac{I_{o}}{2} \int_{0}^{\pi} \sin \theta \, d\theta = I_{o}$$

$$K = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I_{o} \cos^{2} \theta \sin \theta \, d\theta \, d\phi = \frac{I_{o}}{2} \int_{0}^{\pi} \cos^{2} \theta \sin \theta \, d\theta = \frac{I_{o}}{3}$$

$$K = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I_{o} \cos^{2} \theta \sin \theta \, d\theta \, d\phi = \frac{I_{o}}{2} \int_{0}^{\pi} \frac{4\pi}{3}$$

Tämä relaatio ei päde ainoastaan tähden syvemmissä atmosfäärikerroksi sa (jossa varsinainen isotrooppinen säteilykenttä), vaan monessa muussakin tilanteessa kuten esimerkiksi

$$\begin{array}{c} - jos \left\{ I(\Theta) = I_{\circ}, kun \quad 0 \leq \Theta \leq \frac{\pi}{2} \\ I(\Theta) = 0, kun \quad \frac{\pi}{2} \leq \Theta \leq \pi \end{array} \right. \\ \left\{ I(\Theta) = I^{+}, kun \quad 0 \leq \Theta \leq \frac{\pi}{2} \\ I(\Theta) = I^{-}, kun \quad \frac{\pi}{2} \leq \Theta \leq \pi \end{array} \right. \\ \begin{array}{c} I^{+} \\ \uparrow \\ ulostuleva \ säteily \\ \downarrow \\ T^{-} \end{array}$$

Näitten huomioitten perusteella Eddington teki seuraavan yksinkertaistavan approksimaation:

Kaikkialla atmosfäärissä pätee:
$$\mathbf{K} = \frac{1}{3}$$

EDDINGTONIN APPROKSIMAATIO

Seuraavassa näytetään, että Eddingtonin approksimaatio mahdollistaa pienen anisotrooppisuuden säteilykentässä.

Olet.
$$I(\gamma, \Theta) = I_{0}(\gamma) + I_{1}\cos\Theta$$

isotrooppinen epäisotrooppinen
OSA OSA
Tällöin $J = \frac{4}{4\pi} \oint I d\omega = \frac{4}{2} \left[\int_{0}^{\pi} I_{0} \sin\Theta d\Theta + \int_{0}^{\pi} I_{1} \cos\Theta \sin\Theta d\Theta \right] = I_{0}$
 $H = \frac{4}{4\pi} \oint I \cos\Theta d\omega = \frac{4}{2} \left[\int_{0}^{\pi} I_{0} \cos\Theta \sin\Theta d\Theta + \int_{0}^{\pi} I_{1} \cos^{2}\Theta \sin\Theta d\Theta \right] = \frac{1}{3}$
 $= 0$ $= \frac{4}{3}I_{1}$
säteilytasapainossa $F = vakio$
 $\Rightarrow I_{1} = 3H = \frac{3}{4\pi} \mathcal{F} = vakio säteilytasapainossa$
 $K = \frac{4}{4\pi} \oint I \cos^{2} d\omega = \frac{4}{2} \left[\int_{0}^{\pi} I_{0} \cos^{2} \Theta \sin\Theta d\Theta + \int_{0}^{\pi} I_{1} \cos^{2} \Theta d\Theta \right] = \frac{1}{3}$
 $\Rightarrow K = \frac{4}{3}J$ myös, kun $I(\gamma, \Theta) = I_{0}(\gamma) + I_{1}\cos\Theta$

Ratkoessaan säteilynkuljetusyhtälöä teki Eddington seuraavat fysikaaliset oletukset :

- <u>säteilytasapaino</u> $(\Rightarrow \int k_y S_y dy = \int k_y J_y dy)$
- ns. harmaa atmosfääri eli absorptiokerroin ja optinen syvyys eivät riipu taajuudesta ($k_{\nu} = k$ ja $\gamma_{\nu} = \gamma$). Tämä oletus yksinkertaistaa yhtälön matemaattista käsittelyä ratkaisevasti .

 $\Rightarrow k \int S_{\nu} d\nu = k \int J_{\nu} d\nu \iff S = J$ Sijoittamalla ratkaisuyrite $I(\Upsilon, \Theta) = I_{O}(\Upsilon) + I_{1} \cos \Theta$ taajuuden yli integroituun säteilynkuljetusyhtälöön saadaan

$$\cos \Theta \frac{dI(\tau, \Theta)}{d\tau} = I(\tau, \Theta) - J(\tau) \qquad \text{sij. } I = I_{\Theta}(\tau) + I_{1} \cos \Theta$$

$$\cos \Theta \frac{d\mathbf{I}_{0}(\mathbf{T})}{d\mathbf{T}} + \cos^{2} \Theta \frac{d\mathbf{I}_{1}}{d\mathbf{T}} = \mathbf{I}_{0} + \mathbf{I}_{1}\cos \Theta - \left[\mathbf{I}_{0} \underbrace{\mathbf{G} \frac{d\omega}{4\pi}}_{=1} + \mathbf{I}_{1} \underbrace{\mathbf{G} \cos \Theta \frac{d\omega}{4\pi}}_{=0}\right] : \cos \Theta$$

$$= 0, \text{ koska } \mathbf{I}_{1} = \frac{3\mathbf{T}}{4\pi} = \text{ vakio säteilytasapainossa}$$

$$(\text{kts. edellinen sivu})$$

$$\Rightarrow I_{o}(\gamma) = \frac{3\pi}{4\pi}\gamma + C$$
Integroimisvakio C saadaan reuna-
ehdosta :
Tähden pinnalla $\begin{cases} \widetilde{\tau}_{in} = \widetilde{\tau} = 0 & ja \widetilde{\tau} = \pi(\underline{1}^{+} \underline{1}^{-}) \\ \hline J(o) = \frac{\underline{1}^{+} + \underline{1}^{-}}{2} = \frac{\underline{1}^{+}}{2} & = 0 \\ \hline J(o) = \frac{1^{+} + \underline{1}^{-}}{2} = \frac{\underline{1}^{+}}{2} & = 0 \end{cases}$

$$\Rightarrow C = I_{o}(o) = J(o) = \frac{2}{3}(o) = \frac{2}{3\pi}$$

Sijoittamalla $I_0(\gamma)$ sekä I_1 ratkaisuun $I = I_0 + I_1 \cos \Theta$ saadaan

$$I(\gamma, \Theta) = \frac{32}{4\pi} \cdot \gamma + \frac{2}{2\pi} + \frac{32}{4\pi} \cos \Theta$$
$$I(\gamma, \Theta) = \frac{2}{2\pi} \left(1 + \frac{3}{2}\gamma + \frac{3}{2}\cos\Theta\right)$$

SÄTEILYNKULJETUSYHTÄLÖN RATKAISU EDDINGTONIN 2. APPROKSIMAATIOSSA Eddingtonin 1. approksimaatiossa tarkastellaan täysin isotrooppista säteilykenttää (kts. Eddingtonin alkuperäistä ratkaisun johtoa Novotnyn kirjassa luvussa 4.2).

- 90 -

Saadusta ratkaisusta voidaan tehdä seuraavat päätelmät:

1) Kun γ >> 1 dominoi isotrooppinen osa

Kun $\Upsilon << 1$ voimistuu anisotrooppinen osa $I(\Theta) = \frac{37}{4\pi} \cos \Theta$

2) Kun $\Upsilon = 0$, on intensiteetti tähden pinnalla $I(0, \Theta) = \frac{2}{4\pi} (1 + \frac{3}{2} \cos \Theta)$

Jos lisäksi $\cos \Theta = \frac{2}{3} \implies I(0, \cos \Theta = \frac{2}{3}) = \frac{2}{\pi}$ $\iff \mathcal{P}(0) = \pi \cdot I(0, \cos \Theta = \frac{2}{3})$

> Saatiin siis sama relaatio kuin Eddington-Barbier-menetelmässä .

 $I(\gamma) = \frac{\chi}{2\pi} \left(1 + \frac{3}{4}\gamma\right)$

Verrataessa keskenään

$$I(0,\theta) = \frac{\pi}{2\pi} \left(1 + \frac{3}{2}\cos\theta\right)$$

$$J(\gamma) = I_{0}(\gamma) = \frac{\pi}{2\pi} \left(1 + \frac{3}{2}\gamma\right)$$
$$\implies I(0,\theta) = J(\cos\theta)$$

$$\gamma_{0} = \cos\theta$$

Havaittaessa Auringon kiekon keskikohtaa "nähdään" optiselle syvyydelle $\Upsilon = \cos 0^{\circ} = 1$. Siirryttäessä kiekon reunoihin päin pienenee havaittu intensiteetti sekä lähdefunktion optinen syvyys $\cos \Theta$ -riippuvuuden mukaisesti.

3) Auringon reunantummuminen

$$\frac{I(0,\theta)}{I(0,0)} = \frac{1+\frac{3}{2}\cos\theta}{1+\frac{3}{2}} = \frac{9}{5}\left(1+\frac{3}{2}\cos\theta\right)$$

Esim.
$$\frac{I(0,00^{\circ})}{I(0,0)} = \frac{9}{5} = 0.40$$

$$\int \frac{\frac{1}{1}\left(0,\theta\right)}{\frac{1}{1}\left(0,0\right)} + \frac{1}{8}\frac{1}{8}$$

Eddingtonin approksimaatiolla saadaan hyvä yhteensopivuus havaintojen kanssa laajalla aallonpituusalueella, joten Eddingtonin tekemät fysikaaliset oletukset pätevät melko hyvin Auringon atmosfäärissä.

Pimennysmuuttujien valokäyristä on havaittu reun**o**ntummumisilmiötä myös muissa tähdissä.

Cos Ø	Eddington Approximation	Exact Solution (Chandrasekhar)	Münch (Blankcting Effect)	Observed Intensity
1.00	1.000	1.000	1,000	1.000
0.90	0.940	0.939	0.946	0.944 ·
0.80	0.880	0.878	0.892	. 0.898
0.70	0.820	0.816	0.838	0.842
0.60	0.760	0.755	0.781	0.788
0.50	0.700	0.692	0.725	0.730
0.40	0.640	0.629	0.666	0.670
0.30	0.580	0.565	0.615	0.602
0.20	0.520	0.499	0.541	0.522
0.10	0.460	0.429	0.467	0.450
0.00	0.400	0.344	0.363	

LIMB DARKENING IN THE SUN

4) Lämpötilan riippuvuus optisesta syvyydestä

Isotrooppisessa säteilykentässä $J = \frac{1}{4\pi} \oint I d\omega = I$ LTE:n vallitessa on tähden pinnalla $\Re = \Re^+ = \pi I = \delta T^+$

Anisotrooppisessa säteilykentässä ei lämpötilaa voida yksikäsitteisesti määrittää. Seuraavassa määritellään lämpötila siten, että se Stefan-Boltzmannin lain yhteydessä antaa oikean keskimääräisen intensiteetin γ .

$$\begin{split} & \delta T^{4}(\gamma) = T \overline{\zeta}(\gamma) \\ & \delta T^{4}(\gamma) = \overline{T} \overline{\zeta}(\gamma) \\ & \overline{\zeta} = \frac{2}{2\pi} \left(1 + \frac{3}{2}\gamma\right) \\ & \delta T^{4}(\gamma) = \frac{2}{2} \left(1 + \frac{3}{2}\gamma\right) \\ & \Rightarrow \delta T^{4}(0) = \frac{2\pi}{2} \\ & Toisaalta: \\ & \delta T^{4}_{eff} = 2\pi \\ & \delta T^{4}(0) = \frac{2\pi}{2} \\ & \overline{\zeta} = \frac{2\pi}{2} \left(1 + \frac{3}{2}\gamma\right) \\ &$$

Vertaamalla tätä Chandrasekharin tarkan mallin antamaan efektiiviseen lämpötilaan $T_{eff} = \left[\frac{4}{(3)}v_2\right]^{\frac{1}{2}} = 1.233 \times T(0)$ havaitaan, että Eddingtonin approksimaatio antaa melko tarkkoja tuloksia Auringon atmosfäärissä.

Todettakoon vielä eräs mielenkiintoinen yhteys:

$$\begin{split} & \delta \top^{4}(\Upsilon) = \frac{\mathcal{F}}{2} \left(1 + \frac{3}{2} \Upsilon \right) \\ & \mathcal{F} = \delta \top^{4}_{\text{eff}} \end{split} \implies T^{4}(\Upsilon) = \frac{\top^{4}_{\text{eff}}}{2} \left(1 + \frac{3}{2} \Upsilon \right) \\ & \text{Kun } \Upsilon = 2/3, \text{ nim} \qquad \boxed{\top \left(\Upsilon = \frac{3}{3} \right) = \top_{\text{eff}}} \end{split}$$

eli sama kuin Eddington-Barbierin relaatio: $S_{\nu}(\gamma = \frac{1}{3}) = \hat{\tau}(o)$ Tämän perusteella kutsutaan arvoa $\underline{\gamma} = \frac{2}{3}$ efektiiviseksi optiseksi syvyydeksi.

- 92 -

Fysikaaliset oletukset:

- säteilytasapaino → S = → sekä = vakio)
- harmaa atmosfääri

Integroimalla säteilynkuljetusyhtälö yli kaikkien taajuuksien saadaan

$$\cos \Theta \frac{dI(\tau, \Theta)}{d\tau} = I(\tau, \Theta) - J(\tau)$$

$$\frac{1}{4\pi} \Im I(\tau, \Theta) d\omega$$

Tämä integraali-differentiaaliyhtälö voidaan muokata tavalliseksi differentiaaliyhtälöpariksi jakamalla intensiteetti kahteen komponettiin :

Säteilynkuljetusyhtälö voidaan siten esittää seuraavasti:

$$\frac{d}{d\tau} (I \cos \theta) = I(\tau, \theta) - \frac{1}{2} (I^{+} + I^{-}) \qquad 1) \int_{0}^{\pi/2} \dots \sin \theta d\theta \qquad *)$$

$$\frac{d}{d\tau} (I \cos \theta) = I(\tau, \theta) - \frac{1}{2} (I^{+} + I^{-}) \qquad 1) \int_{0}^{\pi} \dots \sin \theta d\theta \qquad *)$$

$$\frac{d}{2} \int_{\frac{\pi}{2}}^{\pi} \dots \sin \theta d\theta \qquad (1)$$

$$\frac{d}{2} \int_{\frac{\pi}{2}}^{\pi} dI^{-} = I^{-}(\tau) - \frac{1}{2} (I^{+} + I^{-}) \qquad (2)$$

$$*) \text{ Huom.: Vasen puoli : } \frac{d}{d\tau} \int_{0}^{\pi/2} \cos \theta \cdot I \sin \theta d\theta = \frac{\cos \theta}{\frac{4}{2}} \frac{dI^{+}}{\tau}$$

$$(1) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) \Rightarrow \frac{dI^{+} - dI^{-}}{dT} = 0$$

$$(2) + (2) = 1$$

$$(2) + (2) = 1$$

$$(2) + (2) = 1$$

$$(2) + (2) = 1$$

$$(3) + (2) = 1$$

$$(3) + (2) = 1$$

$$(3) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2) = 1$$

$$(4) + (2)$$

⇒ F = vakio

aivan kuten säteilytasapaino edellyttää

$$(1)-(2) \implies \frac{1}{2} \frac{d\underline{I}^{+} + d\underline{I}^{-}}{d\gamma} = \underbrace{\underline{I}^{+} - \underline{I}^{-}}_{F}$$

$$d\underline{I}^{+} + d\underline{I}^{-} = 2Fd\gamma \qquad | S$$

$$\Rightarrow \qquad \underline{I}^{+} + \underline{I}^{-} = 2F\gamma + C \qquad] \Rightarrow \underline{I}^{+} = C \qquad] \Rightarrow L^{+} = C \qquad] \Rightarrow C = F$$
Reunaehto:
$$\underline{I}^{-}(o) = O \qquad] \Rightarrow \underbrace{I}^{+} + \underline{I}^{-} = \underbrace{2F\gamma + F}_{=0} = \underbrace{F}_{=0} \Rightarrow C = F$$
Säteilytasapainossa
$$S = \underbrace{J}_{=} = \underbrace{\underline{I}^{+} + \underline{I}^{-}}_{2} = \underbrace{2F\gamma + F}_{2} = \underbrace{F}_{2}(1 + 2\gamma) \qquad | F = \frac{2\pi}{\pi}$$

$$S = \underbrace{\frac{2\pi}{2\pi}}_{=\pi} (1 + 2\gamma)$$

Sijoittamalla tämä lähdefunktio säteilynkuljetusyhtälön määräämään intensiteettilausekkeeseen saadaan

$$I(0, \Theta) = \int_{2\pi}^{\infty} S(r) e^{-r \sec \Theta} \sec \Theta dr$$

 $I(0,\Theta) = \frac{\mathcal{F}}{2\pi} (1 + 2\cos\Theta)$

SÄTEILYNKULJETUSYHTÄLÖN RATKAISU SCHUSTER-SCHWARZSCHILDIN APPROKSIMAATIOSSA (v. 1905)

Tämä ratkaisu poikkeaa Eddingtonin ratkaisusta vain viimeisessä termissä: $2 \times \cos \Theta$ on Eddingtonilla $(3/2) \times \cos \Theta$.

d) Chandrasekharin menetelmä

Chandrasekharin "method of discrete ordinates" on Schuster-Schwarzchildin menetelmän yleistys: intensiteetti jaetaan osiin (i kappaletta) ja näitä intensiteettiosia I_i tarkastellaan suunnissa ⊖_i.

Fysikaaliset oletukset: - harmaa atmosfääri - säteilytasapaino $J \implies S = J = \frac{2\pi}{4\pi} \int I(\cos\theta) \frac{\sin\theta d\theta}{-d(\cos\theta)}$ Säteilynkuljetusyhtälönä on integraali-differentiaaliyhtälö :

$$\mathcal{M} \frac{dI}{d\tau} = I - \frac{1}{2} \int I(\tau, \mu) d\mu , \text{ missä } \mu = \cos \Theta$$

Suurimman vaikeuden yhtälön ratkaisemisessa tuottaa kulman yli otettu integraali. Likimääräisesti se voidaan esittää Gaussin summana :

$$\int_{-1}^{n} I(r, \mu) d\mu \approx \sum_{j=-n}^{m} \alpha_{j} I(r, \mu_{j})$$

Gaussin numeerisen integrointimenetelmän tarkkuus riippuu sekä kertaluvusta n että tarkasteluvälin jakopisteiden valinasta. Tasavälisen jaon sijasta valitaan jakopisteet siten, että ne ovat Legendren polynomin P_{2n}(cos⊖) nollakohtia.

Säteilynkuljetusyhtälöksi saadaan täten lineaarinen differentiaaliyhtälöryhmä, jonka kertaluku on 2n

$$\mu_{i} \frac{dI_{i}}{d\tau} = I_{i} - \frac{1}{2} \sum_{j=-n}^{n} \alpha_{j} I_{j} \qquad (i = \pm 1, \pm 2, ..., \pm n)$$

(Huom. Kun tarkastellaan pinnan sisään menevää säteilyä, on i < 0) Näillä differentiaaliyhtälöillä on erikoisratkaisut

$$I_{i} = \frac{1}{1+k} e^{-kT}, \text{ missä k määräytyy yhtälöstä } \frac{1}{2} \sum_{j=-n}^{\infty} \frac{\alpha_{j}}{1+k/k_{j}} = 1$$

sekä yksityisratkaisu

$$I_{i} = \mathcal{L}(Q + \gamma + \mu_{i})$$

Ratkaisuna saadaan siis intensiteettijakauma I_n, \ldots, I_n tietyissä suunnissa $\Theta_n, \ldots, \Theta_n$.

Tarkempi esitys edellä hahmotetulle menetelmälle löytyy esim. kijoista:

- S. Chandrasekhar: Radiative Transfer, Oxford 1950
- V.V. Sobolev :A Treatise of Radiative Transfer. Van Nostrand Company 1963 (luku 2.3)

D. Mihalas: Stellar Atmospheres. Freeman and Freeman 1970 (luku 2.3)

<u>HUOM. 1</u> Chandrasekharin/menetelmä antaa harmaalle atmosfäärille sekä likimääräisen ratkaisun (sarjan summausindeksi n äärellinen) että tarkan ratkaisun (n $\rightarrow \infty$).

HUOM. 2 1. kertaluvun approksimaatiossa (n=1):
$$a_1 = a_{-1} = 1$$

 $M_1 = -M_{-1} = \frac{1}{\sqrt{3}}$

jolloin säteilynkuljetusyhtälö

$$\begin{cases} \frac{1}{\sqrt{3}} \frac{dI_{1}}{d\gamma} = I_{1} - \frac{1}{2} (I_{1} + I_{-1}) \\ -\frac{1}{\sqrt{3}} \frac{dI_{-1}}{d\gamma} = I_{-1} - \frac{1}{2} (I_{1} + I_{-1}) \end{cases}$$

vastaa Schuster-Schwarzchildin säteilynkuljetusyhtälöä sillä erolla, että Chandrasekharilla on $\cos \Theta = 1/2$ tilalla $\cos \Theta = 1/\sqrt{3}'$.

D/SIE

2.3 KAASUMAISEN TILAN FYSIIKKAA TÄHTIEN ATMOSFÄÄREISSÄ

Tähtitieteellisissä kohteissa on kaasumainen tila vallitseva aineen olomuoto: tähdet ovat kaasupalloja, planeettojen atmosfäärit ovat kaasua, tähtienvälisestä aineesta 99% on kaasua.

2.3.1 Ideaalikaasun tilanyhtälö

Ideaalikaasun tilanyhtälö on voimassa tähdissä paitsi mahdollisesti degeneroituneissa keskusosissa (degeneroituneen kaasun painetta käsitellään luvussa 3).

$$\mathcal{P} \vee = \mathcal{N} \mathcal{R} \mathcal{T}$$

IDEAALIKAASUN TILANYHTÄLÖ

missä \mathcal{N} = moolien lukumäärä

R= yleinen kaasuvakio = 8.314×10^7 erg/K mol = 8.314 J/K mol

Yhdelle kaasumoolille:

. .

$$PV = RT$$
 : N₀ (N₀ = 6.025×10²³ = Avogadron luku
=hiukkasten lukumäärä/mooli)

$$P = \frac{N_o}{V} kT$$
 | merkitään $\frac{N_o}{V} = N = 1$ moolin molekyylien
lukumäärä/cm³

TILANYHTÄLÖ YHDELLE KAASUMOOLILLE

Paineen riippuvuus lämpötilasta ja tiheydestä:

Kaasuseoksen tapauksessa on

$$P = \sum P_i = kT \sum N_i$$

missä P = komponentin i aiheuttama osapaine.

Merkitään $\overline{A} = \frac{\sum N_i A_i}{\sum N_i}$ seoksen keksimääräinen hiukkaspaino atomimassayksiköissä

ESIM. Vetykaasun keskimääräinen hiukkaspaino eri lämpötiloissa:

T		Ā
3000 K	H ₂	2
3000 K	н + н	1
10000 K	p ⁺ +p ⁺ +e ⁻ +e ⁻	0.5

Eri hiukkaslajien N_i summan määrittämiseksi merkitään: X = vedyn massaosuus (0 < X ≤ 1) Y = heliumin massaosuus Z = "metallien" massaosuus (metalleiksi kutsutaan alkuaineita, joiden A <u>>5</u>) A/2 ≈ protonien lukumäärä metalliatomissa = elektronien lukumäärä

Ionisoituneessa tilassa ovat eri hiukkaslajien hiukkaslukumäärät seuraavat:

	ionien luku- määrä/cm ³	elektronien lukumäärä/cm ³	\sum_{n_i}
vety	$\frac{X \cdot g}{m_{H}} = \frac{n m_{H} \cdot M \cdot 1}{M} \cdot \frac{M \cdot 1}{V} = \frac{n}{V}$	X·s m _H	2 X·S mH
helium	$\frac{Y.g}{m_{He}} = \frac{Y.g}{4m_{H}}$	$2 \frac{Y \cdot S}{m_{He}} = \frac{Y \cdot S}{2 m_{H}}$	<u>3</u> <u>Y·s</u> 4 m _H
"metallit"	<u>Z·S</u> Ā·m _H	$\frac{\overline{A}}{2} \frac{\overline{Z} \cdot 3}{\overline{A} \cdot m_{H}} = \frac{\overline{Z} \cdot 3}{2} m_{H}$	$1 + \frac{\mathbf{Z} \cdot \mathbf{S}}{2m_{\mu}} \approx \frac{1}{2} \frac{\mathbf{Z} \cdot \mathbf{S}}{m_{\mu}}$

$$\Rightarrow N = \sum N_i = \frac{g}{m_H} \left(2X + \frac{3}{4}Y + \frac{1}{2}Z \right)$$

$$\Rightarrow P = NkT = \frac{gkT}{m_{H}} \left(2\chi + \frac{3}{4}\gamma + \frac{1}{2}Z \right)$$

IONISOITUNEELLE
KAASUSEOKSELLE

HUOM. Kokonaispaine on kaasunpaineen ja säteilypaineen summa:

TÄYSIN

$$P_{tot} = P_g + P_r$$

2.3.2 Kaasun adiabaattinen tilanyhtälö

a) Systeemin ominaislämpö

Energian säilymislain lämpöopillinen muoto on

kokonaisdifferentiaali (ts. vain alku- ja lopputilasta riippuva fkt.), vaan prosessista riippuva suure.

Systeemin ominaislämpö:

$$C = \frac{dQ}{dT}$$
Kun V = vakio : $C_v = \left[\frac{dQ}{dT}\right]_v = \frac{dU}{dT}$

$$U = n \cdot \frac{3}{2} RT = \frac{3}{2} NRT$$

$$\frac{dU}{dT} = C_v = \frac{3}{2} NR$$
Kun P = vakio : $C_p = \left[\frac{dQ}{dT}\right]_p = \frac{dU}{dT} + \frac{d}{dT}(PdV)$

$$PV = NRT$$

$$PdV + V \frac{dP}{dP} = NR dT$$

$$PaV = NRT$$

b) Adiabaattinen tilanyhtälö

Adiabaattisessa muutoksessa dQ = 0, jolloin

$$dU + P dV = 0$$

$$c_{v} dT + RT \frac{dV}{V} = 0$$

$$c_{v} dT + RT \frac{dV}{V} = 0$$

$$R = c_{p} - c_{v} \quad |:T$$

$$c_{v} \frac{dT}{T} = -(c_{p} - c_{v}) \frac{dV}{V}$$

$$l_{n} T = -(\gamma - 1) l_{n} V + const$$

$$V = \frac{c_{p}}{c_{v}} = \begin{cases} 5/3 \text{ neutraalille 1-atomiselle kaasulle tai täysin ionisoituneelle kaasulle} \\ 7/5 \text{ kaksiatomiselle kaasulle} \end{cases}$$

$$T = \frac{PV}{R} \Rightarrow \frac{PV^{\delta} = const}{V^{\delta} = (\frac{RT}{P})^{\delta}} \Rightarrow P^{\delta} = const$$

Näistä kaasun adiabaattisen tilanyhtälön eri esitysmuodoista käytetään jatkossa eniten yhtälöä

 $\mathcal{P} \vee^{\mathcal{C}} = \text{vakio}$

KAASUN ADIABAATTINEN TILANYHTÄLÖ

ESIM. Määritä χ , kun paine on sähkömagneettisen säteilyn aiheuttama.

dQ = dU + PdV U = säteilyn energia $U = uV, missä u = säteilytiheys = aT^{4}$ $= säteilyenergia/cm^{3}$ $U = aT^{4}V$ $dU = 4aT^{3}V dT + aT^{4}dV$ $P = \frac{4}{3} = \frac{1}{3}aT^{4}$

 $dQ = 4aT^{3}V dT + aT^{4}dV + \frac{1}{3}aT^{4}dV = 0$ adiabaattisessa $\frac{4}{3}aT^{4}dV = 4PdV$ $(3) \cdot \frac{4}{3}aT^{3}V dT + 4PdV = 0$ $3 \cdot \frac{4P}{P} = -4\frac{dV}{V}$ $P \sim V^{-4/3}$ $P = \frac{4}{3}aT^{3}dT$ $P = \frac{4}{3}aT^{3}dT$ Interstellaarisessa avaruudessa 4/3 < χ < 5/3 riipuen siitä, määrääkö säteily vai kaasu paineen.

Adiabaattista tilanyhtälöä on käytettävä tarkasteltaessa mm. tähtien konvektiota (massavirtausta) tai interstellaarisen pilven kuumenemista, kun se äkillisesti kutistuu esim. supernovaräjähdyksen synnyttämän iskurintaman johdosta.

2.3.3 Kaasun paineen ja lämpötilan kineettinen tulkinta

Paine voidaan selittää kineettisen kaausteorian pohjalta. Kaasunpaine ilmoittaa molekyylien liikemäärän muutoksen aikayksikössä hiukkasten liikkuessa yksikköpinta-alan läpi, joka on kohtisuorasti molekyylien liikesuuntaan nähden:

Merkitään

 $n(\Theta, \phi, v) = niitten molekyylien lukumäärä/cm³sr, joilla nopeus$ $välissä (v, v+dv) = <math>\frac{\ell km}{dV \cdot d\omega \cdot dv}$

v cos 😌 = tarkasteltavaa pinta-alkiota vasten kohtisuora nopeuskomponentti
- 104 -

 $\iint_{\mathbf{v},\mathbf{v},\omega} \mathbf{hiukkasten lukumäärä aikayksikössä}$

=
$$\iiint n(\Theta, \phi, v) \cdot v \cdot \cos\Theta \sin\Theta d\Theta d\phi dv dA \cdot dt$$

dw $1cm^2$ 1s

Tällöin paine pinta-alkiota vasten on

$$P_{z} = hiukkasten lkm/s \times \left[m\vec{v}\cos\Theta - (-m\vec{v}\cos\Theta)\right]$$

$$P_{z} = \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} (2 \operatorname{mucos} \Theta) \cdot n(\Theta, \phi, v) \cdot v \cos \Theta \sin \Theta d\phi d\Theta dv$$

Jos molekyylien nopeusjakautuma on isotrooppinen, on

$$n(\Theta, \phi, \upsilon) = \frac{1}{4\pi} n(\upsilon) d\upsilon$$

missä n(v) = kuutiosenttimetrissä olevien molekyylien lukumäärä, joilla nopeus välillä (v,v+dv)

$$\Rightarrow P = 2\pi \cdot 2m \int_{0}^{\infty} v^{2} \frac{n(v)}{4\pi} dv \int_{0}^{\pi/2} \cos^{2} \theta \sin \theta d\theta$$

$$\int_{-\frac{1}{3}}^{\pi/2} \cos^{3} \theta = \frac{1}{3}$$

$$P = \frac{1}{3}m \int_{0}^{\infty} v^{2} \cdot n(v) dv$$
Keskiarvon määritelmän mukaan
$$\overline{v^{2}} = \frac{\sqrt{v^{2}} \cdot n(v) dv}{\sqrt{n(v)} dv}$$

$$\Rightarrow \int_{0}^{\infty} v^{2} \cdot n(v) dv = \overline{v^{2}} \int_{0}^{\infty} n(v) dv$$

$$\Rightarrow \int_{0}^{\infty} v^{2} \cdot n(v) dv = \overline{v^{2}} \int_{0}^{\infty} n(v) dv$$

$$\Rightarrow \int_{0}^{\infty} v^{2} \cdot n(v) dv = \frac{\sqrt{v^{2}} \cdot n(v) dv}{\sqrt{n(v)} dv}$$

$$\Rightarrow P = \frac{1}{3} Nm \overline{v^{2}}$$
, missä N = molekyylien 1km/cm³

Yhdistämällä

$$P = N kT$$

$$P = \frac{1}{3} N m v^{2}$$

$$\Rightarrow \frac{1}{3} m v^{2} = kT$$

$$\frac{2}{3}$$

$$\frac{1}{2} m v^{2} = \frac{3}{2} kT$$

2.3.4 Maxwellin nopeusjakautuma

Oletetaan seuraavassa, että hiukkasten faasitiheys F(x,y,z,u,v,w,t)ei riipu paikasta (x,y,z), ajasta eikä nopeuden suunnasta ($\overline{u},\overline{v},\overline{w}$). Tällöin voidaan faasitiheys hajo λ ttaa ajasta ja paikasta riippuvaan funktioon f₁(x,y,z,t) sekä nopeudesta riippuvaan funktioon f₂(v^2).

 $F(r,t,v^{2}) = f_{1}(x,y,z,t) \cdot f_{2}(u^{2}+v^{2}+w^{2})$

Jos lisäksi oletetaan, että nopeuskomponentit u,v,w ovat toisistaan riippumattomia, voidaan hiukkasten nopeusjakautuma esittää muodossa

$$f(u^{2}+v^{2}+w^{2}) = g(u^{2}) \cdot g(v^{2}) \cdot g(w^{2})$$

Tämän funktionaaliyhtälön ratkaisut ovat muotoa

$$g(u^{2}) = A e^{-\lambda u^{2}}$$

$$g(v^{2}) = A e^{-\lambda v^{2}}$$

$$g(w^{2}) = A e^{-\lambda w^{2}}$$

Vakiot A ja ${f \lambda}$ sekä edelläolevan ratkaisun muoto saadaan seuraavalla typistetyllä tarkastelulla. Yksinkertaisuuden vuoksi tarkastellaan edelläolevan funktionaaliyhtälön kaksidimesionaalista muotoa:

$$H(x + y) = G(x) \cdot G(y) \qquad \left| \frac{d}{dx} \\ \frac{dH(x+y)}{d(x+y)} \frac{\partial(x+y)}{\partial x} = \frac{dG(x)}{dx} \cdot G(y) \\ = 1 \qquad = 1 \\ H'(x+y) = G'(x) \cdot G(y) \qquad \left| : H(x+y) \\ \frac{H'(x+y)}{H(x+y)} = \frac{G'(x)}{G(x)} \\ \end{array} \right| \Rightarrow \qquad \left| \frac{G'(x)}{G(x)} = \frac{G'(y)}{G(y)} \\ \xrightarrow{H'(x+y)}{H(x+y)} \\ \xrightarrow{H'(x+y)}{H(x+y)} = \frac{G'(y)}{G(y)} \\ \xrightarrow{H'(x+y)}{H(x+y)} \\ \xrightarrow{H'(x+y)}{H(x+y)} = \frac{G'(y)}{G(y)} \\ \xrightarrow{H'(x+y)}{H(x+y)} \\ \xrightarrow{H'(x+$$

Koska saadussa yhtälössä vasen puoli riippuu vain x:stä ja oikea puoli vain y:stä, on yhtälön molempien puolien oltava vakio, jota merkitään -2:11a.

$$\Rightarrow \frac{dG(x)}{G(x)} = -\lambda dx \Rightarrow G(x) = A e^{-\lambda x}$$

vastaavasti ᠄

 $G(y) = Ae^{-\lambda y}$

$$\Rightarrow H(x+y) = A^2 \cdot e^{-\lambda(x+y)}$$

Soveltamalla tätä tulosta nopeusjakautumaan saadaan

$$f(v_x^2 + v_y^2 + v_z^2) = A^3 e^{-\lambda (v_x^2 + v_y^2 + v_z^2)}$$
(3-dimensionaalinen muoto)
$$f(v_x^2) = A e^{-\lambda v_x^2}$$
(1-dimensionaalinen muoto)

Vakio λ saadaan rms-nopeuden (rms:"root mean square" $\sqrt{\sqrt{v^2}}$) määritelmästä :

= [[

v²du sin VdV dq pallokoordinaatistossa

$$\overline{v^{q}} = \left(\frac{\lambda}{\pi}\right)^{\frac{3}{q}} \cdot 4\pi \int_{0}^{\infty} v^{4} e^{-\lambda v^{2}} dv$$

$$= \left(\frac{\lambda}{\pi}\right)^{\frac{3}{q}} \cdot 4\pi \cdot \frac{1}{2} \lambda^{-\frac{5}{2}} \cdot \frac{3}{4} \sqrt{\pi}$$

$$= \left(\frac{\lambda}{\pi}\right)^{\frac{3}{q}} \cdot 4\pi \cdot \frac{1}{2} \lambda^{-\frac{5}{2}} \cdot \frac{3}{4} \sqrt{\pi}$$

$$\frac{(k = 4)}{(k = 4)}$$

$$= \frac{1}{2} \lambda^{-\frac{5}{2}} \cdot \frac{1}{\sqrt{(\frac{5}{2})}}$$

$$\frac{3\sqrt{\pi}}{\frac{3\sqrt{\pi}}{4}}$$

$$Huom. T'(\frac{3}{2}) = T'(\frac{1}{2} + 1) = \frac{1}{2} T'(\frac{1}{2}) = \frac{1}{2} \sqrt{\pi}$$

$$T'(\frac{5}{2}) = T'(\frac{3}{2} + 1) = \frac{3}{2} T'(\frac{3}{2}) = \frac{3}{2} \cdot \frac{\sqrt{\pi}}{2}$$

Toisaalta

 $\frac{1}{2}m\overline{v^{2}} = \frac{3}{2}kT$ $\Rightarrow \overline{v^{2}} = \frac{3kT}{m} \\ \overline{v^{2}} = \frac{3}{2\lambda} \end{cases} \Rightarrow \overline{\lambda} = \frac{m}{2kT}$ $T = \frac{1}{2} + \frac$

Merkitään dN(v) = N(v).dv =nopeusvälissä (v,v+dv) olevien molekyylien lukumäärä/cm³

Huomioimalla nopeuden yleinen jakaumafunktio f saadaan

$$dN(v) = N \xi(v) dv$$
$$dN(v_{\bar{x}}) = N \sqrt{\frac{m}{2\pi kT}} e^{-\frac{m}{2kT}v_{\bar{x}}^2} dv_{\bar{x}}$$

MAXWELLIN NOPEUSJAKAUTUMA (1-ulotteinen tapaus)

missä m = hiukkasen massa

N = hiukkasten lukumäärä tilavuusyksikössä

normitusehto:

$$\int_{-\infty}^{\infty} \xi \, dv_x = 1 \iff \int_{-\infty}^{\infty} \frac{dN(v_x)}{N} \, dv_x = 1$$

Kolmiulotteinen tapaus:

a) suorakulmaisessa koordinaatistossa

$$dN(v_{x},v_{y},v_{z}) = N\left(\frac{m}{2\pi\kappa}\right)^{\frac{3}{2}} e^{-\frac{m}{2\kappa}\left(v_{x}^{q}+v_{y}^{2}+v_{z}^{2}\right)} dv_{x}dv_{y}dv_{z}} MAXWELLIN NOPEUSJAKAUMA (suorakulmaisessa koor-dinaatistossa)$$

b) pallokoordinaatistossa

Koska
$$dv_x dv_y dv_z = v^2 dv \sin \vartheta d\vartheta d\varphi$$
, on
 $dN(v) = N(v) dv = N \cdot f(v) dv$
 $= N\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} \cdot v^2 dv \int_{0}^{2\pi \pi \frac{m}{2}} \sin \vartheta d\vartheta d\varphi$
 4π
 $dN(v) = 4\pi v^2 \cdot N\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}v^2} dv$
MAXWELLIN NOPEUS-
JAKAUTUMA (pallo-
koordinaatistossa)
 $dN(v_x)$
 $dV(v_x)$
 $dV(v_x)$
 $dV(v_x)$
 $dN(v_x)$
 $dN(v_x)$
 $dV(v$

1- ulotteinen nopeusjakautuma esittää Gaussin käyrää 3-ulotteinen nopeusjakauma

<u>HUOM.</u> Maxwellin nopeusjakautuman maksimikohta $\frac{d}{dv} \left(\frac{N}{N}\right)$

 $\left[\frac{d}{d\upsilon}\left(\frac{N(\upsilon)}{N}\right)=0\right]$

määrittää hiukkasten todennäköisimmän nopeuden ∝. (osoitus harjoitustehtävänä).

$$\frac{\text{Todennäköisin nopeus}}{\text{Keskinopeus}} \propto = \sqrt[3]{\frac{2}{M}}$$

$$\frac{\text{Keskinopeus}}{\text{F}} = \frac{\int v f(v) dv}{\int f(v) dv}$$

$$\overline{v} = \frac{2 \alpha}{\sqrt{\pi}} = 1.13 \alpha$$

$$\frac{1}{\sqrt{\pi}} = \sqrt[3]{\frac{2}{\sqrt{\pi}}} = \sqrt[3]{\frac{2}{\sqrt{\pi}}} \frac{1}{\sqrt{\pi}}$$

$$u = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3}{2}} d = 1.25 d$$

2.3.5 Boltzmannin hiukkasjakautuma potentiaalikentässä

Tarkastellaan seuraavassa potentiaalikentässä V(z) olevaa kaasua, jonka tiheys pienenee korkeuden z kasvaessa.

Paineen synnyttämä voima tilavuusalkion alapintaan = $P(z)dA = \frac{g(z)kT}{m}dA$ missä m= hiukkasen massa.

Paineen synnyttämä voima tilavuusalkion yläpintaan = $P(z+dz)dA = \frac{S(z+dz)kT}{m}dA$ Paineen aiheuttama nettovoima ylöspäin on siten

$$F_{g}(z) = \frac{\left[g(z) - g(z+dz)\right]kT}{m} dA = -\frac{dg(z)}{dz} \frac{kTdAdz}{m}$$

Tasapainon vallitessa $\vec{F}_1 + \vec{F}_2 = 0$

S(Z) = S. C

$$\Rightarrow \frac{dS(z)}{dz} \frac{kT dAdz}{m} = -S(z) dAdz \frac{dV(z)}{dz}$$
$$\Rightarrow \frac{dS(z)}{S(z)} = -\frac{m}{kT} dV$$
$$m \cdot \Delta V(z)$$

TIHEYSJAKAUTUMA POTENTIAALIKENTÄSSÄ V(z) Tarkasteltaessa esim. planeetan atmosfääriä, jossa atmosfäärin korkeus z on hyvin pieni verrattuna planeetan säteeseen R , on

$$\Delta V = V(R+2) - V(R) = -\frac{MG}{R+2} - \left(-\frac{MG}{R}\right)$$
$$= -\frac{MG}{R(1+\frac{2}{R})} + \frac{MG}{R} = -\frac{MG}{R}\left(1-\frac{2}{R}+...\right) + \frac{MG}{R} = \frac{MG}{R^2} = \frac{MG}{R^2}$$
$$= \sqrt{3} = \sqrt{3}$$

Huomioimalla em. tiheysjakautuma saadaan kaasun faasitiheyden lausekkeeksi

.

$$F(\vec{\tau},\vec{v}) = g(\vec{z}) \, f\left((v_x^2 + v_y^2 + v_z^2) \right)$$

$$= g_0 \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\left(\frac{m}{2kT} + \frac{m}{kT} \frac{\Delta V(\vec{z})}{kT} \right)}$$

$$F(\vec{\tau},\vec{v}) = g_0 \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\frac{E}{kT}}$$
HIUKKASTEN PAIKKA- JA
NOPEUSJAKAUTUMA

2.3.6 Boltzmannin laki atomien viritystilojen miehityksille

Sidoselektronien lukumäärä atomin eri viritystiloissa riippuu atomin potentiaalikentästä sekä lämpötilasta.

<u>8n</u> e - (En - Em)/kT 2m

BOLTZMANNIN LAKI

missä

N_n = viritystilassa n olevien atomien lukumäärä N_m = viritystilassa m olevien atomien lukumäärä ns. mich itysluvut g = tietyn energiatilan statistinen paino. Esim. vedylle $g_n = 2n^2$

 $\chi_{n} = E_{n} - E_{1} = tilan n viritysenergia saadaan$ Merkitsemällä

$$\frac{N_m}{N_1} = \frac{g_m}{g_1} e^{-X_m/kT}$$

$$\Rightarrow N_n = \frac{N_1}{g_1} g_n e^{-\chi_n/kT}$$

N = N₁ + N₂ + ... + N_n + ... =atomien kokonaislukumäärä

$$\Rightarrow N = \frac{N_1}{g_1} \sum_{n=1}^{\infty} g_n e^{-\chi_n/kT}$$

partitiofunktio u(T)

$$N = \frac{N_{1}}{g_{1}} \cdot u(T) \implies \frac{N_{1}}{N} = \frac{g_{1}}{u(T)}$$
$$\Rightarrow \frac{N_{n}}{N} = \frac{N_{n}}{N_{1}} \cdot \frac{N_{1}}{N} = \frac{g_{n}}{g_{1}} e^{-\chi_{n}/kT} \cdot \frac{g_{1}}{u(T)}$$
$$\frac{N_{n}}{N} = \frac{g_{n}}{u(T)} e^{-\chi_{n}/kT}$$

missä N = atomien kokonaislukumäärä

u(r)

HUOM. Partitiofunktiota laskettaessa on summa katkaistava tietystä kohdasta – viimeistään silloin, kun pääkvanttilukua n vastaavat Bohrin säteet ovat ytimien välimatkojen suuruusluokkaa ja sähköinen repulsio voimistuu. Tämän vuoksi partitiofunktion arvo riippuu kaasun tiheydestä.

 $g_m = 2n^2$ $\chi_m = hR_{\mu}(\frac{1}{1^2} - \frac{1}{n^2})$, missä Rydbergin vakio on Hz-yksiköissä: $R_{\mu} = 3.29 \times 10^{15}$ Hz

> Huom. normaalisti Rydbergin vakio ilmoitetaan pituusyksikköä kohti:

 $h\nu = hc \frac{1}{\lambda} = hc R_{M} \left(\frac{1}{h^{2}} - \frac{1}{n^{2}}\right), \text{ missä } R_{M} = \frac{R_{\infty}}{1 + \frac{m_{e}}{M}}$ $Vedylle R_{H} = 109667.6 \frac{1}{cm} = R_{\infty}$ $u(T) = \sum_{n=1}^{n^{2}} 2n e^{-hR_{H}[HZ]} (1 - \frac{1}{n^{2}})/RT$

u (10000 K) ≈ 2 (vedylle)

Kun T	= 100001	< :		9 _X /bT
ኪ	2n ²	$1-\frac{1}{n^2}$	e-Xn/RT	$\frac{N_n}{N} = \frac{2n^2}{u(10000K)} e^{-\frac{N_n}{k}}$
1	2	0	2	~ 1
૧	8	0.75	5.78 × 10 ⁻⁵	2.3 × 10-5
3	18	0.889	1.45 × 10 ⁻⁵	7.2 × 10 ⁻⁶

Todetaan, että 10000 K lämpötilassa suurin osa vetyatomeista on perustilassa (kts. alla olevaa taulukkoa).

Table	Relative Populations of Levels in Hydrogen
$(P_e =$	10 dyne cm^{-2}).

T	$\frac{N_{l,2}}{N_{l,1}}$	$\frac{N_{I,3}}{N_{I,1}}$
4,000°K	5.62×10^{-13}	5.25×10^{-15}
6,000	1.08×10^{-8}	6.28×10^{-10}
8,000	1.50×10^{-6}	2.17×10^{-7}
10,000	2.89×10^{-5}	7.25×10^{-6}
12,000	2.08×10^{-4}	7.52×10^{-5}
14,000	8.51 × 10-4	4.00×10^{-4}
16,000	2.45×10^{-3}	1.40×10^{-3}
18,000	5.57×10^{-3}	3.71×10^{-3}
20,000	1.08×10^{-2}	8.08×10^{-3}

TableLogarithms of Partition Functions.* [From T. L. Swihart, 1968 (6), pp.274-275, based on unpublished calculations of A. N. Cox.]

The following ions have partition functions which are nearly independent of temperature and electron pressure as long as the abundance of the ion is not negligibly small:

ION	log u _i	ION	log u,	ION	log u
HI	0.301	0 11	0.60	Mg III	0.00
He I	0.00	OIII	0.95	ALII	0.00
He II	0.30	Ne I	0.00	Al III	0.30
Li II	0.00	Ne II	0.78	Si II	0.78
Li III	0.30	Ne III	0.95	Si III	0.00
CII	0.78	Na II	0.00	KII	0.00
CIII	0.00	Na III	0.78	K III	0.78
NII	0.96	Mg II	0.30	Ca III	0.00
NIII	0.78				

2.3.7 Ionisaatioyhtälö (Sahan yhtälö)

Megh Nad Saha johti 1920 statistisen fysiikan menetelmin tähtien atmosfäärin virityksen ja ionisaation teorian. Ionisaatioteorian perusideana on, että tasapainotilassa ionisaatioiden lukumäärä sekunnissa on yhtäsuuri kuin rekombinaatioiden lukumäärä sekunnissa.

Yksinkertaisuuden vuoksi tarkastellaan vain vierekkäisiä ionis.asteita i ja i+1 Ionisaatioiden lukumäärä/s: $\frac{dN(i \rightarrow i+1)}{d+} = N_i \cdot f_1(T, \chi_{ion})$

Rekombinaatioiden lukumäärä/s :

$$\frac{dN(i+1 \rightarrow i)}{dt} = N_{i+1} \cdot N_e \cdot f_{\mathfrak{L}}(T, \chi_{ion})$$

Tasapainotilassa:

$$\frac{dN(i \rightarrow i+1)}{dt} = \frac{dN(i+1 \rightarrow i)}{dt}$$

$$\frac{N_{i+1} \cdot N_e}{N_i} = \frac{f_1}{f_2} = g(T, \mathcal{K}_{ion})$$

Saha sai g-funktion lausekkeeksi

$$\frac{N_{i+1} \cdot N_e}{N_i} = \frac{\left(2\pi m kT\right)^{3/2}}{h^3} \cdot \frac{2u_{i+1}(T)}{u_i(T)} e^{-\frac{\chi_i}{kT}}$$
SAHAN YHTÄLÖ

missä
$$N_e = \text{elektronitiheys } [\text{cm}^{-3}]$$

 $m = \text{elektronin massa}$
 $\chi_i = \text{ionisaatioenergia asteelta i asteelle i+1}$
 $u_i(\tau) = \sum_{i,n} e^{-(\chi_{i,n} - \chi_{i,1})/kT}$
Huom. Ensimmäinen alaindeksi ilmoittaa ionisaatioasteen
ja jälkimmäinen alaindeksi viritystilan. Partitio-
funktion u_{i+1} edessä oleva luku 2 on vapaitten
elektronien statistinen paino.

Sahan yhtälössä käytetään usein elektronipainetta P_e elektronitiheyden asemesta:

$$P_e = N_e kT \implies N_e = \frac{P_e}{kT}$$

$$\Rightarrow \boxed{\frac{N_{i+1}P_e}{N_i} = \frac{(2\pi m)^{3/2}}{h^3} \cdot (kT)^{5/2} \cdot \frac{2 u_{i+1}(T)}{u_i(T)} e^{-X_i/kT}}$$

Mikäli e-kantainen potenssi halutaan muuttaa 10-kantaiseksi, on $-\chi_{i}/RT = 10 \quad \frac{l_{0}e}{R} \cdot \frac{\chi_{i}}{T} = 10 \quad \frac{5040}{T} \cdot \chi_{i}[eV]$

Sijoittamalla vakioitten lukuarvot, saadaan Sahan yhtälö muotoon

$$\frac{N_{i+1} \cdot P_e}{N_i} = 0.331 \cdot T^{5/2} \cdot \frac{2u_{i+1}(T)}{u_i(T)} \cdot 10^{-\frac{5040}{T}} \chi_i[eV]$$

$$l_g \frac{N_{i+1} \cdot P_e}{N_i} = -0.48 + \frac{5}{2} l_g T + l_g \frac{2u_{i+1}(T)}{u_i(T)} - \frac{5040}{T} \chi_i[eV]$$

HUOM. Elektronipaineen yksikkönä käytettävä dyn/cm²

	neutraali atomi	1. kerran ionisoitunut	2 kertaa ionisoitunut	r kertaa ionisoitunut
Vapaita elektroneja atomia kohden	0	1	2	*
Ionisaatioenergia	blo Kasab	Х. Э	C1 .	$\chi_2 - \chi_2$
Ionin merkintä (esimerkkinä Rauta Fe)	FeI	Fe II	Fe 🎞	Fe ⁽⁷⁺¹⁾
Kaikkien atomien lkm. ko. ionisaatioasteella	N。	N ₁	Na	NT
Perustilassa olevien ionien lukumäärä	N _{0,1}	N _{1,1}	N _{2,1}	N.,,1
Viritystilas <mark>sa s</mark> olevien ionien lkm.	N _{o,s}	N _{1, S}	N _{2,S}	N _{+,s}

Astrofysiikassa käytetään seuraavia merkintöjä:

Alkuaineitten partitiofunktiot eri lämpötiloissa ja elektronipaineessa esitetty alla olevassa taulukossa. Seuraavalla sivulla ovat alkuaineitten ionisaatiopotentimalit.

The following table gives $\log u_i$ for other ions as a function of temperature and electron pressure:

		ТЕМР	ERATURE	(°K)			TEMPERATURE (°K)			
ION	log P.	5,040	7,200	10,080	ION	log Pe	5,040	7,200	10,080	
LiI	0	0.33	0.75	1.68	Si I	0	0.97	1.00	1.21	
	2	0.32	0.44	0.91		2	0.96	0.99	1.06	
	4	0.32	0.37	0.51		4	0.96	0.98	1.04	
CI	0	0.96	0.98	1.01	KI	0	0.43	1.16	2.02	
	2	0.95	0.98	1.01		2	0.35	0.62	1.19	
	4	0.95	0.98	0.99		4	0.33	0.45	0.69	
NI	0	0.60	0.62	0.66	Cal	0	0.08	0.46	1.36	
	2	0.60	0.62	0.66		• 2	0.07	0.30	0.79	
	4	0.60	0.62	0.66		4	0.04	0.27	0.62	
10	0	0.95	0.95	0.97	Ca II	. 0	0.34	0.43	0.57	
	2	0.95	0.96	.0.97		2	0.33	0.42	0.56	
	4	0.95	0.96	0.97		4	0.31	0.38	0.52	
Na I	0	0.32	0.68	1.53	Fe I	0	1.47	1.85	2.83	
	2	0.31	. 0.41	0.81		2	1.47	1.78	2.36	
	4	0.30	0.36	0.51		4	1.47	1.74 .	2.26	
MgI	0	0.00	0.02	0.30	Fe II	0	1.38	1.55	1.79	
398.1	2	0.00	0.00	0.09		2	1:38	1.54	1.79	
	4	0.00	0.00	0.06		4	1.38	1.52	1.75	
AII	0	0.78	0.84	1.33	Fe III	0	1.40	1.42	1.49	
	2	0.78	0.79	0.91		2	1.40	1.42	1.49	
	4	0.78	0.73	0.82		4	1.40	1.42	1.49	

• The electron pressure is expressed in dyne cm⁻².

Note in proof. A. N. Cox (1972) finds additive corrections as large as 2.3 for some entries.

Table	Ionization	Potentials.*	(C. E	. Moore,	1970 (234).]
-------	------------	--------------	-------	----------	--------------

AT,		,	"	m	IONIZAT	non potent V	IAL (ELECTI	ION VOLTS)	vili	1X	x				1011	ZATION POT	ENTIAL (ELE	THON VOLT	1)		
	Per Marris											XI	XII	XIII	XII	XV	XVI	XVII	" x VIII	212	XX
-	H Ma	13.598	SA 416																		
3	Li	5.392	75.638	122.451																	
4	Be	9.322	18.211	153.893	217.713																
5	В	8.298	25.154	37.930	259.368	340.217					•										
6	С	11.260	24.383	47.887	64.492	392.077	489.981														
1	N	14.534	29.601	47.448	77,472	97.888	552.057	667.029													
	õ	13.618	35.116	54,934	77.412	113.896	138.116	739.315	871.387	1 103 089											
10	P	21 564	40.967	61.45	97.11	126.21	157.101	207.27	239.09	1,105.797	1.362 164										
11	Na	5.139	47.286	71.64	98.91	138.39	172.15	208.47	264.18	299.87	1,465.091										
12	Mg	7.646	15.035	80.143	109.24	141.26	186.50	224.94	265,90	327.95	367.53	1,648.659									
13	AI	5.986	18.828	28.447	119.99	153.71	190.47	241.43	284.59	330.21	398.57	1,761.802	1,962.613								
14	Si	8.151	16.345	33.492	45.141	166.77	205.05	246.52	303.17	351.10	401.43	442.07	2,065.983	2,304.060							
15	P	10.486	19,725	30.18	31.37	63.0ZJ	220.43	263.22	309.41	371.73	424.30	470.00	540.41	611 85	2,0/3.108	1 069 767					
10	å	12 967	23.33	39.61	53.46	67.8	68.047	280.93	348.23	400.05	455 67	504.78	564.65	651.63	707.14	3.223.836	3,494,099				
18	Ar	15.759	27.629	40.74	59.8)	75.02	91.007	124.319	143.456	422.44	478.68	\$29.26	591.97	656.69	749.74	\$09.39	3,658.425	3,946,193			
19	ĸ	4.341	31.625	45.72	60.91	82.66	100.0	117.56	154.86	175.814	503.44	538.95	618.24	686.09	755.73	854.75	918	4,120.778	4,426.114		
20	Ca .	6.113	11.871	50.906	67.10	84.41	108.78	127.7	147.24	188.54	211.270	564.13	629.09	714.02	787.13	861.77	968	1,034	4,610.955	4,933.931	
21	Sc	6.54	12.80	24.76	73.47	91.66	111.1	138.0	158.7	190.02	225.32	591.25	656.39	726.03	\$16.61	895.12	974	1,087	1,157	5,129.045	5,469.7
22	Ti	6.82	13.58	27.491	43.266	99.22	119.36	140.8	168.5	193.2	215.91	249,832	683,89	755.47	829.79	926.00			•		
23	v	6.74	14.65	29.310	46.707	65.23	128.12	150.17	173.7	203.8	230.5	263.23	291,497	116 267	801.33	974.02					
24	Ur M-	0./00	15.640	30.90	49.1 517	774	90.36	101.1	104.7	207.3	244.4	270.8	298.0	355	344.30	1.010.64					
26	Fe	7.870	16.18	30.651	54.8	75.0	99	125	151.06	235.04	262.1	286.0	314.4	343.6	404	435.3	1.133.21				
27	Co	7.86	17.06	33.50	51.3	79.5	102	129	157	186.13	276	290.4	330.8	361.0	392.2	457	489,5	1,266.1			
28	Ni	7.635	18.168	35.17	54.9	75.5	108	133	162	193	224.5	305	336	379	411	444	512	546.8	1,403.0		
29	Cu	7.726	20.292	36.83	55.2	79.9	103	139	166	199	232	321.2	352	384	430	464	499	571	607.2	1,547	
30	Zn	9,394	17.964	39.722	59.4	82.6	108	134	174	203	238	266	368.8	401	435	484	520	557	633	671	1,698
31	Ga	5,999	20.51	30.71	64					•		2/4 .	310.8	419,7	434	490	342	3/9	0/9	QY3	/38
32	Ge	7.899	13.934	34.22	42.71	93.3 67.67	1774														
	ŝ	9.752	21.19	30.820	42.944	61.05	\$1.70	155.4													
-75	Br	11,814	21.8	36	47.3	59.7	88.6	103.0	192.8												
36	Kr	13.999	24.359	36.95	52.5	64.7	78_5	111.0	126	230.9											
37	Rb	4.177	27.28	40	\$2.6	71.0	84.4	99.2	136	150	277.1										
38	Sr	5.695	11.030	43.6	57	71.6	90.8	106	1223	162	177										
39	Y 7.	6.38	12.24	20.32	01.8 24.24	77.0	93.0	110	129	140.2	זעו	324.L VI6	174.0								
41	Nh	6.88	14 12	25.04	38.3	50.55	102.6	125				-00	314.0								
42	• Mo	7.099	16.15	27.16	46.4	61.2	68	126.8	153												
43	Te	7.28	15.26	29.54																	
44	Ru	7.37	16.76	28.47			-														
45	Rh	7.46	18.08	31.06																	
40	Pd	8.54	19.43	32.93																	
49	2	1.5/0	16 905	39.65																	
49	In	5.786	18.869	28.03	54																
50	Sn	7.344	14.632	30.502	40.734	72.28			•												
51	56	8.641	16.53	25.3	44.2	56	108														
52	Te	9.009	18.6	27.96	37.41	58.75	70.7	137													
53	1	10.451	19.131	. 33																	
54	Xe	12.130	21.21	32.1					•												
33	Ci Ba	3.894	43.1T 10.004																		
57	l.a	5.577	11.06	19,175												,					
••																•					
Fahi	P	(conti	in und																		
1 0 01		(com	nneu)																		

-											
AT. NO.	ELEMENT	ı	11	m	IONIZA IV	TION POTENT	IAL (ELECTRO	אס volts) VII	viii	IX	x
58	Ce	5.47	10.85	20.20	36.72	Sec. D. C.		1.1.1			1.1.1.1
59	Pr	5.42	10.55	21.62	38.95	57.45					
٦	Nd	5.49	10.72								
-	Pm	5.55	10.90								
6	Sm	5.63	11.07							100004	
63	Eu	5.67	11.25								
64	Gd	6.14	12.1								
65	Тъ	5.85	11.52				1.000				
66	Dy	5.93	11.67								
67	Ho	6.02	11.80								
68	Er	6.10	11.93								
69	Tm	6.18	12.05	23.71							
70	Yb	6.254	12.17	25.2							
71	Lu	5.426	13.9								
72	Hſ	7.0	14.9	23.3	33.3						
73	Ta	7.89									
74	W	7.98				5 (M S)					1.1
75	Re	7.88									
76	Os	8.7									
77	Ir	9.1									
78	Pt	9.0	18.563								
79	Au	9.225	20.5								
80	Hg	10.437	18.756	34.2							
81	П	6.108	20.428	29.83							
82	Pb	7.416	15.032	31.937	42.32	68.8					
83	Bi	7.289	16.69	25.56	45.3	56.0	88.3				
84	Po	8.42				101, 204, 21					
85	At										
86	Rn	10.748						Con line in			
87	Fr										
88	Ra	5.279	10.147								
89	Ac	6.9	12.1								
90	Th		11.5	20.0	28.8						
91	Pa										
92	U										
93	Np										
94	Pu	5.8									
95	Am	6.0									

Ca I :
$$X_o = 6.11 \text{ eV}$$

 $u_o(10000\text{K}) = 4.7$
Ca II: $u_1(10000\text{K}) = 3.55$

Sahan yhtälö :

$$\frac{N_{1} \cdot P_{e}}{N_{o}} = 0.331 \times T^{5/2} \times \frac{2 u_{1}}{u_{o}} \times 10^{-\frac{5040}{T}} \mathcal{X}_{o}[eV]$$

$$\frac{N_{1}}{N_{o}} = \frac{1}{300} \times 0.331 \times 10^{4 - \frac{5}{2}} \times 1.51 \times 10^{-0.504 \times 6.11}$$

$$\frac{N_{1}}{N_{o}} = 1.4 \times 10^{4}$$

Todetaan, että lähes kaikki Ca - atomit ovat kerran ionisoituneet (Ca II).

ESIM. 2 Kuinka suuri on kahdesti ionisoituneen kalsiumin osuus Siriuksen atmosfäärissä (jatkoa edelliseen tehtävään). Määritä myös ionien suhteelliset osuudet.

Ca II :
$$\chi_{1} = 11.87 \text{ eV}$$

CaIII : $u_{2} = 1.0$
 $\frac{N_{2} \cdot P_{2}}{N_{1}} = 0.331 \times 10^{4 \cdot \frac{5}{2}} \times 0.56 \times 10^{-0.504 \times 11.87} = 1930$
 $\Rightarrow \frac{N_{2}}{N_{1}} = \frac{1930}{300} = \frac{6.4}{1.4 \times 10^{4}} \approx 10^{-4} \text{ N}_{1}$
Jakauma : Ca I : $N_{0} = \frac{N_{1}}{1.4 \times 10^{4}} \approx 10^{-4} \text{ N}_{1}$
Ca II : N_{1}
Ca III : $N_{2} = 6.4 \text{ N}_{1}$
Ca III : $N_{2} = 6.4 \text{ N}_{1}$
Ca III : $\chi_{2} = 51.2 \text{ eV} \Rightarrow 10^{-0.504 \times 51.2} \approx 10^{-26}$)
N $\approx N_{1} + N_{2} = 7.4 \text{ N}_{1}$
Ca III : n osuus on $\frac{N_{1}/N \approx 13 \text{ Z}}{N_{2}/N \approx 87 \text{ Z}}$

Fig. Ionization of Hydrogen. An electron pressure $P_e = 10$ dynes cm⁻² is assumed. For this electron pressure, hydrogen is almost completely neutral at temperatures below 6,000°K and almost completely ionized above 11,000°K.

Т		$\frac{N_{II}}{N_{I}}$	$\frac{N_1}{N_1 + N_{11}}$	$\frac{N_{II}}{N_I + N_{II}}$
4,00	0°K 2.46	× 10-10	1.000	0.246 × 10-*
6,00	0 3.50	× 10-4	1.000	0.350 × 10-3
8,00	0 5.15	× 10 ⁻¹	0.660	0.340
10,000	0 4.66	× 10+1	0.0210	0.979
12,00	0 1.02	× 10+3	0.000978	0.999
14,00	9.82	× 10+3	0.000102	1.000
16,00	0 5.61	× 10**	0.178 × 10 ⁻⁴	1.000
18,000	0 2.25	× 10+5	0.444×10^{-8}	1.000
20,000	7.05	× 10+8	0.142×10^{-5}	1.000

Table Ionization of Hydrogen ($P_e = 10 \text{ dyne cm}^{-2}$).

Fig. Ionization of Helium. An electron pressure $P_e = 10$ dynes cm⁻² is assumed. For this electron pressure, helium is almost completely neutral at temperatures below 10,000°K, once ionized in the neighborhood of 20,000°K, and almost entirely twice ionized above 37,000°K.

2.3.8 Ionisaatioyhtälön verifiointi

a) Auringonpilkut

Auringonpilkussa $T_{spot} = 4500K$ ympäristössä $T_{phot} = 5740K$ $\Delta T = 1200K$

Havainnot osoittavat, että neutraalien alkuaineittan Na, K, Ca viivat ovat tuntuvasti voimakkaammat auringonpilkuissa kuin ympäröivässä fotosfäärissä. Koska kyseisten alkuaineitten ionisaatiopotentiaalit ovat luokkaa 4-6 eV, on Sahan yhtälön potenssilauseke

auringonpilkun tapauksessa fotosfäärin tapauksessa $10^{-\frac{5040}{4500}\cdot 5} = 10^{-5.60}$ $10^{-\frac{5040}{5740}\cdot 5} = 10^{-4.49}$

Täten ionisaatiosuhde N₁/N₀ auringonpilkussa eroaa huomattavasti vastaavasta suhteesta ympäröivässä fotosfäärissä, mikä on sopusoinnussa havaintojen kanssa.

b) Spektriluokituksen selittäminen ionisaation ja virityksen avulla

Sahan ja Boltzmannin kaavoja voidaan käyttää lämpötilaindikaattoreina, kun elektronipaine oletetaan tunnetuksi. Tarkasteltaessa spektriviivoja, joiden lähtötasona on viritystila (esim, vedyn Balmer-sarjan lähtötason n=2) on huomioitava seuraavat vaikutukset:

- 1) Lämpötilan noustessa viritystilan miehitys kasvaa
- 2) Lämpötilan noustessa seuraavan ionisaatioasteen osuus kasvaa, minkä seurauksena em. viritystilan miehitys vähenee.
- ESIM. Vedyn Balmer-sarjan viivat:

Viritystilassa n=2 olevien atomien osuus neutraalivedystä saadaan seuraavasti. Boltzmannin yhtälön mukaan on

$$\frac{N_{0,2}}{N_0} = \frac{q_2}{u_0(T)} e^{-\chi_{0,2}/kT} , \text{ missä } q_2 = 2 \cdot 2^2 = 8$$

Sahan yhtälöstä saadaan N₁:

$$N_{1} = \frac{N_{o}}{P_{e}} \frac{(2\pi m)^{3/2} (kT)^{5/2} 2u_{1}(T)}{h^{3}} e^{-\chi_{o}/kT}, \text{ missä } \chi_{o} = 13.6 \text{ eV}$$

Viritystilassa n=2 olevien atomien osuus kaikesta vedystä on siten

$$\frac{N_{0,2}}{N_{0}+N_{1}} = \frac{N_{0,2}}{N_{0}} \frac{N_{0}}{N_{0}+N_{1}} = \frac{N_{0,2}}{N_{0}} \cdot \frac{1}{1+\frac{N_{1}}{N_{0}}}$$

Olettamalla elektronipaineeksi $P_e = 10 \text{ dyn/cm}^2$ saadaan seuraavat lukusuhteet

т [к]	N _{0,2} /N ₀	$\frac{N_o}{N_o+N_1}$	<u>N_{0,2}</u> N ₀ +N ₁	
4000 6000 8000 10000 12000 14000 16000 18000	$5.62 \ 10^{-13}$ $1.08 \ 10^{-8}$ $1.50 \ 10^{-6}$ $2.89 \ 10^{-5}$ $2.08 \ 10^{-4}$ $8.51 \ 10^{-4}$ $2.45 \ 10^{-3}$ $5.57 \ 10^{-3}$	$\begin{array}{c} 1.000 \\ 1.000 \\ 0.660 \\ 0.021 \\ 0.978 \ 10^{-3} \\ 1.02 \ 10^{-4} \\ 1.78 \ 10^{-5} \\ 4.44 \ 10^{-6} \\$	$5.62 \ 10^{-13}$ $1.08 \ 10^{-8}$ $0.99 \ 10^{-6}$ $0.61 \ 10^{-6}$ $0.20 \ 10^{-6}$ $8.68 \ 10^{-8}$ $4.36 \ 10^{-8}$ $2.47 \ 10^{-8}$	hta

Vastaavasti voidaan laskemalla osoittaa, että Ca I 4227-viiva on voimakas kylmissä tähdissä spektriluokkaan FO saakka.

$$T_{eff}(F0) = 7350 \ \text{k} : \frac{N_{\bullet}}{N_{o}} \approx 500$$
$$T_{eff}(G0) = 6050 \ \text{k} : \frac{N_{\bullet}}{N_{o}} \approx 3.9$$

Spektriluokan FO kohdalla CaI viivat siis heikkenevät, mutta CaII viivat ovat edelleen vahvoja. Vielä kuumemmissa tähdissä (T>10000K) CaIII ja H- ja K- viivat heikkenevät ja He-viivat voimistuvat. - 124 -

Abb. Thermische Ionisation (17.13) und Anregung (17.6) als Funktion der Temperatur T bzw. $\Theta = 5040/T$ für einen Elektronendruck $P_e = 100 \text{ dyn/cm}^2$ (~ Mittelwert für Sternatmosphären). Die Temperaturskala überdeckt den ganzen Bereich von den O-Sternen (links) bis zu den M-Sternen (rechts). Die Sonne (G2) wäre etwa bei T = 5800 "K einzuordnen. Unsere Kurven veranschaulichen die von M. N. Sahu 1920 gegebene Deutung der Harvard-Sequenz der Spektraltypen (Abschn. 15): Zum Beispiel ist Wasserstoff (111) bis $T \approx 10000$ "K vorwiegend neutral; die Anregung des 2. Quantenzustandes, von dem aus die Balmerlinien im sichtbaren Spektralgebiet absorbiert wurden, nimmt mit T zu. Oberhalb T = 10000 "K wird der Wasserstoff rasch wegionisiert. So versteht man, daß die Wasserstofflinien ihr Intensitätsmaximum bei den A0-Sternen mit $T \approx 10000$ "K haben

Spektrum	Ionisationss _{Xo} eV	pannung	Angeregter Zustand und Anregungsspannung r eV				
HI	13.60		n = 2;	10.15			
Hel	24.59		23 P°;	20.87	λ (HeI)=4479Ă		
HeII	54.42		n=3;	48.16	•		
MgI	7.65		-:				
MgII	15.03		32D;	8.83	1.60.5 1.000		
Cal	6.11		4'S;	0.00	2(GI) = 4337A		
Call	11.87		42 S;	0.00			
	standard and set of the set						

c) Luminositeettiefektit

Sahan yhtälön mukaisesti N_{i+1}/N_i on kääntäen verrannollinen elektronitiheyteen N_e. Täten saadaan erilainen luminositeettiluokka tähdille, joilla <u>sama pintalämpötila</u>, mutta jotka läpimitaltaan poikkeavat huomattavasti toisistaan :

jättiläistähti (tiheys pieni) : pieni $N_e \Rightarrow$ tehokkaampi ionisaatio: $\frac{N_{i+1}}{N_i}$ suuri kääpiö (suuri tiheys) : suuri $N_e \Rightarrow N_{i+1}/N_i$ pieni

ESIM. 1 $T_{eff}(\odot) = 5750K$: kääpiö, Sp G2

T_{off}(★) = 5750K: jättiläinen, Sp F8

ESIM. 2		T _{eff}	P _e [dyn/cm ²]	Cal/Ca(total)	
	M4 kääpiö	3150K	0.5	0.82	
	M4 jättiläinen	3150K	0.008	0.07	

CaI 4227-viiva on hyvä luminositeettiindikaattori (kts. kuvaa alla)

HUOM. Luminositeettikriteerit ovat yleensä empiirisellä pohjalla, eivätkä aina noudata Sahan yhtälöä edes kvalitatiivisesti.

FIG. COMPARISON OF THE CA I LINE, $\lambda 4227$, IN DWARFS, GIANTS, AND SUPERGIANTS OF SPECTRAL CLASS M2 The symbols Ia, III, and V denote the luminosity class of the star in the classification scheme of the Morgan-Keenan-Kellman Atlas of Stellar Spectra. The supergiant μ Cephei is one of the brightest stars known, HD 169746 is a giant, and HD 199305 is a dwarf. Notice that the Ca I line, $\lambda 4227$, the most conspicuous feature in the dwarf spectrum, steadily weakens in stars of increasing luminosity, until in μ Cephei it is weaker than the lines on either side. The red edge of the "G-band," $\lambda 4308$, strengthens in the brighter stars. (Courtesy, P. C. Keenan and J. J. Nassau, Ap. J. 104, 458, 1946, University of Chicago Press.)

2.3.9 Kaasun paineen ja elektronipaineen välinen riippuvuus

Vedyn ionisaatiopotentiaali $\mathfrak{X}_{o}(H)$ on 13.6 eV ja "metallien" ionisaatiopotentiaali \mathfrak{X}_{o} (metallit) on 4.5-7.0 eV. Kylmemmissä tähtiatmosfääreissä (T ≤ 8000 K) tuottavat siten "metallit" pääosan atmosfäärin vapaista elektroneista. Kuumemmissa tähdissä (T $\gtrsim 10000$ K) vety puolestaan vastaa elektronien tuotosta.

Merkitään

 $N_{0,E}$ = alkuaineen E neutraalien atomien lukumäärä $N_{1,E}$ = kertaalleen ionisoituneiden alkuaineen E atomien lukumäärä $N_E = N_{0,E} + N_{1,E} \approx$ alkuaineen E atomien kokonaismäärä $X_E = (N_{1,E}/N_E)$ = alkuaineen E ionisaatioaste $N_a = \sum_E N_E$ = kaikkien atomien lukumäärä $N_e = X_1 \cdot N_1 + X_2 \cdot N_2 + \ldots = \sum X_E \cdot N_E$ = elektronien kokonaismäärä Elektronipaine $P_e = N_e kT$ Kaasun paine $P_g = NkT = (N_e + N_e)kT$

$$\Rightarrow \frac{P_{a}}{P_{e}} = \frac{N_{a} + N_{e}}{N_{e}} = \frac{1 + N_{e}/N_{a}}{N_{e}/N_{a}}$$

Elektronitiheyden N_e ja atomien kokonaismäärän N_a selville saamiseksi oletetaan tietty lämpötila, elektronipaine sekä alkuaineille tietyt runsaudet N_E (\Rightarrow N_a = \sum_{E} N_E). Sahan yhtälöstä saadaan kullekin alkuaineelle N₁/N₀ (huom. korkeamman kuin 1. asteen ionisaatiota ei tarvitse huomioida, koska nämä tuottavat niukasti elektroneja). Elektronitiheys saadaan tämän jälkeen yhtälöstä N_e = \sum_{E} X_E·N_E, jonka jälkeen kaasunpaine voidaan laskea kullakin elektronipaineen arvolla. Laskujen tuloksia esitetty kuvassa 3-9. Kuvasta voidaan esimerkiksi todeta että, kun T \gtrsim 10000K on kaasunpaine P_g \approx 2P_e (tällöinhän X_H \approx 1 ja N_e \approx N_a \Rightarrow P_g/P_e = (1+N_e/N_a)/(N_e/N_a) \approx 2).

ESIM. Oletetaan, että alkuaine E vastaa yksin elektronien tuotosta.

$$N_E = \frac{S_E}{m_E} = N_I(E) + N_I(E) = N_I(E) + N_e$$

Sahan yhtälö antaa suhteen

$$\frac{N_{\pm}(E)}{N_{\pm}(E)} = \frac{N_{E}}{N_{\pm}(E)} = \frac{N_{E} - N_{\pm}(E)}{N_{\pm}(E)}$$

$$\Rightarrow N_{\pm}(E) \quad \text{voidaan ratkaista}$$

$$\Rightarrow N_{e} = N_{E} - N_{\pm}(E)$$

$$\Rightarrow P_{e} = N_{e} kT$$

$$\Rightarrow P_{g} = (N_{a} + N_{e}) kT \quad \text{, missä } N_{a} = \frac{g}{m} = \frac{g}{A \cdot m_{H}}$$

$$\overline{A} = \text{kaasuseoksen keskimääräinnen molekyylipaino}$$

$$m_{H} = \text{vetyatomin massa}$$

2.3.10 Termodynaaminen tasapaino TE ja LTE

Seuraavat tekijät määräävät materian ominaisuudet tähtien atmosfääreissä :

- Atomien ja molekyylien energiatilojen miehitysluvut. Termodynaamisessa tasapainossa tilannetta kuvataan <u>Boltzmannin kaavalla</u> (lämpötilasuure : T_{ex}).
- Ionisaatioaste. Termodynaamisessa tasapainossa tilannetta kuvataan <u>Sahan yhtälöllä</u> (lämpötilasuure : T_{ion}).
- Molekyylien dissosioituminen atomeiksi ja päinvastoin. Termodynaamisessa tasapainossa tätä kuvataan <u>dissosiaatiokaavalla</u> (lämpötilasuure : T_{diss})
- Atomien ja elektronien nopeusjakautumat.
 Termodynaamisessa tasapainossa tätä kuvataan
 <u>Maxwellin nopeusjakautumalla</u> (lämpötilasuure : T_{kin}).
- 5. Kaasun säteilyintensiteetin aallonpituusriippuvuus. Termodynaamisessa tasapainossa tätä kuvataan <u>Planckin säteilylain</u> avulla (lämpötilasuure : mustan kappaleen lämpötila T_{bb}).

Termodynaamisessa tasapainotilassa kaikki yllä luetellut ominaisuudet seuraavat yksikäsitteisesti kemiallisesta koostumuksesta, tiheydestä ja lämpötilasta, joka on vakio koko tarkasteltavassa alueessa.

Termodynaamisessa tasapainossa TE (thermal equilibrium) :

 $T_{ex} = T_{ion} = T_{diss} = T_{kin} = T_{bb}$

Jokaista prosessia vastaa yhtä nopeasti tapahtuva vastakkaissuuntainen prosessi. Paikallisessa termodynaamisessa tasapainossa LTE (local thermodynamic equilibrium) vallitsee TE vain tietyssä rajoitetussa osa-alueessa.

TE pätee vain osassa tiettyä atmosfäärikerrosta : ESIM.

Termodynaamisessa epätasapainossa (non-LTE) edellä mainitut lämpötilat poikkeavat toisistaan myös paikallisesti.

$$T_{ex} \neq T_{ion} \neq T_{diss} \neq T_{kin} \neq T_{bb}$$

ESIM. Maserlähteissä $T_{ex} = 10^{13} K$, mutta $T_{kin} < 1000 K$.

2,4 TÄHTIEN ATMOSFÄÄRIMALLIEN LASKEMINEN

Probleema : Miten lämpötila, paine, tiheys ja geometrinen syvyys x riippuvat atmosfäärin optisesta syvyydestä ℃?

Atmosfäärimallin syntyprosessia kuvaa seuraava kaaviokuva :

Atmosfäärimalli lasketaan iterointitekniikalla. Perusparametreille T_{eff}, g ja kemialliselle koostumukselle otetaan tietyt lähtöarvot. Teoreettisten laskujen tuloksena saadaan ennusteet tähdestä ulostulevan säteilyvuon tiheydelle, Balmerin epäjatkuvuudelle sekä absorptioviivojen intensiteetille ja profiileille. Vertaamalla näitä teoreettisia ennusteita havaintoihin voidaan mallia parantaa

1) muuttamalla lähtöparametrien arvoja

(reunaehto :
$$\int_{\infty}^{\infty} \mathcal{F}_{r}(\mathcal{T}_{r}) dv = \text{const.}$$
, ts. säteilyn kokonaistehon pysyttävä
vakiona atmosfäärin eri kerroksissa)

muuttamalla teoreettisia oletuksia

 (esim. poikkeamat LTE:stä sekä tähden rotaation ja konvektiovirtausten huomioiminen).

- 130 -

Ensimmäisessä approksimaatiossa oletetaan myös ns. <u>harmaa atmosfääri</u>, jossa keskimääräinen absorptiokerroin \overline{k} ei riipu aallonpituudesta. Keskimääräisten absorptiokertoimien määritelmät esitetään luvussa 2.5.4f.

HUOM. Atmosfäärimallit ovat lähtökohtana laskettaessa tähtien teoreettisia spektriviivoja. Kun suureitten T, P_g, P_e, S ja k, riippuvuus atmosfäärin optisesta syvyydestä tunnetaan, voidaan laskea alkuaineen ionisaatioaste sekä viiva-absorptiokerroin atmosfäärin eri syvyyksissä.

Seuraavassa esitetään Auringon sekä varhaisen spektriluokan tähden atmosfäärimallin laskemisen pääperiaatteet.

2.4.1 Lämpötilajakautuman T(7) empiirinen määritys Auringon atmosfäärissä

Auringon reunatummumisen johdosta saadaan riippuvuus $T = T(\gamma)$ suoraan havainnoista.

Säteilynkuljetusyhtälön ratkaisu Eddingtonin approksimaatiossa antoi seuraavat yhteydet (kts. lukua 2.2.6b) $I(0, \Theta) = \frac{1}{2} (\cos \Theta)$

 $\gamma_{\Theta} = \cos \Theta$

Auringon kiekon keskeltä havaittu valo tulee siis keskimäärin syvemmistä kerroksista kuin kiekon reunaosista havaittu valo. Reunatummumisesta seuraa, että atmosfäärin lämpötila kasvaa syvemmälle mentäessä.

 $I_{\lambda}(0,\Theta) = \int_{0}^{\infty} B_{\lambda}(\tau_{\lambda}) e^{-\tau_{\lambda} \sec \Theta} \sec \Theta d\tau_{\lambda} \quad (s = i t e i t y n k u j e t u s y h t = i t o i t i t e t i l a u s k e)$

Kun tämä normitetaan kiekon keskeltä tulevaan intensiteettiin I (0,0), saadaan funktio

$$\phi_{\lambda}(\Theta) = \frac{I_{\lambda}(0,\Theta)}{I_{\lambda}(0,0)} = \int_{0}^{\infty} \theta_{\lambda}(\tau_{\lambda}) e^{-\tau_{\lambda} \sec \Theta} \sec \Theta d\tau_{\lambda}$$

missä $\theta_{\lambda} = \frac{B_{\lambda}(\tau_{\lambda})}{I_{\lambda}(0,0)}$

Koska Auringon pinnan säteily tulee keskimäärin syvyydestä $\Upsilon_{\lambda} = \cos \Theta$, ei havainnoista saada suoraan tietoa atmosfäärin syvemmistä kerroksista. Tässä rajoitetussa pintakerroksessa ($\Upsilon \leq 2$) voidaan olettaa:

132 -

$$B_{\lambda}(\tau_{\lambda}) = A_{\lambda} + B_{\lambda}\tau_{\lambda} + C_{\lambda}E_{2}(\tau_{\lambda})$$
, missä $E_{2}(\tau_{\lambda}) = \int_{1}^{\infty} \frac{e^{-\tau_{\lambda}\cdot y}}{y^{2}} dy$

Sijoittamalla tämä lausekkeeseen $\phi_{\lambda}(\mathbf{\Theta})$ ja integroimalla saadaan

$$\phi_{\lambda}(\cos \Theta) = A_{\lambda} + B_{\lambda}\cos \Theta + C_{\lambda} \left[1 - \cos \Theta \cdot \ln\left(1 + \frac{1}{\cos \Theta}\right)\right]$$

Sovittamalla $\phi_{(\cos \Theta)}$ havaintoihin saadaan vakiot A₂, B₂, C₂ ja siten myös b₂(χ).

Edelleen saadaan Planckin funktio:

$$B_{\lambda}[T(\tau_{\lambda})] = B_{\lambda}(\tau_{\lambda}) \cdot \underbrace{I_{\lambda}(0,0)}_{havainnoista} \implies T = T(\tau_{\lambda})$$

$$B_{\lambda}[T(\tau_{\lambda})] = \frac{2h\nu^{2}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1} \implies T = T(\tau_{\lambda})$$

Tämä empiirinen menetelmä antaa tulokseksi:

 $T_{c} \approx 4000 \text{ K}$ $T(\Upsilon = 2) \approx 7000 \text{ K}$

<u>HUOM.</u> Eri aallonpituuksilla on havaittu ϕ_{λ} erilainen ja siten myös $T(\Upsilon_{\lambda})$ -käyrät poikkeavat toisistaan:

Kuvion käyrien ja vaakasuoran viivan leikkauspisteet antavat riippuvuuden

$$\Upsilon_{\lambda} = \Upsilon(\lambda)$$

Koska Υ riippuu aallonpituudesta, on <u>standardiaallonpituudeksi</u> valittu <u> λ_{o} = 5000Å</u>. Lisäksi merkitään $\Upsilon_{5000Å} = \Upsilon_{o}$.

2.4.2 Auringon fotosfäärimallin laskeminen

a) Riippuvuuden T = $T(\vec{P})$ laskeminen

Säteilynkuljetusyhtälön ratkaisu Eddingtonin approksimaatiossa antoi tulokseksi:

$$\begin{aligned}
\mathcal{J}(\mathcal{V}) &= \mathcal{H}(\mathfrak{Q} + 3\mathcal{V}) \\
\text{LTE:ssä on :} \\
\mathcal{J}(\mathcal{V}) &= \mathcal{B}(\mathbf{T}) = \frac{\mathcal{C}}{\pi} \mathcal{T}^{4}(\mathcal{T}) \\
\stackrel{\text{reff puolestaan määritellään:} \\
\mathcal{\mathcal{V}} &= \int_{-\infty}^{\infty} \mathcal{\mathcal{F}}_{\mathcal{V}} \, d\mathcal{V} = \mathcal{C} \mathcal{T}_{eff}^{4} = 4\pi \, \mathcal{H} \\
\Rightarrow \mathcal{T}^{4}(\mathcal{V}) &= \frac{1}{2} \mathcal{T}_{eff}^{4} \left(1 + \frac{3}{2} \mathcal{V}\right) \\
\stackrel{\text{sij. } \mathcal{T}_{eff}}{\text{sij. } \mathcal{T}_{eff}}
\end{aligned}$$

Huom. Merkintäsopimus : 🖣 = - 9 k dx

Alla olevassa taulukossa on esitetty Auringon fotosfäärimallin antama T($\overline{\mathbf{r}}$) riippuvuus.

.

Table 9-1 $T(\overline{\tau})$ and $\theta(\overline{\tau})$.

Ŧ	<i>Τ</i> (^ε K)	$\theta = \frac{5040}{T}$	Ŧ	T (°K)	$\theta = \frac{5040}{T}$
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500	4967.9 5010.7 5052.4 5093.1 5132.8 5171.7 5209.6 5246.8 5283.2 5318.9 5353.8 5388.1 5421.7 5454.8 5487.2 5519.1 5550.4 5581.2 5611.5	1.0145 1.0058 0.9975 0.9896 0.9819 0.9745 0.9674 0.9606 0.9540 0.9476 0.9414 0.9354 0.9296 0.9240 0.9185 0.9132 0.9080 0.9030 0.9030 0.8982	0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90	5670.7 5728.1 5783.8 5838.0 5890.6 5941.9 5991.9 6040.7 6088.4 6134.9 6224.9 6311.2 6394.1 6473.8 6550.8 6625.1 6697.0 6766.6 6834.2	0.8888 0.8799 0.8714 0.8633 0.8556 0.8482 0.8411 0.8343 0.8278 0.8215 0.8097 0.7986 0.7882 0.7785 0.7694 0.7694 0.7694 0.7526 0.7448 0.7375
			2.00	6899.8	0.7305

b) Riippuvuuden P = $P_{\bullet}(\tilde{\gamma})$ laskeminen

Auringon fotosfäärissä on säteilypaine merkityksetön, joten kokonaispaine $P = P_g + P_{rad} \approx P_g$. Hydrostaattisessa tasapainossa on $dP_g dA = -g dm$ = -g g dx dA $\Rightarrow dP_g = -g g dx$

Koska monissa tähdissä fotosfäärikerros on varsin ohut, voidaan olettaa, että gravitaatiokiihtyvyys pysyy vakiona tässä kerroksessa.

$$g = \frac{G M}{R^2}$$
, missä M = tähden massa
R = tähden säde

Yhtälöparissa $\begin{cases} \frac{dP(x)}{dx} = -\Im S(x) & (hydrostaattinen tasapaino) \\ P(x) = \frac{R}{m} S(x)T(x) & (ideaalikaasun tilanyhtälö) \end{cases}$

on kolme tuntematonta funktiota: P(x), g(x) ja T(x). Koska riippuvuus T = $T(\overline{r})$ voidaan johtaa säteilynkuljetuksen teoriasta, pyritään seuraavassa myös muut suureet ilmoittamaan optisen syvyyden funktioina.

Tämä integraaliyhtälö voidaan ratkaista numeerisesti, kunhan keskimääräinen absorptiokerroin \overline{k} tunnetaan (kts. luku 2.5.4).

- 134 -

tavat absorptiota Auringon atmosfäärissä. Keskimääräinen absorptiokerroin yhtä vetygrammaa kohti $\left[\operatorname{cm}^{2}/g\right]$ lämpötilassa 5700 K on tällöin: $\overline{k}_{\lambda} = \underbrace{\frac{\mathcal{E}_{H}}{m_{H}} \left(1 - \chi_{H}(\tau)\right) \left[P_{e} \overline{\chi}_{\lambda}(H^{-}) + \overline{\chi}_{\lambda}(H) \right]$ missä $\overline{\mathcal{E}}_{H} = \operatorname{vedyn} \operatorname{massaosuus}$ yhdessä kaasugrammassa $m_{H} = \operatorname{vetyatomin} \operatorname{massa}$ $x_{H} = \operatorname{vedyn}$ ionisaatioaste $P_{e} = \operatorname{elektronipaine}$ $\chi(H^{-}) = H^{-}$ ionin absorptiokerroin yhtä H-atomia kohden ja 1 dyn/cm² elektronipainetta kohden

Oletetaan, että pääasiallisesti H ja H aiheut-

Ensimmäisessä approksimaatiossa voidaan olettaa : $\int X_H \approx O$

$$\int \alpha(H) \ll P_e \alpha(H^-)$$
$$\implies \overline{R}_{\lambda} = \frac{\varepsilon_H}{m_{\mu}} P_e \overline{\alpha}_{\lambda}(H^-)$$

$$\Rightarrow P_g^2(\bar{r}) = 2g \int_0^{\bar{r}} \frac{m_{\mu} P_g dr}{\epsilon_{\mu} P_e Z(\mu^{-})}$$

Luvussa 2.3.9 saatiin kaasu- ja elektronipaineen välille seuraava yhteys:

$$\frac{P_{a}}{P_{e}} = \frac{(N_{a} + N_{e})kT}{N_{e}kT} = \frac{N_{a}}{N_{e}} + 1$$

Kun oletetaan, että Auringon atmosfäärissä metallit ($\vec{z} \ge 3$) ovat yhden kerran ionisoituneita ($\Rightarrow N_e \approx N_{metallit}$), niin $\frac{P_a}{P_e} = \frac{N_H + N_{He} + N_{metallit}}{N_{metallit}} + 1 = \frac{N_H}{N_{met}} + \frac{N_{He}}{N_{met}} + 2$

Koska $\frac{N_{H}}{N} \gg 1$, voidaan luku 2 jättää yo. metallit

yhtälös 🛱 huomioimatta:

$$\frac{P_{e}}{P_{e}} \approx \frac{N_{H}}{N_{met}} \left(1 + \frac{N_{He}}{N_{met}} \frac{N_{met}}{N_{H}}\right) = \frac{N_{H}}{N_{met}} \left(1 + \frac{N_{He}}{N_{H}}\right)$$

$$\Rightarrow P_{g}^{2}(\bar{r}) = \frac{2 q m_{H}}{\mathcal{E}_{H}} \int_{0}^{\bar{r}} \frac{\frac{N_{H}}{N_{met}} (1 + \frac{N_{He}}{N_{H}}) P_{e}}{P_{e} \bar{\alpha}_{\lambda} (H^{-})} d\tau$$

$$P_{g}^{(i)}(\bar{r}) = \left[\frac{2 q m_{H}}{\mathcal{E}_{H}^{0}} \frac{N_{H}}{N_{matallit}} (1 + \frac{N_{He}}{N_{H}}) \int_{0}^{\bar{r}} \frac{d\tau}{\bar{\alpha}(H^{-})}\right]^{\frac{1}{2}}, \text{ missä } \alpha(H^{-}) = \mathfrak{f}[\tau(\bar{r})]$$

Numeerisen integroinnin tuloksena saadaan riippuvuus $P_g^{(4)} = P_g^{(7)}$ ensimmäisessä approksimaatiossa.

Seuraavaa iterointikierrosta varten lasketaan elektronipaine $P_e(\bar{r})$ käyttämällä ensimmäisessä approksimaatiossa saatua kaasunpainetta $P_g(\bar{r})$. Tämä on mahdollista, koska $P_g = P_g(P_e,T)$ tunnetaan annetulle kemialliselle koostumukselle.

$$\Rightarrow P_{g}^{2}(\bar{r}) = 2g \int \frac{P_{g}^{(1)}}{\bar{k}(P_{g},T)} \frac{dr}{dT} dT$$

Koska riippuvuus T = T(\overline{r}) tunnetaan, on myös d Υ/dT tunnettu, ja numeerisesti integroimalla saadaan riippuvuus $P_g^{(z)} = P_g^{(z)}(\overline{r})$ toisessa approksimaatiossa. Näin menetellen voidaan iterointia jatkaa, kunnes peräkkäiset iterointikierrokset antavat tietyllä tarkkuudella saman riippuvuuden $P_g = P_g(\overline{r})$.

Riippuvuuden $P = P(\overline{\tau})$ numeerinen integrointi on yksityiskohtaisesti esitetty E. Novotnyn oppikirjassa "Introduction to Stellar Atmospheres and Interiors" (luvut 9.1 ja 9.3-4).

8	τ	$\overline{\alpha}(\mathrm{H}^{-}) \times 10^{24}$	$\overline{\alpha}(\mathrm{H}) \times 10^{24}$	$\log P_p^n$	$\log P_g^I$	log P _g
1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70	0.01 0.04 0.11 0.22 0.38 0.68 1.17 1.87 2.94	0.1221 0.1020 0.0838 0.0673 0.0547 0.0430 0.0334 0.0250 0.0185	0.001 0.005 0.021 0.081 0.276 0.977	3.750 4.142 4.368 4.556 4.729 4.891 5.048 5.201 5.350	3.744 4.215 4.426 4.578 4.710 4.840 4.957 5.048 5.119	3.74 4.22 4.44 4.59 4.72 4.84 4.95 5.04 5.10

NUMERICAL INTEGRATION OF THE SOLAR ATMOSPHERE

c) Riippuvuuksien 9(7) ja Pe (7) laskeminen

Kun T($\overline{\bullet}$) ja P($\overline{\bullet}$) tunnetaan saadaan tiheys $\mathfrak{g}(\overline{\bullet})$ suoraan ideaalikaasun tilanyhtälöstä:

$$\varsigma(\tilde{\tau}) = \frac{\overline{m}}{k} \frac{P(\tilde{\tau})}{T(\tilde{\tau})}$$

Elektronipaineen $P_e(\bar{\tau})$ määräämiseksi on laskettava ionisaatioaste jokaiselle alkuaineelle i tietyssä lämpötilassa T($\bar{\tau}$) ja tiheydessä S($\bar{\tau}$). Sahan ionisaatioyhtälön avulla saadaan elektronitiheys N_e(i) ja siten N_e

$$\Rightarrow T_e(\bar{\tau}) = N_e k T$$

Table 9-6 Model Solar Atmosphere.

.

Tet	r = 5,8	BOZ*K,	s = 2.	741 × 10 ⁴ cn	1 sec -s;	X = 0.56,	Y = 0.41, Z	= 0.03.
Ŧ	— , , (km)	Т (°К)	,	$P \times 10^{-4}$ (dyne cm ⁻³)	≠ × 104 (gm cm*	*) (cm² gm~	<i>P.</i> ³) (dyne cm ^{- 2})	(<i>P_e/P</i>) × 10 ⁴
0.05	0*	4,968	1.0145	1.54	5.7	0.076	2.5	1.6
0.10	62	5,052	0.9975	2.88	10.4	0.128	4.5	1.6
0.15	91	5,133	0.9819	3.82	13.6	0.161	6.2	1.6
0.20	111	5,210	0.9674	4.61	16.1	0.191	7.7	1.7
0.25	124	5,283	0.9540	5.22	18.0	0.213	9.1	1.7
0.30	134	5,354	0.9414	5.77	19.7	0.236	10	1.8
0.35	144	5,422	0.9296	6.33	21.3	0.258	12	1.9
0.40	153	5,487	0.9185	6.84	22.7	0.280	13	2.0
0.45	160	5,550	0.9080	7.31	24.0	0.301	15	2.0
0.50	167	5,612	0.8982	7.75	25.2	0.322	17	2.2
0.55	172	5,671	0.8888	8.16	26.2	0.345	19	2.3
0.60	178	5,728	0.8799	8.55	27.2	0.368	21	2.4
0.65	183	5,784	0.8714	8.91	28.1	0.391	23	2.6
0.70	187	5,838	0.8633	9.25	28.9	0.418	25	2.7
0.75	191	5,891	0.8556	9.56	29.6	0.445	28	2.9
0.80	194	5,942	0.8482	9.86	30.3	0.471	29	3.0
0.85	198	5,992	0.8411	10.15	30.9	0.498	32	3.1
0.90	201	6,041	0.8343	10.41	31.5	0.526	35	3.3
0.95	204	6,088	0.8278	10.67	32.0	0.552	37	3.5
1.00	207	6,135	0.8215	10.91	32.5	0.577	40	3.7
1.10	212	6,225	0.8097	11.37	33.3	0.636	46	4.1
1.20	216	6,311	0.7986	11.78	34.0	0.700	55	4.7
1.30	220	6,394	0.7282	12.15	34.7	0,771	64 ·	5.2
1.40	224	6,474	0.7785	12.49	35.2	0.855	72	5.8
1.50	227	6,551	0.7694	12.80	35.6	0.950	83	6.5
1.60	230	6,625	0.7607	13.07	36.0	1.060	95	7.2
1.70	232	6,697	0.7526	13.32	36.3	1.177	110	8.2
1.80	234	6,767	0.7448	13.54	36.5	1.298	120	9.1
1.90	236	6,834	0.7375	13.74	36.7	1,423	140	10
2.00	238	6,900	0.7305	13.92	36.8	1.549	160	11

Yhtälöparista
$$\begin{cases} \frac{dP}{dx} = -q_s \\ \frac{m}{k} = -q_s \\ \frac{m}{k} = \frac{m}{k} \\ \frac{P}{T} \end{cases}$$
 (hydrostaattinen tasapaino)
$$g = \frac{m}{k} \frac{P}{T}$$
 (ideaalikaasun tilanyhtälö)

saadaan
$$\frac{dP}{dx} = -q \frac{m}{k} \frac{P}{T}$$

 $\Rightarrow \frac{dP}{P} = -\frac{q}{kT} \frac{m}{k} dx$
 $\Rightarrow dx = -\frac{kT}{gm} d(lnP) \int$
 $\Rightarrow x(\bar{r}) = -\frac{k}{gm} \int_{0}^{\bar{r}} T(r) d[ln P_{q}(r)]$

Täten
$$x = x(P_g) \implies P_g = P_g(x)$$

 $P_g = P_g(\bar{\tau})$ $\implies x = x(\bar{\tau})$

Yllä olevan lausekkeen $x(\bar{\uparrow})$ numeerinen integrointi on esitetty Novotnyn oppikirjassa (luku 9.5).

Optisen syvyyden ollessa suurempi kuin 0.6 voidaan myös käyttää yhtälöä $d\overline{r} = -\overline{k} g dX \implies \frac{dX}{d\overline{r}} = -\frac{1}{\overline{k}g}$ $g = \frac{\overline{m}}{\overline{k}g} \frac{P}{\overline{T}}$ $\Rightarrow \frac{dX}{d\overline{r}} = \frac{R_{Bollem}}{\overline{k}\overline{m}} \frac{\overline{T}}{P}$

HUOM. Kun $\gamma < 0.6$, ei tätä differentiaaliyhtälöä pidä käyttää, koska sekä **9** että kasvavat voimakkaasti tällä alueella.

e) Auringon fotosfäärimallin tuloksia

- 1) Fotosfäärin paksuus on noin 300 km optisen syvyyden ollessa $0.01 < \gamma_{5000\text{\AA}} < 2.5$. Valoa säteilevä kerros on siten Auringossa erittäin ohut : 1/2000 R_e.
- 2) $T(\bar{\gamma}_{5000}=0.4) \approx 5800 \text{ K}$
- 3) $P_g(\tilde{\tau}_{5000}=0.4) \approx 10^5 \text{ dyn/cm}^2 \approx 0.1 \text{ atm} (1 \text{ atm} = 1.013 \text{ x} 10^5 \text{ N/m}^2 = 1.013 \text{ x} 10^6 \frac{\text{dy}}{\text{cm}}$

4)
$$P_{a}(\tilde{\tau}_{5000}=0.4) \approx 10 \text{ dyn/cm}^{2} \approx 10^{-3} \text{ atm}$$

5) $S(\tilde{\tau}_{5000}=0.4) \approx 3 \times 10^{-7} \text{g/cm}^3 \approx 3 \times 10^{-4} \text{S}_{11\text{ma}}$

Tabic	Model Solar Atmosphere (Main Sequence	G2)." This is a portion,
of the	Harvard-Smithsonian Reference Atmosphere	[O. Gingerich, R. W.
Noyes,	W. Kalkofen, and Y. Cuny, 1971 (238).]	

 $b_{eff} = 0.8720, \quad T_{eff} = 5.780^{\circ} K, \quad \log g = 4.440.$

H:He:Other elements (b) number) = 941:94.1:1

73000	<i>Τ</i> (" K)	log P,	log P _r	Ρ,	Ρ,	٩	* 5000	H*/SH	€metals∑€ (per cent)	<i>x</i> (km)
10-*	8.930	-0.8187	- 1.3168	1.518 (-1)	4.822 (-2)	1.81 (~13)	0.146	5.11 (-1)	0.2	1,850
10-7	8,320	-0.7724	-1.2721	1.689(-1)	5.345 (-2)	2.16 (13)	0.146	5.09 (-1)	0.2	1,820
10-6	7.360	-0.4245	- 1.1054	· 3.763 (-1)	7.846 (-2)	6.31 (~13)	0.0863	2.89 (-1)	0.3	1,620
10-3	5,300	+1.8319	- 1.1695	6.790 (+1)	6.769 (-2)	.99 (10)	0.00258	9.13 (-4)	16.9	840
10-1	4.170	+ 2.9386	- 1.2133	8.682 (+2)	6.119 (-2)	3.24 (-9)	0.00487	2.26 (– 7)	99.7	557
10-3	4,380	+ 3.5387	-0.6260	3.457 (+3)	2.366 (-1)	1.23 (~8)	0.0139	4.06 (– 7)	99.5	420
10-2	4,660	+ 4.1035	- 0.0480	1.269 (+4)	8.953 (-1)	4.25 (-8)	0.0388	1.09 (6)	98.6	283
0.05012	4 950	+4 4936	÷0 3817	3.116(+4)	2,408 (0)	9.81 (-8)	0.0799	3.43 (-6)	96.0	183
0.00000	5 160	4.6592	0.5966	4,562 (+4)	3,950 (0)	1.38 (- 7)	0.110	8.49 (-6)	91.1	138
0.15549	\$ 330	4 7675	0.2569	5854(+4)	5.713 (0)	1.71 (-7)	0.140	1.69 (5)	84.3	108
0.10053	\$ 430	4 8201	0 8476	6608(+4)	7.041 (0)	1.90 (- 7)	0.160	2.47 (5)	78.9	92.6
0.15532	5 540	4 8710	0.9478	7430(+4)	8,868 (0)	2.09 (-7)	0,187	3.68 (- 5)	72.0	77.7
0 31673	5 650	4 9197	1.0523	8.311 (+4)	1,128(+1)	2.29 (7)	0.221	5.29 (-5)	64.6	63.1
0.39811	\$ 765	4 9659	1.1635	9.244(+4)	1.457 (+1)	2.50 (7)	0.264	7.51 (5)	56.7	48.9
0.50119	5,890	5 0090	1.2847	1.021(+5)	1.926 (+1)	2 70 (-7)	0.323	1.07 (4)	48.4	35.4
0.50115	6 035	5 0497	1.4232	1.120(+5)	2.650 (±1)	2.89 (-7)	0.407	1.58 (-4)	39.6	22.6
0.00000	6 200	5.0853	1.5782	1.217(+5)	3,786 (+1)	3.06 (-7)	0.527	2.37 (-4)	31.0	10.8
1.00000	6 390	5,1173	1.7516	1.310(+5)	5.644 (+1)	3.19 (7)	0.706	3.65 (-4)	23.2	0.0
1 25897	16 610	\$ 1446	1.9443	1.395 (+5)	8.796 (+1)	3.29 (-7)	0.978	5.79 (-4)	16.6	9.6
1 58.189	6 860	5 1679	2,1520	1.472(+5)	1.419(+2)	3.34 (- 7)	1.39	9.40 (-4)	11.6	- 18.0
1 99526	7 140	5 1875	2.3701	1.540(+5)	2.345 (+2)	3.36 (-7)	2.02	1.55 (3)	7.9	- 25.3
2 51189	7 440	5 2036	2.5879	1.598 (+5)	3,872 (+2)	3.34 (-7)	2.94	2.53 (-3)	5.4	- 31.6
3 16228	7.750	5.2170	2.7968	1.648 (+5)	6.263 (+2)	3.30 (-7)	4.24	4.04 (3)	3.8	- 37.1
3 98107	8.030	5.2289	2.9731	1.694 (+5)	9,400 (+2)	3.27 (7)	5.83	5.97 (3)	2.9	-42.1
5.01187	8.290	5,2395	3,1271	1.736 (+5)	1.340 (+3)	3.24 (-7)	7.76	8.38 (-3)	2.2	- 46.8
6 30957	8 520	5,2494	3.2565	1.776 (+5)	1.805 (+3)	3.22 (- 7)	9.94	1.11 (-2)	1:8	- 51.4
7,94328	8:710	5.2594	3.3595	1.817 (+5)	2.288 (+3)	3.21 (-7)	12.2 -	· 1.38 (2)	1.6	56.0
10.00000	8.880	5.2693	3.4487	1.859 (+5)	2.810 (+3)	3.21 (7)	14.6	1.67 (-2)	1.4	- 60.8
12.58925	9,050	5.2797	3.5349	1.904 (+5)	3.427 (+3)	3.22 (7)	17.4	1.99 (2)	1.2	- 65.8
15.84893	9.220	5.2903	3.6183	1.951 (+5)	4.152 (+3)	3.23 (7)	20.8	2.37 (2)	1.1	-71.1
19.95262	9,390	5.3012	3.6989	2.001 (+5)	4.999 (+3)	3.24 (-7)	24.7	2.79 (-2)	1.0	- 76.7
25.11886	9,560	5.3124	3.7769	2.053 (+5)	5.983 (+3)	3.25 (-7)	29.4	3.28 (-2)	0.9	- 82.6

⁶ The chromosphere lies above $\tau_{8000} \sim 10^{-4}$, the transition region is between $\tau_{8000} \approx 10^{-4}$ and 10^{-3} , and the photosphere lies below $\tau_{8000} \sim 10^{-3}$. The model is comvectively unstable for $\tau_{8000} \leq 1$, but convection is efficient only below $\tau_{8000} \sim 2$. In Tables 4-1 to 4-4, the optical depth τ_2 is evaluated either at 5000 Aor at 1.17 μ . The temperature T is expressed in "K; the total pressure P, the gas pressure P, and the electron pressure P, in dyne cm⁻³; the density p in gm cm⁻³; and the absorptic coefficient e_2 in cm² gm⁻¹. The ratio H⁺12H is the fraction (by number) of all hydra gen that is ionized, $\epsilon_{maxu}/2c$ is the local flux that is transferred by convection. The zeta point of the geometrical depth (or height) x is arbitrary.

Auringon syvemmissä kerroksissa (T > 7000 K) ionisoituu vety, minkä seurauksena lämpötilagradientti kasvaa varsin suureksi. Tällöin energia ei siirrykään säteilynkuljetuksen vaan konvektion eli massavirtausten avulla. Konvektiota esiintyy alueissa, joissa opasiteetti on suuri. Auringon konvektiivinen kerros on teoreettisten mallien mukaan välillä 0.76 R < r < 0.9995 R . Auringon pinnalla näkyvät granulaatiot ovat merkkejä tästä konvektiivisestä kerroksesta.

- 139 -
Varhaisen spektriluokan tähden atmosfäärimalli 2.4.3

Auringon reunatummumisilmiöön nojautuvaa empiiristä T(♈) riippuvuuden määritystä ei voida yleensä soveltaa muihin tähtiin. Havaintojen avulla saadaan siten ainoastaan säteilyn kokonaisvuon tiheys sekä tähden spektri selville. Atmosfäärimalleissa huolehditaan siitä, että

- a) tähdestä ulos tuleva säteily vastaa havaittua kokonaisvuontiheyttä
- b) säteilyenergian jatkuvuusyhtälö on voimassa kaikissa atmosfäärikerroksissa.

Klassisissa atmosfäärimalleissa oletetaan, että LTE, säteilytasapaino ja hydrostaattinen tasapaino ovat voimassa. Klassinen atmosfäärimalli lasketaan seuraavien pääperiaatteiden mukaisesti.

Perusparametrien määritys 1)

Efektiivisen lämpötilan alkuarvo a)

> LTE:ssä on T_{eff} = T_{ex}. Väärin valittu T_{ex} johtaa väärään atomin viritysenergian χ = E_n - E_m ja ko. atomilajin runsauden N väliseen riippuvuuteen. lg N Mittaamalla spektriviivojen pinta-

alat voidaan metallirunsaus määrittää. Optisessa tähtitieteessä spektriviivan pinta-ala ilmoitetaan ns. ekvivalenttileveyden W avulla (kts. luku 2.5.6e).

W = vakio $\cdot N_n$, missä $N_n = \begin{cases} alemman energiatason populaatio (absorpti ylemmän energiatason populaatio (emissio) \end{cases}$

oltzmann :
$$\frac{N_n}{N} =$$

$$Boltzmann : \frac{N_n}{N} = \frac{Q_n}{u(\tau)} e^{-X_n / k T_{ex}}$$

$$\Rightarrow W = vakio \cdot N \cdot e^{-\chi_n / kT} ex = vakio \cdot N \cdot 10$$

$$\Rightarrow lg N = vakio + \frac{5040}{T_{ex}} \cdot \chi_n$$

В

Interpoloimalla kokeiltava eri lämpötiloja (lähtöarvo väri-indeksin avulla) kunnes metallirunsaus N ei enää riipu absorptioviivan viritysenergiasta. Tämä Tex = Teff.

b) Metallirunsauden ja pintagravitaation määritys

Metalli-ionien heikkojen viivojen ekvivalenttileveydet riippuvat pintagravitaatiosta, neutraalien metallien runsaus sen sijaan ei riipu gravitaatiokiihtyvyydestä. Ionisaatiotasapainossa ovat ko. atomilajin ionirunsaus ja neutraaliatomien runsaus yhtäsuuret.

Esittämällä atmosfäärimallin antamat runsaudet pintagravitaation g funktiona saadaan oheinen kuvio. Kun metallipitoisuudelle ja gravitaatiokiihtyvyydelle käytetään kaksi eri lähtöarvoa, saadaan vastaavasti kaksi eri leikkauspistettä A ja B ja siten myös kaksi eri pintagravitaation arvoa.

Koska todellisuudessa pintagravitaation on kuitenkin oltava sama kummassakin tapauksessa, on interpoloimalla löydettävä sellainen metallipitoisuus [M/H], että sekä mallin [M/H] että sen avulla lasketun metallirunsauden arvot ovat samat (kts. kuvaa seuraavalla sivulla). Kun oikea metallirunsaus on selvinnyt, saadaan yo. kuvassa leikkauspisteen oikea sijainti ja siten myös oikea pintagravitaatio selville. Tarkempi selvitys löytyy esim. David Grayn kirjasta : 'The Observation and Analysis of Stellar Photospheres' (1976, J.Wiley & Sons, New York).

2) Lämpötilajakautuman ensimmäinen approksimaatio T $^{(1)}$ (γ)

Lämpötilajakautuma T (Υ) saadaan yhtälöllä $T^{4}(\Upsilon) = \frac{1}{2}T_{H}(1 + \frac{3}{2}\Upsilon)$

3) Painejakautuma P(🍾)

Painejakautumaa laskettaessa on huomioitava säteilyn ja materian vuorovaikutukset : terminen absorptio ja emissio sekä sironta, joka on tärkeä hyvin kuumissa tähdissä sekä tietyissä ylijättiläisissä. Optinen syvyys on tällöin d $\gamma_{\nu} = -(k_{\nu} + \varsigma_{\nu}) g dx$. Varhaisen spektriluokan tähdissä on lisäksi huomioitava säteilypaine

· · · · · ·

HD37160

LOG G = 2.09 M/H = -0.32

$$dP_{y} = \frac{g(k_{y} + G)dx}{C} \mathcal{F}_{y} \qquad (kts. luku 2.1.3c)$$
jolloin kokonaispaine on $P = P_{g} + P_{rad}$.
Hydrostaattisen tasapainon oletuksella

$$dP = dP_{g} + dP_{r} = - ggdx + \frac{gdx}{C} \int_{c}^{\infty} (k_{y} + G)\mathcal{F}_{y} dy$$

$$\frac{dP}{d\gamma} = \frac{dP}{-(k_{y} + G)gdx} = \frac{g}{k_{y} + G} - \frac{1}{C} \frac{1}{k} + \frac{1}{K} \int_{c}^{\infty} (k_{y} + G)\mathcal{F}_{y} dy$$
Ensimmäisessä approksimaatiossa jätetään säteilypaine ja sironta
huomioimatta, jolloin

$$\frac{dP_{g}}{d\gamma} = \frac{g}{k_{y}} = k(\lambda_{o}, T, P_{e}), aallonpituus kiinnitetty$$

Varhaisen spektriluokan tähdelle $T_{eff} \gtrsim 25000$ K, joten atmosfäärin

vety on täydellisesti ionisoitunut. Tällöin $P_g \approx 2 P_e$ (kts. s. 126).

$$\Rightarrow q P_e \frac{dP_e}{d\tau} = \frac{q \cdot \langle P_e \rangle}{k_o (\lambda_o, T(\tau_o)) \cdot R_e}$$
$$\Rightarrow P_e^q = \int_0^{\tau_o} \frac{q}{k_o (\lambda_o, T)} d\tau$$

Numeerisen integroinnin jälkeen saadaan $P_e^{(1)}$ ja siten $P^{(1)} \approx 2 P_e^{(1)}$.

Toisessa approksimaatiossa huomioidaan sironta, jolloin

 $\frac{dP_{q}}{dT_{o}} = \frac{q}{R_{o}+c}$ $P_{o} \approx 2 P_{o} \text{ saadaan jälleen numeerisella integroinnilla.}$

4) Pääiterointi : harmaa atmosfääri → reaalinen atmosfääri

Kun oletetaan säteilytasapaino, on jokaisella 🎌:n arvolla seuraava reunaehto oltava voimassa

 $\int \mathcal{F}_{y}(\gamma_{o}) dy = \text{const}$ $\mathcal{F}_{y} \text{ on siis laskettava jokaiselle aallonpituudelle ja eri syvyyksille } \mathcal{F}_{o},$ $d\gamma_{x} = \frac{k_{x} + 6}{k_{o} + 6} d\gamma_{o} \implies \gamma_{x} = \int \frac{k_{x} + 6}{k_{o} + 6} d\gamma_{o} \qquad \left| \begin{array}{c} d\gamma = -9(k + 6) dx \\ d\gamma \ll (k + 6) \end{array} \right|$ $\Rightarrow T(\gamma_{x})$ $\Rightarrow B(\gamma_{x})$ $\Rightarrow \mathcal{F}_{y}$

Mikäli mallilaskuissa ehto $\int \mathcal{F}_{\mathcal{F}}(\mathcal{F}) d\mathcal{V} = \text{const}$ ei päde, on $T(\mathcal{F})$ ja mahdollisesti $P(\mathcal{F})$ korjattava "vuo-iteraatiomenetelmällä", kunnes säteilyn kokonaisvuo pysyy vakiona tietyllä tarkkuudella.

HUOM. Atmosfäärimallia voidaan edelleen tarkentaa spektriviivahavaintojen avulla (kts. luku 2.6).

<u>Klassiset atmosfäärimallit</u> olettavat siis, että LTE, säteilytasapaino ja hydrostaattinen tasapaino ovat voimassa. Kuitenkin eiradiatiivinen energiankuljetus, magneettikentät ja ei-termiset nopeuskentät indikoivat, että todellinen atmosfääri saattaa huomattavastikin poiketa klassisesta atmosfäärimallista. <u>Semiklassisissa</u> <u>malleissa</u> (Mihalas, 1978) pyritään huomioimaan atmosfäärin non-LTEolosuhteet. Nykyiset UV-havainnot osoittavat kuitenkin,että myös semiklassiset atmosfäärimallit eivät oikein vastaa todellista atmosfääriä. Nykyään pyritään atmosfäärimalliin sisällyttämään myös dynaamisia ja magnetohydrodynaamisia ilmiöitä. Esimerkiksi <u>dynamomallit</u> huomioivat plasman ja magneettikentän väliset vuorovaikutukset (kts. alla olevaa periaatteellista kaaviokuvaa).

2.5 EKSTINKTIOPROSESSIT ASTROFYSIKAALISISSA KOHTEISSA

2.5.1 Yhteenveto ekstinktioprosesseista

ABSORPTIO:

Atomi <u>absorboi</u> saapuvan <u>fotonin ja re-emittoi</u> sen <u>myöhemmin toisella</u> taajuudella.

Absorption eri lajit:

<u>Viiva-absorptio</u> (bound-bound absorption)
 Atomin sidoselektroni siirtyy sidotulta energiatilalta toiselle.
 Viiva-absorptiokertoimen merkintä säteilynkuljetusyhtälössä: l_y

2) Kontinuumiabsorptio

a) bound-free absorptio

Atomin elektroni siirtyy sidotulta energiatilalta vapaaseen energiatilaan (ts. elektroni poistuu atomista) Absorptiokeroimen merkintä: k

b) free-free absorptio

Ytimen kentässä liikkuva vapaa elektroni absorboi fotonin

Huom. elektronin oltava ytimen kentässä, sillä täysin vapaa elektroni ei voi absorboida säteilyä. Absorptiokertoimen merkintä: k_{y}^{ff}

3) Molekyylin fotodissosiaatio

SIRONTA :

Koherentissa sironnassa atomi <u>absorboi ja re-emittoi</u> fotonin samalla taajuudella.

Sironnan ansiosta säteilyn intensiteetti heikkenee alkuperäisessä suunnassa :

 $\xrightarrow{I_{\nu_o}} \xrightarrow{\uparrow} \longrightarrow I_{\nu_o}$

Sironnasta johtuvan "absorptiokertoimen" merkintä : 6,

Sirottava hiukkanen voi olla

- elektroni
- atomi
- ioni
- molekyyli
- pölyhiukkanen

Sironnan erikoistapauksia :

a) Rayleigh-sironta, kun $\mathcal{V} < \mathcal{V}_{o}$ (\mathcal{V}_{o} = elektronin resonanssitaajuus)

b) Thomson-sironta, kun $\mathcal{V} > \mathcal{V}_{o}$ (vapaille elektroneille $\mathcal{V}_{o} = 0$)

Sekä absorptio että sironta aiheuttavat sen, että säteilyn intensiteetti heikkenee alkuperäisessä suunnassa. Näitä säteilyä heikentäviä prosesseja kutsutaan yhteisesti ekstinktioksi.

EKSTINKTIO = ABSORPTIO + SIRONTA

2.5.2 Klassisen dipolin absorptio

a) Dipolisäteily

Kun dipolin dipolimomentti p muuttuu (esimerkiksi elektronin etäisyys z ytimeen muuttuu) lähettää dipoli ympäristöönsä sähkömagneettista säteilyä.

Syntyvän sähkömagneettisen aallon \vec{E} - ja \vec{H} - vektori ovat kohtisuorasti toisiaan vasten sekä aallon etenemissuuntaan nähden:

Kun r >> z, on $E_{r\theta} = \frac{p}{c^2} \frac{\sin r\theta}{r}$, $E_{\varphi} = 0$ $H_{\varphi} = -\frac{p}{c^2} \frac{\sin \theta}{r}$, $H_{\varphi} = 0$

aallon etenemissuunta

Ē = sähköinen kenttävektori

H = magneettinen kenttävektori

Sähkömagneettisen säteilyn energiatiheys $[erg/cm^3]$ on $u = \frac{1}{8\pi} (\epsilon E^2 + \mu H^2)$ | Tasoaallolle $|H| = \sqrt{\frac{2}{\mu}} |E|$ $\Rightarrow \mu H^2 = \epsilon E^2$ $\Rightarrow u = \frac{1}{4\pi} \epsilon E^2$

M = tyhjön permeabiliteetti E = dielektrisyysvakio

Energiatiheyden virtaus =
$$\frac{dW}{dV} \cdot \frac{ds}{vdt} = u \cdot v dt$$
 [: dt
 $\Rightarrow \frac{teho}{cm^2} = tehotiheys = u \cdot v$
 $\Leftrightarrow \frac{\pi}{cm} = u \cdot \Leftrightarrow \frac{\pi}{cm} \cdot \varepsilon E^2 \cdot \Leftrightarrow \frac{\pi}{vd\varepsilon} = \frac{\pi}{4\pi} \sqrt{\frac{\varepsilon}{\mu} \cdot |E| \cdot |E|}$
 $\Re = u \cdot \Leftrightarrow \frac{\pi}{4\pi} |E| \cdot |H|$ $|H|$

HUOM. Sähköopissa kutsutaan sähkömagneettisen aallon tehon virtaus-

vektoria Poyntingin vektoriksi \overline{S} :

$$\overline{S} = \frac{c}{4\pi} \overline{E} \times \overline{H}$$

Tyhjössä $|\overline{E}| = |\overline{H}|$, joten

$$\mathcal{F} = \frac{c}{4\pi} E^2 = \frac{c}{4\pi} \frac{\dot{p}^2}{c^4} \frac{\dot{s}^n}{r^2} \frac{\partial}{\partial r}$$

$$\mathcal{F} = \frac{p^2}{4\pi c^3} \frac{\sin^2 \vartheta}{r^2}$$

HETKELLINEN TEHOTIHEYS (tarkastelupisteessä r)

Levossa olevan dipolin säteilykuvio eli tehotiheyden kulmajakauma on $\sin^2 \sqrt{2}$ - muotoinen:

Koska E muuttuu jaksollisesti nollan ja tietyn maksimiarvon E välillä, muuttuu myös \mathcal{F} jaksollisesti. Keskimääräinen tehotiheys on siten

$$\langle \hat{\tau} \rangle = \frac{c}{4\pi} \langle E^2 \rangle = \frac{c}{4\pi} E_o^2 \langle \sin^2 \omega t \rangle$$

$$\frac{1}{2}$$

 $\langle \hat{\tau} \rangle = \frac{c}{8\pi} E_o^2$
KESKIMÄÄRÄINEN TEHOTIHEYS

Kun tähtitieteessä puhutaan säteilyvuon tiheydestä tarkoitetaan sillä nimenomaan keskimääräistä tehotiheyttä $< \Im >$.

TEHT. Aurinkovakio eli säteilyvuon tiheys Maan ilmakehän ulkopuolella on 2 cal/min·cm² = 1.39 10⁶ erg/s cm². Laske sähköisen ja magneettisen kenttävektorin amplitudi. Tyhjössä $|\overline{E}| = |\overline{H}|$, joten keskimääräinen teho/cm² on

$$\langle \hat{\tau} \rangle = \frac{c}{8\pi} E_o^2$$

$$\Rightarrow E_o = \sqrt{\frac{8\pi}{c}} \langle \hat{\tau} \rangle = \sqrt{\frac{8\pi}{c}} \cdot 1.39 \cdot 10^6 \frac{era}{s \cdot cm^2}$$

$$E_o = H_o = 10 \frac{v}{cm}$$

HUOM. Sähköisen dipolisäteilyn lisäksi on olemassa myös <u>magneettista</u> dipolisäteilyä .

Ympyrärataa kiertäävn varatun hiukkasen magneettinen dipolimomentti on :

Elektronin spiniin liittyy myös magneettinen momentti, mutta vastaava gyromagneettinen suhde on $2 \cdot q/2m = q/m$. Elektronin spinmagneettinen momentti aiheuttaa atomispektreissä hienorakennetta, ytimen magneettinen momentti taas ylihienorakennetta.

ESIM. Kun vety-ytimen spin ja elektronin spin ovat ensin samansuuntaiset ja muuttuvat sitten vastakkaissuuntaisiksi, lähettää atomi magneettista dipolisäteilyä, jonka aallonpituus λ = 21 cm.

b) Dipolin säteilyteho

L

Säteilyteho r-säteisen pallon pinnan läpi: $\int \mathcal{F} d\omega = \int \frac{\dot{\beta}}{4\pi c^3} \frac{\sin^2 \Theta}{r^4} d\omega$

$$\frac{dW}{dt} = -\frac{1}{4\pi c^3} \left(e^{\frac{2}{2}}\right)^2 \int_{0}^{\pi} \frac{\sin^2\theta}{\tau^2} \tau^2 \sin\theta d\theta d\phi$$

— värähtelevä dipoli menettää energiaa

$$\frac{dW}{dt} = -\frac{e^{\frac{2}{Z}^2}}{4\pi c^3} \int_{0}^{\pi \frac{2\pi}{3}} \sin^3 \Theta \, d\Theta \, d\phi$$

$$\frac{dW}{2\pi \cdot \frac{4}{3}}$$

$$\frac{dW}{dt} = -\frac{9}{3} \frac{e^2 \ddot{z}^2}{c^3}$$

DIPOLIN HETKELLINEN TEHO

Klassisen oskillaattorin keskimääräinen säteilyteho:

$$\left\langle \frac{dW}{dt} \right\rangle = -\frac{16\pi^4\nu^4}{3c^3} p_o^2 = -\frac{8\pi^2\nu^2e^2}{3mc^3} \cdot W = \frac{\text{KESKIMÄÄRÄINEN TEHO}}{3mc^3} \cdot W$$

missä

i $p_o = ez_o = dipolimomentin maksimiarvo$ $W = (1/2)kz_o^2 = (1/2)m\omega^2 z_o^2 = oskillaattorin energia$

(Kaavan johto harjoitustehtävänä)

$$\langle \frac{dW}{dt} \rangle = - \Im \cdot W , \text{ missä vaimennuskerroin } \Im = \frac{8\pi^2 y^2 e^2}{3mc^3} = \frac{0.2923}{\lambda^2} \begin{bmatrix} \frac{1}{5} \end{bmatrix}$$
$$\Rightarrow \langle W \rangle = W_0 e^{-\Im t}$$

<u>HUOM.</u> $\frac{1}{3} = T = aika$, jonka kuluessa värähtely vaimenee osaan 1/e $T = \frac{1}{3}$ = kyseisen värähtelytilan elinikä

r r

c) Klassisen oskillaattorin absorptiokerroin

. . .

Yksinkertaisin malli säteilevälle atomille :

Valoaallon kohdatessa atomin, pakottaa se elektronin (massa m) liikkumaan valoaallon sähkökentän tahdissa.

Värähtelevän varauksen liikeyhtälö:

$$m\ddot{z} = -Kz - g\dot{z} + eE_{z}$$
harmoninen dissipatiivinen pakkovoima = $eE_{o2}e^{i\omega t}$
voima (g=vaimennuskerroin)
$$\ddot{z} = -\frac{K}{m}\dot{z} - \frac{g}{m}\dot{z} + \frac{eE_{o2}}{m}e^{i\omega t}$$

$$\ddot{z} + g\dot{z} + \omega_{o}^{2}\dot{z} = \frac{eE_{o2}}{m}e^{i\omega t}$$
Ratkaisuyrite : $z(t) = z_{o}e^{i\omega t}$
 $\dot{z}(t) = i\omega z_{o}e^{i\omega t}$
 $\ddot{z}(t) = -\omega^{2}z_{o}e^{i\omega t}$

$$\Rightarrow (-\omega^{2} + i\omega g + \omega_{o}^{2})z_{o}e^{i\omega t} = \frac{eE_{o2}}{m}e^{i\omega t}$$

$$\Rightarrow \boxed{\frac{e E_{o2}}{2} = \frac{e E_{o2}}{\omega_{o}^{2} - \omega^{2} + i\omega \chi}} = \text{ELEKTRONIN MAKSIMIPOIKKEAMA}$$

$$\Rightarrow Z = Z_{o}e^{i\omega t} = \frac{\frac{eE_{o2}}{m} \cdot e^{i\omega t}}{\omega_{o}^{2} - \omega^{2} + i\omega \gamma}$$

HUOM. Z_o on kompleksiluku, joten z ei ole samassa vaiheessa pakkovoiman kanssa.

- 152 -

Johdetaan seuraavaksi lausekkeet sähköisen dipolin absorptiokertoimelle κ sekä taitekertoimelle n.

Valon nopeus väliaineessa on

$$\mathbf{U} = \frac{C}{\tilde{n}}, \text{ missä } \tilde{n} = \text{kompleksinen taitekerroin} \\
 \tilde{n}^2 = (n - i \kappa)^2 = \mathcal{E} = \text{dielektrisyysvakio} \\
 (tyhjössä \mathcal{E} = 1) \\
 väliaineessa \mathcal{E} > 1)$$

Ulkonen kenttä synnyttää väliaineatomissa dipolimomentin:

$$p(t) = e \cdot z(t)$$

$$\Rightarrow \alpha = \frac{p}{E} = \frac{ez(t)}{E} = \frac{ez_0 e^{i\omega t}}{E_0 z e^{i\omega t}} = \frac{ez_0}{E_0 z}$$

$$\alpha = \text{dielektrinen suskeptibiliteetti}$$
(kuvaa polarisoituvuutta)

Dielektrinen siirtymä : $D = E + 4\pi N p = E + 4\pi N dE = (1 + 4\pi N d) E = E E$

missä N = värähtelevien atomien 1km/cm³

Sijoittamalla \ll dielektrisyysvakioon \mathfrak{E} saadaan

$$\begin{split} \mathcal{E} &= 1 + 4\pi N \frac{e^2 z_o}{E_{o2}} = 1 + \frac{4\pi N e}{E_{o2}} \frac{eE_{o2}}{m(\omega_o^2 - \omega^2 + i\omega_v)} \begin{vmatrix} E = (m - i\kappa)^2 \\ \omega = 2\pi\nu \\ \omega_o = 2\pi\nu \\$$

$$\Rightarrow \begin{cases} n = 1 + \frac{Ne^2}{2\pi m} \frac{\nu^2 - \nu^2}{(\nu^2 - \nu^2)^2 + (\chi \frac{\nu}{2\pi})^2} \\ \kappa = \frac{Ne^2}{2\pi m} \frac{\chi \cdot \frac{\nu}{2\pi}}{(\nu^2 - \nu^2)^2 + (\chi \frac{\nu}{2\pi})^2} \end{cases}$$

Useinmiten ollaan kiinnostuneita absorptiokertoimesta lähellä resonanssitaajuutta ν_o :

$$\begin{array}{c} \mathcal{V} \approx \mathcal{V}_{o} \implies \mathcal{V}_{-} \mathcal{V}_{o} \ll \mathcal{V}_{o} \\ \\ \mathcal{V}_{o}^{2} - \mathcal{V}^{2} = (\mathcal{V}_{o} + \mathcal{V})(\mathcal{V}_{o} - \mathcal{V}) \approx \mathcal{V}(\mathcal{V}_{o} - \mathcal{V}) \\ \\ \end{array}$$

$$\Rightarrow K = \frac{Ne^2}{2\pi m} \cdot \frac{\frac{YY}{2\pi}}{\left[2\gamma(\gamma_0 - \gamma)\right]^2 + \left(\frac{YY}{2\pi}\right)^2}$$

ĸ	_ Ne ⁹	४/५॥
<u> </u>	- 4πmy	(ν ₀ -ν) ² + (γ/4π) ²

KLASSISEN OSKILLAATTORIN ABSORPTIOKERROIN

۰.

Fig. The Variation of (n - 1) and κ with Frequency Near Resonance

The curves are computed for sodium atoms absorbing at the λ 5880 (D_1) line. Notice the anomalous behavior of the index of refraction near resonance. The ordinates are arbitrary.

d) <u>Dipolin absorptiokertoimen</u> **k** ja massa-absorptiokertoimen _k välinen yhtey<u>s</u>

Väliaineessa on sähkömagneettisen aallon yhtälö

$$E(x,t) = E_e^{-2\pi\nu K x/c} \cdot e^{(2\pi\nu (t-n\frac{\lambda}{e}))}$$

vaimeneva osa

jaksollinen osa

Intensiteetti
$$I \propto (\hat{E})^2$$

 $I(x) = I_o e^{-\frac{4\pi \gamma K}{C} \cdot x}$
 $I(x) = I_o e^{-\frac{k}{C} \cdot x}$
 $I(x) = I_o e^{-\frac{k}{C} \cdot x}$

Sijoittamalla tähän dipolin absorptiokertoimen lauseke \mathbb{R}_{y} (lähellä \mathcal{V}_{o}) saadaan

$$k_{y}s = \frac{N_{oy}e^{2}}{mc} \cdot \frac{\chi/4\pi}{(v-v_{o})^{2} + (\chi/4\pi)^{2}} = N_{ov} \cdot d_{y}$$

missä $N_{o\nu}$ = niitten sidoselktronien 1km/cm^3 , joiden ominaistaajuus on \mathcal{V}_o γ = väliaineen vaimennuskerroin $\alpha'_{\nu} = \frac{e^2}{mc} \frac{\chi/4\pi}{(\nu - \nu_{\nu})^2 + (\chi/4\pi)^2} = absorptiokerroin yhdelle värähtelijälle$ = atomaarinen vaikutusala $<math>[\alpha'_{\nu}] = cm^2$

Massa-absorptiokertoimen kvanttimekaaninen muoto saadaan korvaa-HUOM. malla

$$\begin{array}{c} \gamma \rightarrow T_{\rm rad} \\ N_{\rm ov} \rightarrow f \cdot N_{\rm os} \end{array}$$

missä oskillaattorivoimakkuus filmoittaa värähtelevien elektronien efektiivisen lukumäärän/atomi ko. siirtymässä.

Esim. lähtötaso = n lopputasot esimerkiksi n', n'', n''' värähtelevien elektronien efektiivinen $1km/atomi = f_{nn}$, + f_{nn} , + f_{n (Thomas-Kuhnin summasääntö) $\sum_{i} f_{ij} = 1$

Väliaineeseen absorboitunut säteilyteho P., e)

Edellisen kohdan mukaan absorptiokerroin/cm³ on $R_{y} S = N_{oy} \alpha_{y}$ N_{ov} = värähtelijöiden lkm/cm³, jotka absorboituvat taajuudella \mathcal{V} missä 𝔄_𝔅 = absorptiokerroin yhdelle värähtelijälle

Tilavuusalkioon absorboitunut intensiteetti:

 $dI_{y} = \frac{dP_{y}}{dA_{\perp}dyd\omega}$ dI = sk, I, dx $dP_{y} = \frac{gk_{y}}{N_{oy}} I_{y} dy d\omega dA_{\perp} dX$ $dV = 1 \text{ cm}^{3}$

1 cm³:iin absorboitunut teho :

$$P_{y} = N_{oy} I_{y} \int_{a}^{4\pi} d\omega \int_{a}^{\infty} dy dy$$
$$P_{y} = 4\pi I_{y} \cdot N_{oy} \int_{a}^{\infty} dy dy$$

määritellään keskimääräinen absorptiokerroin. k:

$$S\overline{R} = N_{o} \int_{-\infty}^{\infty} \alpha_{y} dy$$

$$S\overline{R} = \frac{N_{ov}e^{2}}{mc} \cdot \pi \cdot \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{X/4\pi}{(y-y_{o})^{2} + (Y/4\pi)^{2}} d(y-y_{o})$$

$$= 1$$

$$sill\ddot{a} \quad \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\alpha}{x^{2} + \alpha^{2}} dx = \frac{1}{\pi} \int_{-\infty}^{\infty} 4x - \frac{1}{\pi} \int_{-\infty}^{\infty} 4x$$

Yhteen kuutiosenttimetriin ainetta absorboituu yhdessä sekunnissa säteilyenergiaa:

$$E_{y} = 4\pi I_{y} S \overline{k} \cdot 1s$$

2.5.3 Säteilyn sirottuminen klassisesta oskillaattorista

- 158 -

Sähkömagneettisen aallon ($\lambda > 0.5$ Å) kohdatessa atomin vaikuttaa se atomin elektroniin voimalla q \vec{E} , jonka seurauksena elektroni alkaa värähdellä saapuvan aallon tahdissa. Atomin dipolimomentin muuttuessa jaksollisesti elektroni lähettää ympäristöönsä säteilyä, jonka taajuus on sama kuin saapuvan aallon taajuus. Klassisessa teoriassa sironnan vaikutusala

δ = <u>sironnassa menetetty keskimääräinen säteilyteho</u> saapuvan sm-aallon keskimääräinen teho/cm²

verhon

ei riipu atomin elektronifrakenteesta. Kvanttimekaaninen tarkastelu puolestaan osoittaa, että sironnan vaikutusala on hyvin erilainen eri siirtymille. Kvanttimekaaninen vaikutusala voidaan esittää muodossa

Sironnan ei tarvitse tapahtua systeemin resonanssitaajuudella. Esimerkiksi Auringon valon sirottuessa ilmakehän molekyyleistä on valon taajuus huomattavasti pienempi kuin typpi- ja happimolekyylien UV-alueella olevat resonanssitaajuudet γ . Toisaalta röntgensäteiden sirottuessa atomin ulommista elektroneista tai vapaista elektroneista on saapuvan aallon taajuus $\nu \gg \gamma$. Seuraavassa tarkastelemme lähemmin näitä kahta tärkeää ääritapausta.

a) Thomsonin sironta (ソシン。)

Vapaalle elektronille "resonanssitaajuus" y = 0, joten ehto $y \gg y$ on voimassa. Thomsonin sironta on merkittävä hyvin <u>kuumien tähtien atmos-</u> <u>fääreissä</u>. Myös Auringon koronan (ns. K-korona) valo on vapaista elektroneista sironnutta valoa. (Auringon F-koronan valo sen sijaan on interplanetaarisesta pölystä sironnutta valoa.)

Liikkuvan varauksen kenttä:

$$\overline{E} = -\frac{q}{4\pi} \left[\frac{\overline{\gamma o}}{\gamma^2} + \frac{\gamma}{c} \frac{d}{dt} \left(\frac{\overline{\gamma o}}{\gamma^2} \right) + \frac{1}{c^2} \frac{d^2}{dt^2} \overline{\gamma o} \right]$$

Suorittamalla derivointi ja huomioimalla ainoastaan asymptoottisesti vallitsevat termit (~1/r) saadaan säteilykentän lausekkeeksi

$$E_{s} = -\frac{9}{4\pic^{2}} \frac{\alpha_{\perp}}{\tau} \frac{\varphi_{\circ}}{\varphi_{\circ}}$$
, missä a_{\perp} = sironneen säteilyn etenemis-
suuntaa vasten kohtisuorasti oleva kiih-
tyyyyskomponentti.

Oletetaan, että varauksen nopeus v << c, jolloin voima $q\overline{E} >>(q/c)\overline{v} \times \overline{H}$. Elektronin liikeyhtälö on tällöin

$$m\ddot{z} = -eE = -eE_{o}\sin\omega t \qquad z = A\sin\omega t \ddot{z} = -A\omega^{2}\sin\omega t -A\omega^{2}m = -eE_{o} \implies A = \frac{eE_{o}}{m\omega^{2}}$$

Sironneen aallon kenttävoimakkuus: g.

$$E_{s} = \frac{e}{4\pi c^{2}} \frac{\frac{\pi}{2} \sin \psi}{r}$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}} \frac{\sin \psi}{r} E_{s} \sin \psi t \varphi =$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}} \frac{\sin \psi}{r} E_{s} \sin \psi t \varphi =$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}} \frac{1}{4\pi} \frac{e^{2}}{r_{0}}$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}}$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}}$$

$$E_{s} = \frac{1}{4\pi} \frac{e^{2}}{mc^{2}}$$

$$E_{s} = \frac{1}{2\pi} \frac{e^{2}}{mc^{2}}$$

$$\frac{E_s}{E} = \frac{r_o}{r} \sin \vartheta$$

$$\Rightarrow \frac{I_s}{I} = \frac{E_s^2}{E^2} = \left(\frac{r_o}{r}\right)^2 \sin^2 \vartheta$$

Atomifysiikassa määritellään <u>sironnan differentiaalinen vaikutusala</u> **6** [cm²/sr] seuraavasti.

n₀ = saapuvien hiukkasten 1km/s dn = suunnassa ⊖ havaittujen hiukkasten 1km/s

n' = kohtiohiukkasten lkm/pinta-alayksikkö

 $dn = 6_s(0, \phi) \cdot n_o \cdot n' \cdot d\omega$

Säteilyintensiteetille pätee vastaavasti

 $I_s = \delta_s(\Theta, \phi) \cdot I_o \cdot n' d\omega$, missä I_s = kulmaan Θ sironnut intensiteetti I_0 = saapuvan säteilyn intensiteetti

Koska tarkasteluesimerkissä sirottavana hiukkasena on yksi elektroni, on n' = 1/dA

Käytettäessä $\sqrt[n]{}$:n asemasta sirontakulmaa $\Theta = 90^0 - \sqrt[n]{}$ on

$$\mathcal{G}_{s}(\Theta,\phi) = \left(\frac{e^{2}}{mc^{2}}\right)^{2} \cos^{2}\Theta$$

VAPAAN ELEKTRONIN DIFFERENTIAALINEN VAIKUTUSALA LINEAARISESTI POLARISOI-TUNEELLE SÄTEILYLLE

Nähdään, että vapaan elektronin vaikutusala on riippumaton saapuvan aallon taajuudesta.

Sironnan kokonaisvaikutusala $\mathbf{6}_{\mathbf{T}}$ (total cross section tai lyhyesti vain cross section) saadaan integroimalla yli kaikkien suuntien:

$$S_{T} = \oint S_{S} d\omega = 2\pi \int_{0}^{\pi} S_{S} \sin \vartheta d\vartheta \qquad S_{S} = \tau_{0}^{2} \sin^{2} \vartheta$$
$$= 2\pi \tau_{0}^{2} \int_{0}^{\pi} \sin^{3} \vartheta d\vartheta = \frac{8}{3}\pi \tau_{0}^{2}$$

 $6_{\tau} = \frac{8}{3} \pi \left(\frac{e^2}{mc^2}\right)^2 = 6.65 \cdot 10^{-25} \frac{2}{cm}$ SIRONNAN KOKONAISVAIKUTUSALA VAPAALLE ELEKTRONILLE

VAPAALLE ELEKTRONILLE

- <u>HUOM.1</u> Koska $\mathbf{G}_{\mathrm{T}} \sim 1/\mathrm{m}^2$, voidaan todeta, että protonin aiheuttaman sironnan vaikutusala on $(m_p/m_e)^2 \approx 10^6$ kertaa pienempi kuin vapaan elektronin vaikutusala.
- HUOM.2 Atomiin harmoonisesti sidottua elektronia (ominaistaajuus ω_{o}) voidaan pitää likimääräisesti vapaana, jos elektronin sidosenergia on pieni (esim. kevyet atomit) ja saapuvan säteilyn energia on suuri (esim. pitkäaaltoinen röntgensäteily). Sidotun elektronin liikeyhtälö:

$$m\ddot{z} = -m\omega^{2}z - eE_{o}sin\omega t$$

sidosta kuvaava harmoninen termi

Värähtelevän elektronin amplitudiksi tulee tällöin

$$A = \frac{e E_o}{m(\omega^2 - \omega_o^2)}$$

ja sironnan vaikutusalaksi saadaan

$$6 = \frac{6(\text{Thomson})}{\left(1 - \frac{\omega_0^2}{\omega_2^2}\right)^2}$$

Atomiin löyhästi sidotun elektronin sironnan vaikutusala riippuu täten saapuvan säteilyn taajuudesta. Todettakoon, että lyhytaaltoisen röntgensäteilyn tapauksessa sironnan vaikutusala pienenee voimakkaasti kvanttifysikaalisten ja suhteellisuusteoreettisten efektien takia.

2) Sironta monesta elektronista

Tarkastellaan edelleen yksinkertaisuuden vuoksi <u>lineaarisesti polari</u><u>soitunutta säteilyä</u>. Tällöin vapaista elektroneista sironneilla aalloilla on vain vaihe-eroja S_n .

$$\begin{split} \vec{E}_{s} &= \sum_{n=1}^{N} \vec{E}_{sn} = \vec{E}_{so} \sum_{n=1}^{N} e^{i\delta n} \qquad \text{missā} \quad \vec{E}_{so} = \frac{T_{o}}{T} \sin \vartheta \cdot \vec{E}_{o} \sin \vartheta t \\ \Rightarrow \vec{I}_{s} &= \vec{I}_{so} \left| \sum_{n=1}^{N} e^{i\delta n} \right|^{2} \\ &= \vec{I}_{so} \sum_{n=1}^{N} e^{i\delta n} \cdot \sum_{m=1}^{N} e^{-i\delta n} \\ &= \vec{I}_{so} \sum_{n=1}^{N} e^{i(\delta_{n} - \delta_{m})} + \sum_{\substack{n=1\\n\neq m}}^{N} e^{i(\delta_{n} - \delta_{m})} \\ &= \vec{I}_{so} N \left(1 + \frac{q}{N} \sum_{n=1}^{N} e^{i\delta nm} \right) \end{split}$$

Ääritapaukset:

1⁰ Sironta tapahtuu kaikkiin suuntiin (ns. isotrooppinen sironta) $\Rightarrow \delta_{nm}$ jakautunut tasaisesti välillä $[0,2\pi]$ $\Rightarrow \sum e^{i\delta_{nm}} = 0$ $\Rightarrow I_s = N \cdot I_{so}$, missä I_{so} = yhden elektronin sirottama säteilyintensiteetti I_{el} . $I_s = N \cdot I_{so}$

2⁰ Hiukkasen koko a << **λ** (esim. valoaalto) → kaikki N elektronia värähtelevät tahdissa

$$\Rightarrow \delta_{n} = 0$$

$$\Rightarrow I_{s} = I_{so} \left| \sum_{i=1}^{N} e^{i S_{n}} \right|^{2} = I_{ee} \cdot N^{2}$$

Yleisessä tapauksessa sironneen säteilyn intensiteetti vaihtelee näiden kahden ääritapauksen välillä:

$$NI_{e} < I_{s} < N^{2}I_{e}$$

HUOM. Is riippuu yleisessä tapauksessa sekä aallonpituudesta että sirontakulmasta (Θ :n kasvaessa kasvaa aaltojen vaihe-ero S_n). Yhdistämällä kaksi lineaarisesti polarisoitunutta aaltoa, jotka ovat kohtisuorasti toisiaan vasten sekä etenemisssuuntaan nähden, saadaan kaikki polarisaatiotapaukset:

 $\overline{E} = \overline{E}_{x} + \overline{E}_{z}$, missä $E_{x} = E_{1} \sin \omega t$ (# x-akseli) $E_{z} = E_{2} \sin(\omega t + \delta)$ (# z-akseli) $\delta = aaltojen välinen vaihe-ero$

Lineaarisesti polaroituneessa aallossa $S = n\pi$ Ympyräpolaroituneessa aallossa $S = n\pi$ Elliptisesti polaroituneessa aallossa $S \neq n\pi$ Polarisoitumattomassa aallossa $S \neq n\pi$ $E_1 = E_2$ $S = (2n+1)\pi/2$ $E_1 = E_2$ $S = (2n+1)\pi/2$ $E_1 = E_2$

Sironneen säteilyn kenttävektorin kohtisuorat komponentit:

$$E_{zs} = E_{z} \cdot \frac{T_{o}}{T} \underbrace{\sin \vartheta}_{\cos \Theta} = \left(\underbrace{E_{o} \sin \omega t}_{E} \sin \vartheta \right) \frac{T_{o}}{T} \cos \Theta \qquad \text{Hz-akseli}$$

$$E_{xs} = E_{x} \cdot \frac{T_{o}}{T} \sin \vartheta^{\circ} = \left(E_{o} \sin \omega t \cos \vartheta \right) \frac{T_{o}}{T} \qquad \text{II X-akseli}$$

$$\frac{I_{s}}{I_{o}} = \frac{E_{xs}^{9} + E_{zs}^{2}}{E^{2}} = \left(\frac{T_{o}}{T} \right)^{2} \left(\cos^{2} \vartheta + \sin^{2} \vartheta \cdot \cos^{2} \Theta \right)$$

$$\langle \cos^2 \alpha \rangle = \langle \sin^2 \alpha \rangle = \frac{1}{2}$$

 $\Rightarrow \frac{I_s}{I_o} = \langle \frac{I_s}{I_o} \rangle = \frac{1}{2} \left(\frac{\gamma_o}{\gamma} \right)^2 (1 + \cos^2 \Theta)$

Luonnollisen valon tapauksessa on sironnan differentiaalinen vaikutusala siten

$$\mathcal{G}_{s}(\theta,\phi) = \left\langle \frac{\mathrm{I}_{s}}{\mathrm{I}_{o}} \right\rangle r^{2} = \frac{1}{2} r_{o}^{2} \left(1 + \cos^{2}\theta \right)$$

$$G_{s}(\Theta, \phi) = \frac{1}{2} \left(\frac{e^{2}}{mc^{2}} \right)^{2} \left(1 + \omega s^{2} \Theta \right)$$

VAPAAN ELEKTRONIN DIFFERENTIAALINEN VAIKUTUSALA POLARISOITUMATTOMALLE SÄTEILYLLE

Kokonaisvaikutusala sen sijaan on sama kuin lineaarisesti polarisoituneen säteilyn tapauksessa:

$$\mathcal{E}_{T} = \int \mathcal{E}_{S}(\theta, \phi) d\omega = \frac{1}{2} \left(\frac{e^{2}}{mc^{2}} \right)^{2} \cdot 2\pi \int_{0}^{\pi} (1 + \cos^{2}\theta) \sin\theta d\theta$$

$$\frac{\pi}{\sqrt{-\cos\theta}} + \frac{1}{3} \int_{0}^{\pi} -\cos^{3}\theta = \frac{8}{3}$$

$$\mathcal{E}_{T} = \frac{8}{3} \pi \left(\frac{e^{2}}{2} \right)^{2} \qquad \text{SIRONNAN}$$

$$G_{T} = \frac{8}{3} \pi \left(\frac{e^2}{mc^2}\right)^2$$

KOKONAISVAIKUTUSALA

Yhteenveto vapaasta elektronista sironneen säteilyn kulmajakautumasta eli sirontafunktiosta:

saapuva säteily lineaarisesti polarisoi/tunut polaris.suunta L paperitaso > v = 90° $\Rightarrow \Theta = 0^{\circ}$ $\Rightarrow \delta_{s} = \left(\frac{e^{2}}{mc^{2}}\right)^{2} = vakio$

Isotrooppinen sirontafunktio (ei ⊖-riippuvuutta)

polaris.suunta II paperitaso

sirontafunktio 1 + cos² - muotoinen

luonnollinen eli polarisoitumaton valo

Vapaat elektronit <u>sirottavat polarisoitumatonta valoa</u> sekä eteen- että taaksepäin.

b) Rayleighin sironta (ソベン)

Rayleigh oli ensimmäinen, joka tutki (v. 1871) valon sirottumista hiukkasista, joiden koko on valon aallonpituutta huomattavasti pienempi. Rayleighin sirontaa aiheuttavat keveisiin atomeihin ja molekyyleihin <u>sidotut</u> elektronit, joitten <u>ominaistaajuus vo</u> on UV-alueessa.

Luvussa 2.5.2.d saatiin dipolin absorptiokertoimen K ja tilavuusabsorptiokertoimen 9 k, välille yhteys

$$SR_{y} = \frac{4\pi \nu K}{c}$$

resonanssikohdan ulkopuolella:

$$K = \frac{Ne^2}{2\pi m} \frac{Y\nu}{2\pi} \frac{1}{(\nu_o^2 - \nu^2)^2 + (\frac{Y\nu}{2\pi})^2}$$
Koska $\nu \ll \nu_o \Rightarrow |\nu_o - \nu| \gg \chi = \frac{8\pi^2 \nu^2 e^2}{3mc^3} = \frac{0.2223}{\lambda^2}$
voidaan nimittäjän viimeinen termi jättää huomioimatta:

$$K = \frac{Ne^2}{4\pi^2 m} \frac{8\pi^2 \nu^3 e^2}{3mc^3} \frac{1}{[\nu^2(\frac{\nu_o^2}{\nu^2} - 1)]^2}$$

voidaan jättää huomioimatta, koska ∨,≫У - 166 -

$$\Rightarrow S k_{\nu} = N \cdot \underbrace{\frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 \left(\frac{\nu}{\nu_o}\right)^4}_{\gamma = 0}$$

 $\mathfrak{S}_{\mathsf{T}} = \mathfrak{S}_{\mathfrak{A}} =$ vapaan elektronin vaikutusala (Thomsonin vaikutusala)

$$gk_{y} = N \cdot g_{el} \left(\frac{\lambda_{o}}{\lambda}\right)^{4}$$

RAYLEIGHIN SIRONTAKAAVA

(sironnasta johtuva säteilyn heikkeneminen alkuperäisessä suunnassa)

Atomaarinen sironnan vaikutusala saadaan yhteydestä $\Im k_v = N \cdot \mathfrak{S}_{a+}$

RAYLEIGHIN SIRONNAN ATOMAARINEN VAIKUTUSALA

Nähdään, että Rayleighin sironta <u>riippuu voimakkaasti saapuvan säteilyn</u> <u>aallonpituudesta</u>. Koska siniselle valolle vaikutusala on noin 2⁴ = 16 kertaa suurempi kuin punaiselle valolle, sirottuu luonnollisen valon sininen valokomponentti voimakkaammin. Esimerkiksi taivaan sinisyys johtuu juuri auringonvalon Rayleigh-sironnasta ilmakehän molekyyleistä. Rayleighin sirontaa esiintyy myös kylmien tähtien atmosfääreissä.

- <u>HUOM.1</u> Rayleighin sironta on <u>epäisotrooppista</u>. Kulmariippuvuus $P(\Theta) = 3/4(1+\cos^2\Theta)$ on samanmuotoinen kuin Thom sonin sironnassa.
- <u>HUOM.2</u> Luonnollinen valo polarisoituu voimakkaasti Rayleighin ja Thom sonin sironnassa. Polarisaatioaste on suurimmillaan, kun sirontakulma $\Theta \approx 90^{\circ}$.

FIG. POLARIZATION OF LIGHT BY THE CORONA

Unpolarized light from the sun, (regarded for the purposes of the present discussion as a point source) hits the volume element V. Electrons vibrating perpendicular to the plane of the paper scatter light with the electric vector in this plane. Light scattered by those vibrating in the plane of the paper do not reach the observer. Hence photospheric light scattered in V would be plane-polarized. The light received by an observer is only partially polarized because contributions come from volume elements along the line of sight and because the sun is not a point source. These effects can be handled quantitatively. c) Valon sirottuminen pölyhiukkasista

Myöhäisen spektriluokan tähdillä on usein pölyvaippa ympärillään, joten näissä tiheissä atmosfääreissä säteily sirottuu pölyhiukkasista. Tämän lisäksi valo sirottuu myös interstellaarisesta sekä interplanetaarisesta pölystä.

Johdetaan seuraavassa sironnan vaikutusala pölyhiukkaselle, jonka koko a $<< \lambda$. Hiukkasen elektronit värähtelevät tällöin tahdissa, ja syntyneet <u>dipolit</u> ovat kaikki <u>samanvaiheisia</u>. Lisäksi oletetaan, että molekyylit eivät itse omaa permanenttia dipolia, vaan ulkoinen kenttä indusoi dipolimomentit.

Sironnan vaikutusalan määrittelee yhtälö

Yhden dipolin menettämä keskimääräinen säteilyteho on (kts. luku 2.5.2.b)

 $\langle \frac{dW}{dt} \rangle = \frac{16\pi^4 \nu^4}{3c^3} \rho^2$, missä $p_0 = ez_0 = dipolimomentin maksimiarvo Ratkaisemalla elektronin liikeyhtälö$

$$m\ddot{z} + Kz = -eE_{o}e^{i\omega t} \text{ saadaan}$$

$$z = -\frac{eE_{o}e^{i\omega t}}{K - m\omega^{2}} | \omega_{o} = \sqrt{\frac{K}{m}}$$

$$z = -\frac{eE_{o}e^{i\omega t}}{m(\omega_{o}^{2} - \omega^{2})}$$

$$\Rightarrow \rho_{o} = \frac{e^{2}E_{o}}{m(\omega_{o}^{2} - \omega^{2})} = \frac{e^{2}E_{o}}{4\pi^{2}m(\nu_{o}^{2} - \nu^{2})}$$

Olkoon N_o hiukkastilavuudessa V olevien atomien lukumäärä. Tällöin N_o:n_. dipolin menettämä keskimääräinen säteilyteho on

$$\left< \frac{dW}{dt} \right> = \frac{16\pi^{4}\nu^{4}}{3c^{3}} \left(N_{o} p_{o} \right)^{2}$$
$$= \frac{N_{o}^{2} e^{4}\nu^{4} E_{o}^{2}}{3m^{2}c^{3}(\nu_{o}^{2} - \nu^{2})^{2}}$$

Toisaalta sähkömagneettisen aallon tyhjössä mukanaan kuljettama keskimääräinen teho/cm² on (kts. luku 2.5.2.a)

$$\langle \mathcal{R} \rangle = \frac{C}{4\pi} \langle E^2 \rangle = \frac{C}{4\pi} E_0^2 \langle \sin \omega t \rangle = \frac{C}{8\pi} E_0^2$$

Sironnan vaikutusala pölyssä on siten

$$\begin{aligned} 6 &= \frac{\langle \frac{dW}{dE} \rangle}{\langle \frac{dW}{dE} \rangle} = \frac{8 \pi e^{4} y^{4} N_{0}^{2}}{3 m^{2} c_{0}^{4} (y_{0}^{2} - y^{2})^{2}} \\ 6 &= \frac{8 \pi e^{4} N_{0}^{2}}{3 m^{2} \lambda^{4}} \frac{1}{(y_{0}^{2} - y^{2})^{2}} \end{aligned} \qquad \begin{aligned} \text{Taajuuslauseke voidaan kytkeä kiinteän} \\ \text{aineen dispersiokaavaan:} \\ \frac{1}{y_{0}^{2} - y^{2}} &= \frac{3 \pi m}{N e^{2}} \frac{\epsilon - 1}{\epsilon + 2} , \text{missã } N = \frac{N_{0}}{V} \\ \hline 6 &= \frac{24 \pi^{3}}{\lambda^{4}} \left(\frac{\epsilon - 1}{\epsilon + 2}\right)^{2} \cdot \sqrt{2} \\ \eta &= nissä \quad V = pölyhiukkasen tilavuus \\ \lambda = säteilyn aallonpituus \\ \epsilon &= (n - ik)^{2} = \text{dielektrisyysvakio} \end{aligned}$$

Ylikurssia: Kiinteän aineen dispersiokaavan johto:

Kun dipolit ovat kaukana toisistaan, on polarisoituminen $\overline{P} = \frac{\sum \overline{Pi}}{V} = N \measuredangle \overline{E}$, missä \lapha = atomin polarisoituvuus (dielektrinen suskeptibiliteetti)

Kiinteässä aineessa on huomioitava naapuridipolien aiheuttama vuorovaikutus. Sähkökenttä E korvataan tällöin tarkasteluatomin kohdalla vallitsevalla paikallisella kentällä

$$\overline{E}_{1oc} = \overline{E} + \overline{E}_{1} + \overline{E}_{2}$$
, missä
 $\overline{E} = makroskooppinen kenttä$
 $\overline{E}_{1} = fiktiivisen onkalon (jonka keskustassa tarkasteltava ato-$

- mi) sisäpuolella oleva kenttä, joka riippuu aineen rakenteesta. Kuutio- ja pallosymmetrisessä tapauksessa $\overline{E}_1 = 0$.
- \overline{E}_2 = fiktiivisen onkalon ulkopuolella olevien dipolien aiheuttama kenttä. Merkitään – Pcos Θ = pintavaraustiheys onkalon sisäpuolisella pinnalla. Tämä pintavaraus synnyttää pallon keskipisteessä kentän

$$E_{2} = \int_{a^{2}}^{b} \frac{2\pi a \sin \theta}{a^{2}}, a d\theta \cdot P \cos \theta \cdot \cos \theta = \frac{4\pi}{3} P$$

$$f$$

$$E:n \quad \text{suunt. komponentti$$

Charge on ring = $2\pi a \sin \theta \cdot a d\theta \cdot P \cos \theta$ Polarisoitumisen lauseke on täten

$$\vec{P} = N \measuredangle \vec{E}_{loc} = N \measuredangle (\vec{E} + \frac{4\pi}{3} \vec{P})$$

$$\Rightarrow \frac{P}{E} = \frac{N \measuredangle}{1 - \frac{4\pi}{3} N \measuredangle}$$
Toisaalta:
$$\vec{E} = \frac{D}{E} = 1 + 4\pi \frac{P}{E}$$

$$\Rightarrow \frac{P}{E} = \frac{E - 1}{4\pi}$$
Polaroituvuus \lappa saadaan yhtälöparista

$$p = \chi E = \chi E_{o} e^{i\omega t}$$

$$p = -e^{2} = \frac{e^{2} E_{o} e^{i\omega t}}{m(\omega_{o}^{2} - \omega^{2})} \qquad \Rightarrow \chi = \frac{e^{2}}{m(\omega_{o}^{2} - \omega^{2})}$$

$$\stackrel{e=-1}{=} \frac{4\pi e^{2} N}{3m(\omega_{o}^{2} - \omega^{2})} \qquad \qquad \omega = 2\pi^{2}$$

Mikäli kussakin atomissa värähdysliikkeeseen osallistuu useampi kuin yksi elektroni, on

$$\frac{\epsilon - 1}{\epsilon + 2} = \frac{N e^2}{3 \pi m} \sum_{i} \frac{\frac{1}{v_{ii}^2 - v^2}}{v_{ii}^2 - v^2}$$
 KIINTEÄN AINEEN
DISPERSIOKAAVA

missä f on ns. oskillaattorivoimakkuus.

<u>HUOM</u>. Hiukkasen kokonaispolarisoituvuus koostuu seuraavista osatekijöistä:

> $\alpha'_{tot} = \alpha'_{electronic} + \alpha'_{ionic} + \alpha'_{orientational} (dipolar)$ kun molekyylillä permanentti dipoli

Optisella alueella vaikuttaa \ll :n reaaliosa-arvoon ja siten \in :n reaaliosan eli taitekertoimen arvoon ($\in_{optical} = n^2$) miltei yksinomaan elektronien polarisoituvuus kuten seuraavasta kuvasta näkyy. $\mathbf{E} = \mathbf{0}$

Electronic

lonic

伝

Figure 11 Contributions to the polarizability.

Figure Frequency dependence of the several contributions to the polarizability (schematic).

Huom. Ylikurssijakso päättyy tähän.

Mikäli <u>pölyhiukkanen oletetaan pallomaiseksi</u> (säde a), on sironnan vaikutusala

$$\mathbf{d} = \frac{\mathbf{q}\mathbf{u}\pi^{3}}{\lambda^{\mathbf{u}}} \left(\frac{\mathbf{e}-\mathbf{1}}{\mathbf{e}+\mathbf{q}}\right)^{\mathbf{q}} \left(\frac{\mathbf{u}\pi}{\mathbf{3}}\alpha^{3}\right)^{\mathbf{q}} \qquad \mathbf{e} = n^{2} \text{ (dielektrisille hiukkasille)} \\ \mathbf{d} = \left[\frac{\mathbf{g}}{\mathbf{3}} \times^{\mathbf{u}} \left(\frac{\mathbf{n}^{2}-\mathbf{1}}{\mathbf{n}^{2}+\mathbf{1}}\right)^{\mathbf{q}}\right] \cdot \pi \alpha^{\mathbf{q}}$$

, missä $\mathfrak{S}_{geom} = \pi a^2 = hiukkasen geometrinen$ poikkipinta-ala $<math>Q_{sca} = Q(x,n) = sironnan vaikutus$ kerroin (efficiency factor) Dielektrisille hiukkasille, joille $x \ll 1$, on $Q_{scq} = \frac{8}{3} \chi^4 \left(\frac{n^2-1}{n^2+1}\right)^2$

6 = Q sca · Syron

Kun x < 0.1 \Rightarrow Mien teoria \rightarrow Rayleighin sironta Kun x > 10 \Rightarrow Mien teoria \rightarrow geometrinen optiikka (Fresnelin kaavat) Sirkumstellaariselle ja interstellaariselle pölylle x \approx 1.

Kun x < 0.1 sirottuu yhtä paljon valoa eteen- ja taaksepäin (Rayleighin sironta). Mien sironnassa sen sijaan valoa <u>sirottuu sitä</u> enemmän eteenpäin, mitä suuremmaksi hiukkasen koko kasvaa.

2.5.4 Kontinuumiabsorptio

a) Kontinuumiabsorption päätekijät

Kun atomi absorboi säteilykvantin, voi elektroni siirtyä energiatilalta toiselle oheisen kuvan mukaisesti. Spektriviivoja aiheuttavien sidoselektronien siirtymiä (bound-bound siirtymiä) käsitellään luvussa 2.5.5. Tässä luvussa tarkastellaan kontinuumiabsorptiota: atomin ionisoitumista (bound-free siirtymät) sekä ytimen kentässä liikkuvan vapaan elektronin fotoniabsorptiota (free-free siirtymät). Kontinuumiabsorptiokertoimen tunteminen on tärkeätä erityisesti atmosfäärimalleja muodostettaessa.

<u>HARJ. TEHT.</u> Osoita, että täysin vapaa elektroni ei voi absorboida fotonia.

1) Dipolin free-free absorption ja free-free emission periaate

Vapaan elektronin ohittaessa ytimen riittävän läheltä, pystyy elektroni absorboimaan fotonin (<u>kolmen kappaleen probleema</u>), jolloin elektronin nopeus kasvaa:

 $\frac{1}{2}mv_{0}^{2} + hv_{1} = \frac{1}{2}mv_{1}^{2}$

<u>Free-free emissiota</u> syntyy, kun esimerkiksi ydin jarruttaa vapaan elektronin liikettä (→ elektroni tekee hyperbeliradallaan jyrkemmän kaarteen ytimen ohi). Tällöin tilapäisesti muodostuneen dipolin <u>dipolimomentti muuttuu</u>, jonka <u>seuraukse</u>na elektroni lähettää säteilyä:

0

 $\frac{1}{9}mv_1^2 = \frac{1}{9}mv_2^2 + hy_9$

Vety ionisoituu 10000 K lämpötilassa, joten free-free emissio ja free-free absorptio ovat tärkeitä kuumissa atmosfääreissä.

Koska ytimen kentässä liikkuvan vapaan elektronin absorboima energia ei ole kvantittunut, voi absorboidun fotonin taajuus olla periaatteessa mikä tahansa. Kyseiset taajuudet muodostavat siten jatkuvan spektrin. Todettakoon kuitenkin, että pienienergisten fotonien free-free absorptio on paljon yleisempää kuin suurienergisten fotonien, minkä johdosta <u>free-free ab</u>sorption taajuudet keskittyvät spektrin infrapuna-alueelle.

2) Atomin ionisoituminen

Mikä tahansa säteilykvantti voi ionisoida atomin, jos sillä on riittävästi energiaa irrottamaan sidoselektroni atomista.

Kuvasta nähdään, että energiatasot lähestyvät toisiaan pääkvanttiluvun n kasvaessa. Tietyllä fotonienergialla "viivat sulautuvat yhteen". Esimerkiksi vedyn Lyman sarjan raja on 13.6 eV, mikä vastaa fotonia, jonka $\lambda = 912$ Å. Näitä sarjarajoja energeettisempiä siirtymiä kutsutaan elektronin bound-free siirtymiksi. Esimerkiksi <u>vety ionisoituu</u> eri <u>viritysti-</u> loissaan, kun

 $\begin{array}{ll} \lambda < \lambda_{\rm LyC} = 912 \ {\rm \AA} & (\mbox{Lyman sarjan kontinuumiraja}); & n = 1 \rightarrow \infty \\ \lambda < \lambda_{\rm BaC} = 3647 \ {\rm \AA} & (\mbox{Balmer sarjan kontinuumiraja}); & n = 2 \rightarrow \infty \\ \lambda < \lambda_{\rm PaC} = 8206 \ {\rm \AA} & (\mbox{Paschen sarjan kontinuumiraja}); & n = 3 \rightarrow \infty \end{array}$

Atomin ionisoituessa määräytyy vapautuneen elektronin liike-energia yhtälöstä

 $h y = \frac{1}{2}mv^{2} + \frac{hR_{y}Z^{2}}{n^{2}}$ (1) elektronin sidosenergian voittamiseksi tehty työ ^Wkin <u>Yhtenäisen formalismin vuoksi</u> sovelletaan yhtälöä hy = hR_yZ²(1/n² - 1/m²) myös bound-free siirtymiin. Vapaan elektronin "energiatason kvanttilukua" merkitään tällöin symbolilla iK (i = imaginääriyksikkö)

$$\Rightarrow hy = hR_y Z^2 \left(\frac{1}{n^2} + \frac{1}{K^2} \right) \qquad (2)$$

Yhdistämällä yhtälöt (1) ja (2) saadaan

$$\frac{1}{2}mv^2 = \frac{hR_vZ^2}{K^2}$$
(3)

Introdusoimalla kontinuumiin energiataso iK, voidaan vapaan elektronin liike-energia muodollisesti esittää "sidosenergiana".

Erotuksena atomin sidottuihin tiloihin nähden voi kontinuumin ener-HUOM. giatason "järjestysluku" K olla mikä tahansa positiivinen reaaliluku. Lähestyttäessä kontinuumirajaa kasvaa K kohti ääretöntä. Kontinuumin aaltofunktioihin ei tällä kurssilla paneuduta. Todettakoon vain, että kaukana atomista (K hyvin pieni) aaltofunktio muuttuu tavalliseksi palloaalloksi.

Luvussa 2.5.2.e johdettiin atomaarisen kokonaisabsorption lauseke:

$$\int_{0}^{\infty} \alpha_{y} \, dy = f \, \frac{\pi e^{2}}{mc}$$

لمج Tähän nojautuen voidaan atomaarinen bound-free absorptiokerroin مر johtaa seuraavasti:

 $\alpha_{\nu} d\nu = & f \frac{\pi e^2}{mc}$, missä df = oskillaattorivoimakkuus taajuusyksikköä kohden

> Tietyllä välillä ∆v yhteenlaskettu oskillaattorivoimakkuus Δf on jatkuvuuden perusteella oltava sama kontinuumirajan kummallakin puolella:

$$\Delta f = \overline{f} \cdot \Delta n = \overline{f} \cdot \Delta K, \text{ missä } \overline{f} = \text{keskimääräinen os-}$$
killaattorivoimakkuus kapeal-

la kaistalla △K (vast.△n)

 $\Rightarrow \alpha_{v}^{ef} = \overline{f} \frac{\pi e^2}{mc} \frac{dK}{dv}$

$$\Rightarrow df = \vec{f} dK$$

$$a kaistalla \Delta K (vast.\Delta n)$$
Differentioimalla edellä esitetyt yhtälöt (1)
ja (3) saadaan

$$-\frac{2hR_{y}Z^{2}}{K^{3}}dK = mvdv \stackrel{(1)}{=} hds$$

$$\Rightarrow \left|\frac{dK}{dy}\right| = \frac{K^{3}}{2R_{y}Z^{2}}$$

ATOMAARINEN BOUND-FREE ABSORPTIOKERROIN

b) Vedyn bound-free absorptiokerroin

Kvanttimekaniikan avulla voidaan <u>kullekin alkuaineelle</u> ja kullekin siirtymälle n'→ n laskea <u>oskillaattorivoimakkuus f_n'n</u>(kts. liitteen II loppuosaa) Kramer käytti laskuissaan (v. 1923) seuraavaa semiklassista kaavaa vedylle:

$$f_{K}(n',n) = \frac{2^{6}}{3\pi\sqrt{3}} \left(\frac{1}{n'^{2}} - \frac{1}{n^{2}}\right)^{-3} \frac{1}{n^{3}n'^{3}} \frac{1}{3n'}, \text{ missä } g_{n'} = \text{tilan n' statistinen}$$
paino

Menzelin ja Pekeriksen <u>kvanttimekaaniset tulokset</u> (M.N., <u>96</u>, 77, 1935) <u>poikkesivat hieman</u> Kramerin tuloksista (vedyn tapauksessa tosin hyvin vähän). Jos merkitään Kramerin oskillaattorivoimakkuutta f_k:lla, niin kvanttimekaniikan avulla laskettu oskillaattorivoimakkuus on

 $f(n,n) = f_{\kappa}(n,n) \cdot g(n,n)$ missä <u>g</u> = Gauntin kerroin, joka ilmoittaa semiklassisen kaavan korjauskertoimen.

Koska Gauntin kerroin eri alkuaineille on taulukoitu (Baker & Menzel, Ap.J., <u>88</u>, 52, 1938), ilmoitetaan tähtitieteessä f(n',n) Kramerin yksinkertaisella, semiklassisella kaavalla korjattuna Gauntin tekijällä. Etenkin kontinuumiabsorptioissa on Gauntin korjauskertoimen käyttö miellyttävää.

Bound-free siirtymille n →iK, on äskeisessä oskillaattorivoimakkuuden lausekkeessa tehtävä seuraavat merkintämuutokset: n' → n ja n → iK, jolloin vedyn bound-free oskillaatorivoimakkuudeksi saadaan

 $\begin{aligned} \int_{-\infty}^{\infty} \frac{4}{3\pi\sqrt{3}} \frac{1}{2\pi^2} \left(\frac{1}{\pi^2} + \frac{1}{K^2}\right)^{-3} \left|\frac{1}{\pi^3} \frac{1}{K^3}\right| \cdot \frac{8f}{3} , \text{ missä g}^{\text{bf}} = \text{bound-free siirtymän} \\ & \text{Gauntin kerroin (merki-tään usein myös g}_{\text{II}}) \\ & \mathcal{V} = R_{\nu} \mathcal{Z}^2 \left(\frac{1}{\pi^2} + \frac{1}{K^2}\right) \\ & \Rightarrow \left(\frac{1}{\pi^2} + \frac{1}{K^2}\right)^3 = \frac{\mathcal{V}^3}{R_{\nu}^3 \mathcal{Z}^6} \end{aligned}$
$$\Rightarrow f_{mK} = \frac{32}{3\pi \sqrt{3}} \frac{R_{\nu}^{3} Z^{6}}{n^{5} \nu^{3}} \left| \frac{1}{K^{3}} \right|_{g}^{6f}$$
VEDYN BOUND-FREE SIIRTYMÄN
OSKILLAATTORIVOIMAKKUUS

Sijoittamalla tämä a-kohdassa johdettuun kontinuumiabsorptiokertoimen lausekkeeseen saadaan

 $\alpha_{y}^{ef} = f \frac{\pi e^{2}}{mc} \frac{K^{3}}{2R_{y} Z^{2}}$

,

j.
$$\overline{Z} = 1$$

 $f_{mK} = \frac{32}{3\pi\sqrt{3}} \frac{R_{y}^{3}}{|K^{3}|} \frac{2^{6f}}{n^{5}y^{3}}$
 $R_{y} = \frac{2\pi^{2}me^{4}}{h^{3}}$
(yksi Rydbergin vakio kirjoitetaan auki)

VEDYN ATOMAARINEN BOUND-FREE ABSORPTIOKERROIN

Vedylle Gaunt-kerroin $g^{bf} \approx 1$, joten $\alpha_n^{bf}(\nu) \sim n^{5} \nu^{-3}$. Sijoittamalla va-kiot (cgs-yksiköissä) saadaan

$$a_{n}^{l}(y) = 2.81 \cdot 10^{23} \frac{3^{ef}}{n^{5}y^{3}} \qquad [cm^{2}]$$

ESIM. Balmerin kontinuumiabsorptiossa n = 2 $\lambda = 3647 \text{ Å}$, $\nu = 8.22 \cdot 10^{14} \text{ HZ}$

Eri viivasarjojen rajojen välillä kontinuumiabsorptiokerroin alenee kuten ν^{-3} , mutta nousee äkisti seuraavan sarjan rajalla. Visuaalialueella tämä nähdään ns. Balmerin hyppynä aallonpituudella λ = 3467Å. Vedyn sarjarajojen taajuuksilla \mathcal{V}_n suhtautuu kontinuukiabsorptiokerroin α'_n Lymanin kontinuumiabsorptiokertoimeen α'_n kuten

Fig. The Bound-Free Absorption Coefficient of a Hydrogen-Like Atom. The coefficients of absorption from the first four levels, and part of the coefficient from the fifth level, are illustrated. The units are chosen such that $a_{br} = 1$ at $\lambda = 100$ Å, n = 1; thus the ordinate is actually eq. (3-13),

 $a_{\rm bf}(\lambda, z', n)/a_{\rm bf}(\lambda = 100 \text{ Å}, z', n = 1).$

- 177 -

Kun huomioidaan, että tietyn sarjarajan absorptiokertoimeen on lisättävä alemmilla taajuuksilla esiintyvien sarjarajojen absorptiokertoimien jäännökset ($\alpha_{\nu} \sim \nu^{-3}$) tarkasteltavan taajuuden kohdalla, saadaan seuraava kuva.

Fig. Opacity due to hydrogen at $T = 12,500^{\circ}$ K and $T = 25,000^{\circ}$ K; photoionization edges are labeled with quantum number of state from which they arise. Ordinate gives sum of bound-free and free-free opacity in cm¹/atom; abscissa gives $1/\lambda$, where λ is in microns.

Siirryttäessä atomaarisesta absorptiokertoimesta α_{y}^{ef} massa-absorptiokertoimeen k_{y}^{ef} [cm²/g] saadaan kaavan $k_{y}g=N_{y}\alpha_{y}$ perusteella

$$k_m^{\text{ef}} = \frac{\sum N_n d_n^{\text{ef}}}{S}$$

, missä N = viritystilassa n olevien vetyatomien lkm/cm³

Summaus vain yli niitten n:n arvojen, joille $\vee > \nu_n$ = kontinuumiraja

Perustilassa n = 1 olevien vetyatomien kontinuumiabsorptiokerroin/1g on siten

$R_{1}^{\text{ef}} = \frac{\sum N_{n} \alpha_{n}}{N_{1} \cdot m_{H}}$, missä N ₁ = perustilassa olevien vetyatomien lkm/cm ³ m _H = vetyatomin massa [g]
$k_1^{\text{lef}} = \frac{1}{m_{\text{H}}} \sum \frac{N_n}{N_1} \alpha_n^{\text{lef}}$	Boltzmannin yhtälö ilmoittaa eri energiatasoil- la olevien atomien suhteelliset määrät: $\frac{N_n}{N_1} = \frac{q_n}{q_1} e^{-(\chi_1 - \chi_n)}, \text{missä } \chi_n = \frac{h \chi_n}{k T_e}$ $\frac{N_n}{N_1} = \frac{q_n}{q_2} e^{-\chi_1} e^{\chi_n}$
$\Rightarrow k_1^{bf} = \frac{e^{-\chi_1}}{m_H} \sum n^2 e^{-\chi_1}$	$x_n \chi_n^{ef}$ Sij. $\chi_n^{ef} = \frac{32}{3\sqrt{3}} \frac{\pi^2 e^6}{ch^3} \frac{R_y q^{ef}}{n^5 y^3}$
$\Rightarrow k_1^{\text{ef}} = \frac{32}{3\sqrt{3}} \frac{\pi^2 e^6 R_y}{c h^3 m_{\text{H}}}$	$\frac{e^{-\chi_{i}}}{\nu^{3}}\sum_{n}\frac{q^{6f}}{n^{3}}e^{\chi_{n}}$ $\frac{\varphi^{6f}}{\sqrt{n}}e^{\chi_{n}}$

Vedyn free-free absorptiokerroin c)

. .

Hyvin kuumissa tähdissä ulottuu free-free absorptio myös spektrin visuaalialueelle. Tällöin on bound-free massa-absorptiokertoimeen lisättävä freefree kontinuumiabsorption osuus.

Free-free absorptiokerroin yhtä protonia ja sitä ohittavaa (nopeus välissä [v, v + dv]) vapaata elektronia kohden saadaan a-kohdassa johdetun atomaa-risen kontinuumiabsorptiokertoimen $\measuredangle_{v}^{\ell_{1}}$ avulla, kunhan sidottu energiatila n korvataan vapaan tilan energiatasolla iK' ja bound-free oskillaattorivoimakkuus korvataan free-free siirtymän oskillaattorivoimakkuudella f_{K'K}:

$$f_{K'K} = \frac{64}{3\sqrt{3}\pi} \frac{1}{9}_{K'} \frac{1}{\left[-\frac{1}{K'^2} + \frac{1}{K^2}\right]^3} \frac{1}{\left[\frac{1}{K'^3}\frac{1}{K^3}\right]^3} \frac{1}{4}_{K'^3} \frac{1}{K^3} \frac{1}{8} \frac{1}{8}_{K''} \frac{1}{1}_{K''^2} \frac{1}{1}_{K'''^2} \frac{1}{1}_{K'''^2} \frac{1}{1}_{K'''^2} \frac{1}{1}_{K'''^2}$$

Vapaan elektronin statistinen paino g_K, saadaan seuraavasti:

 $= dp_{x}dp_{y}dp_{z}dxdydz$ Heisenbergin epätark- $= dp_{x}dxdp_{y}dydp_{z}dz$ kuusperiaate: $dp_{x}dxdp_{x}dx \approx h$ Faasiavaruuden "alkeiskoppi" = $dp_x dp_y dp_z dxdydz$ $\approx h^3$

Elektronien maksimilukumäärä

yksikkötilavuudessa (dxdydz = 1) = 2×faasiavaruuden alkeiskoppien 1km. $\mathcal{I}_{ ext{jokaiseen}}$ alkeiskoppiin mahtuu kaksi $g_{\kappa} = q \cdot \frac{4\pi p^2 dp}{k^3}$ elektronia, joilla vastakkaiset spinit $=\frac{8\pi}{k^3}p^2d\rho$ $=\frac{8\pi}{\hbar^3}(mv')^2 mdv'$ Elektronin liike-energia voidaan lausua

kontinuumin "sidosenergiana" (kts. a-kohta)

$$\frac{1}{2}mv'^{2} = \frac{hR_{\nu}Z^{2}}{K'^{2}} | differentioidaan$$
$$\Rightarrow | dv' | = \frac{2hR_{\nu}Z^{2}}{mv'K'^{2}} | dK' |$$

$$q_{K'} = \frac{16\pi m^2 R_v Z^2 \upsilon'}{h^2 K'^3} dK'$$

Valitsemalla dK' = 1 ja sijoittamalla vapaan elektronin statistinen paino g_{K} , oskillaattorivoimakkuuden lausekkeeseen $f_{K'K}$ saadaan

Kontinuumiabsorptiokerroin yhtä protonia ja yhtä vapaata elektronia (nopeus välissä [v, v +dv]) kohden on

Relaation k_{γ} g = N d_{γ} perusteella voidaan free-free absorptiokerroin d_{κ}^{ff} (yhtä protonia ja yhtä vapaata elektronia kohden) muuttaa <u>massa-absorptioker-</u> toimeksi k_{γ}^{ff} :

8

$$dk_{\nu}^{ff} = N_{i} [N_{e} f(\upsilon) d\upsilon] \cdot \alpha_{\kappa}^{ff}(\nu) , \text{ missä } N_{i} = \text{protonien } 1 \text{km/cm}^{3} \\ N_{e} f(\upsilon) d\upsilon = \text{elektronien } 1 \text{km/cm}^{3}, \\ \text{joilla nopeus välissä} \\ [v, v + dv] \\ \text{Oletetaan } \underline{\text{Maxwellin nopeusjakautuma,}} \\ \text{jolloin} \\ f(\upsilon) d\upsilon = 4\pi \left(\frac{m}{2\pi \, \text{kT}}\right)^{\frac{3}{2}} \upsilon^{2} e^{-\frac{m\upsilon^{2}}{2kT}} d\upsilon \\ \text{Merkitään } \alpha_{\kappa} = \frac{\frac{2}{3} \, \text{m}\upsilon^{2}}{k \, \text{T}_{e}} = \frac{h \, \nu_{\kappa}}{k \, \text{T}_{e}} \\ \Rightarrow \frac{1}{3} \, \text{m}\upsilon^{2} = \chi_{\kappa} \, k \, \text{T}_{e} \mid \text{ differentioida} \end{cases}$$

$$\Rightarrow v dv = \frac{k T_e}{m} dX_k$$

$$f(v) dv = 4\pi \left(\frac{m}{2\pi k T}\right)^{\frac{3}{2}} v \frac{k T_e}{m} e^{-X_k} dX_k$$

Tulo N_{ie} saadaan yhdistetyn Boltzmannin ja Sahan yhtälön avulla:

$$N_{m} = \frac{N: N_{e}}{T_{e}^{3/2}} \left(\frac{h^{2}}{2\pi m k}\right)^{3/2} n^{2} e^{\chi_{m}}$$

$$\frac{Perustilassa:}{N_{1}} = \frac{N: N_{e}}{T_{e}^{3/2}} \left(\frac{h^{2}}{2\pi m k}\right)^{3/2} e^{\chi_{1}}$$

$$\Rightarrow N_{i}N_{e} = N_{i} \left(\frac{2\pi m k T_{e}}{h^{2}}\right)^{3/2} e^{-\chi_{1}}$$

$$\min X_{1} = \frac{\frac{1}{2}mv^{2}}{kT_{e}} = \frac{1}{kT_{e}} \frac{hR_{v}Z^{2}}{K^{2}} \left(\frac{k=1}{2}\right) \frac{hR_{v}Z^{2}}{kT_{e}}$$

Huomioimalla, että <u>perustilassa</u> olevien <u>vetyatomien tiheys $\mathcal{G} = N_1 \frac{m}{H}$ </u> sekä sijoittamalla massa-absorptiokertoimen dk^{ff}_v lausekkeeseen \mathcal{G} , $N_i N_e$, f(v) dv, α_{κ}^{ff} sekä vedyn järjestysluku Z = 1 saadaan

$$dk_{y}^{ff} = \frac{8}{3\sqrt{3}} \frac{e^{2} R_{y} k T_{e}}{c h m m_{H}} \frac{q^{ff}}{y^{3}} e^{-(\chi_{1} + \chi_{2})} d\chi_{k}$$

- 182 -

Koska elektroni voi säteillä taajuudella $\mathcal V$ riippumatta siitä, mikä sen nopeus on, on dk $_{\mathcal V}^{\mathrm{ff}}$ integroitava yli kaikkien nopeusarvojen:

$$k_{y}^{ff} = \int_{v=0}^{\infty} dk_{y}^{ff} = \int_{k=0}^{\infty} dk_{y}^{ff}$$

$$\Rightarrow k_{y}^{ff} = \frac{8}{3\sqrt{3}} \frac{e^{2} R_{y} k}{ch m m_{H}} \frac{T_{e} q_{f}^{ff} - X_{1}}{\sqrt{3}} \frac{V}{A}$$

VEDYN FREE-FREE MASSA-ABSORPTIOKERROIN

Yhdistämällä vetyatomien bound-free sekä free-free absorptiokerroin saadaan kokonaisabsorptiokerroin yhtä vetygrammaa kohden:

$$k_{\nu} = k_{\nu}^{bf} + k_{\nu}^{ff}$$

KOKONAISABSORPTIOKERROIN/1g

Vedyn kokonaisabsorptiokerroin taajuuden funktiona on esitetty seuraavassa kuvassa.

The logarithm of the absorption coefficient of atomic hydrogen (not corrected for negative absorptions), calculated per gram of H atoms in the ground level, is plotted against log ν for various temperatures. The wavelength scale is indicated at the top. Notice in particular how the size of the Balmer discontinuity increases monotonically with decreasing temperature. Were atomic hydrogen the sole source of opacity in stellar atmospheres, the jump in the energy distribution at the limit of the Balmer series could become very large.

Nähdään, että <u>kontinuumiabsorptiokerroin riippuu voimakkaasti lämpötilas</u> <u>ta. Alhaisissa lämpötiloissa</u> lähes kaikki vetyatomit ovat perustilassa. Käytännöllisesti katsoen kontinuumiabsorptiot tapahtuvat tällöin alueella $\lambda < 912$ Å. Tästä syystä <u>neutraalit vetyatomit eivät</u> juuri <u>vaikuta visuaa</u> <u>lialueen opasiteettiin</u>. Lämpötilan noustessa kasvaa korkeampien energiatilojen miehitys, jolloin myös visuaaliaallonpituuksilla kontinuumiabsorptio kasvaa. Vasta <u>Aurinkoa vähän kuumemmissa tähdissä</u> vedyn <u>bound-free absorptio</u> tulee tärkeäksi, ja vain kaikkein <u>kuumimmissa tähdissä</u> täytyy huomioida free-free absorptio.

Kuvasta nähdään myös, että <u>Balmerin hypyn suuruus kasvaa lämpötilan ale-</u> tessa.

d) Negatiivisen vetyionin kontinuumiabsorptio

Vedyn bound-free ja free-free absorptio antaa visuaalialueella riittävän kontinuumiabsorptiolähteen vain kuumilla tähdille (T \gtrsim 8000 K). Kylmempien tähtien opasiteetin selittäminen metallien avulla ei luonnistu, koska tällöin myös metallien absorptioviivojen täytyisi olla havaittuja paljon voimakkaammat. R. Wildt esitti v. 1938, että <u>negatiivisen vetyionin (H⁻)</u> <u>bound-free</u> ja <u>free-free siirtymät</u> aiheuttavat riittävästi <u>kontinuumiabsorptiota visuaalialueella</u>, kun lämpötila tähden atmosfäärissä on T \leq 7000 K. (Bethe ja Hylleraas olivat jo v. 1930 kvanttimekaanisilla laskuilla ennustaneet H⁻ ionin olemassaolon.)

Koska vedyn yksi elektroni ei täysin peitä ytimen varausta, pystyy ydin sieppaamaan läheltä kulkevan elektronin elektroniverhoonsa. H⁻ ionissa on ensimmäisen elektronin perustilan sidosenergia 13.6 eV ja tämän toisen, siepatun elektronin sidosenergia on 0.754 eV. Alhaisen sidosenergian johdosta H⁻ ioni ei esiinny kuumien tähtien atmosfääreissä.

Koska H⁻-ionilla on vain yksi mahdollinen sidottu tila, ei H⁻ pysty boundbound siirtymiin (⇒ spektriviiva), vaan ainoastaan kontinuumiabsorptioihin. H⁻-ionin kontinuumiabsorptiokertoimen laskeminen on mutkikkaampi kuin neutraalin vedyn tapauksessa. Seuraava kuva esittää laskujen tulokset

Fig. The Absorption Coefficient of the Negative Hydrogen Ion at a Temperature of 6300°K ($\theta = 0.8$) due to Bound-Free and Free-Free Transitions. The quantity plotted is 10²⁶ times the absorption coefficient per unit electron pressure and per neutral hydrogen atom in one cm³. Thus the coefficient has the dimensions cm⁻¹ and is not a mass absorption coefficient. [Adapted from N. A. Doughty and P. A. Fraser, 1966 (211).]

Nähdään, että kontinuumiabsorptio koostuu kahdesta tekijästä: bound-free sekä free-free siirtymistä. Lisäksi havaitaan, että (päinvastoin kuin neutraalin vedyn tapauksessa) bound-free absorptio ei ole maksimissaan heti sarjarajan vieressä, vaan se kasvaa rajalta (0.754 eV vastaa raja-aallonpituutta λ = 16450 Å) lyhyempiin aallonpituuksiin päin ja saavuttaa maksimin kun $\lambda \approx 8500$ Å. H-ionin matalasta dissosiaatioenergiasta johtuen ovat negatiivisen vetyionin bound-free ja free-free siirtymät tärkeitä visuaalisessa ja infrapuna-alueessa. H-ionin merkitys ilmenee seuraavasta kaaviokuvasta:

Tämän kiertokulun ansiosta sitoutuu elektroneja jatkuvasti vetyatomeihin tuottaen siten jatkuvasti uusia valokvantteja. Auringon <u>näkyvä valo</u> esimerkiksi on seurausta H⁻-ionin muodostumisesta. (Huom. Auringon fotosfäärikerroksen paksuus on vain noin 300 km)

Sahan yhtälön avulla voidaan laskea H-ionin muodostavien vetyatomien suhteellinen määrä tietyssä lämpötilassa ja paineessa.

$$\frac{N_{0,1}(H) \cdot P_{e}}{N(H^{-})} = 0.331 \cdot T^{5/2} \frac{2u(H)}{u(H^{-})} \cdot 10^{-\frac{5040}{T}} \cdot \chi[ev] \qquad T = 6000 \text{ K}$$

$$P_{e} = 10 \, dyn/cm^{2}$$

$$u(H) = 1$$

$$u(H) = 1$$

$$u(H^{-}) = 1$$

$$\chi = 0.75 \, eV$$

Koska Paschen kontinuumiabsorptioitten (n = $3 \rightarrow \infty$) alue on 3647 Å < λ < 8204 Å, lasketaan viritystilassa n = 3 olevien vetyatomien suhteellinen osuus perustilassa oleviin vetyatomeihin nähden:

$$\Rightarrow \frac{N_{0,3}}{N_{0,1}} = 6.28 \times 10^{-10}$$

Yhdistämällä nämä molemmat tulokset saadaan

$$\frac{N(H^{-})}{N_{0,1}(H)} = \frac{N_{0,3}(H)}{N_{0,1}(H)} = \frac{N(H^{-})}{N_{0,3}(H)} = \frac{1.2 \times 10^{-8}}{6.28 \times 10^{-10}} \approx 20$$

Voidaan todeta, että kontinuumiabsorption kannalta H ioni on tärkeämpi kuin neutraali vety.

e) Muiden alkuaineiden kontinuumiabsorptio

Tietyillä spektrialueilla myös muut alkuaineet voivat aiheuttaa merkittävää kontinuumiabsorptiota. Kuumissa tähdissä (T > 16800 K) on erityisesti helium huomioitava. Kylmien tähtien atmosfääreissä taas eräät metallit (Al, Mg, Si, C ...) aiheuttavat kontinuumiabsorptiota UV-alueella. Todettakoon, että monien metallien kontinuumiabsorptioraja osuu alueelle $\lambda_{cont} < 912$ Å, jossa vedyn Lyman-kontinuumiabsorptio dominoi. Seuraavissa kuvissa on esitetty kontinuumiabsorptio aallonpituuden funktiona.

a) Auringon atmosfäärissä (spektriluokka G2V; T = 5700 K)

b) ↑ Scorpiin atmosfäärissä (spektriluokka BOV; T = 28300 K)

Kuvista nähdään mikä alkuaine dominoi kullakin taajuusalueella.

Abb. Kontinuierlicher Absorptionskoeffizient $\varkappa(\lambda)$ in der Atmosphäre der Sonne (G2V) bei $\tau_0 = 0.1$ (τ_0 entspricht λ 5000 Å), d. h. T = 5040 °K bzw. $\Theta = 1$ und $P_e = 3.2$ dyn \cdot cm⁻² bzw. $P_e = 5.8 \cdot 10^4$ dyn \cdot cm⁻²

Kontinuierlicher Absorptionskoeffizient $\varkappa(\lambda)$ in der mosphäre des τ Scorpii (B0V) bei $\overline{\tau} \approx 0.1$, d. h. $T = 28\,300$ K w. $\Theta = 0.18$ und $P_{\tau} = 3.2 \cdot 10^3$ dyn \cdot cm⁻² bzw. $P_{g} = 6.4 \cdot 10^3$ dyn \cdot cm⁻²

- 186 -

Tähtien spektriluokkien mukaisessa järjestyksessä on alla vielä esitetty, mitkä atomit ja ionit vaikuttavat pääasiallisesti kontinuumiabsorptiokertoimeen visuaalialueella.

T_{eff} [K] spektriluokka He II otettava 100800 0 huomioon Elektronisironta vallitsevin alhaisilla elektronipaineilla 50400 He I otettava huomioon В H I tärkeä 16800 10080 H dominoi suurilla elektronipaineen arvoilla A 8400 H I tärkeä, mutta H vallitseva suurilla elektronipaineilla ja elektronisironta otet-F 7200 tava huomioon alhaisilla elektronipaineilla 6300 G 5600 H pääasiallisin opasiteettilähde (mm. Auringossa) K 5040 4200 3880 Molekyylien absorptio otettava huomioon М

f:) Keskimääräinen absorptiokerroin

Säteilynkuljetusyhtälö pystytään tarkasti ratkaisemaan ns. harmaan atmosfäärin tapauksessa, jossa absorptiokerroin ei riipu taajuudesta. Säteilynkuljetukseen liittyvät yhtälöt harmaassa ja ei-harmaassa (taajuusriippuvaisessa) atmosfäärissä ovat seuraavat:

- (1a) $\frac{-\cos\theta}{9k_{y}} \frac{dI_{y}}{dX} = I_{y} S_{y}$ (2a) $-\frac{1}{9k_{y}} \frac{dH_{y}}{dX} = J_{y} - S_{y}$ $-\frac{1}{9k} \frac{dH}{dX} = 0$ (2b)
- $(3a) \frac{1}{Sk_y} \frac{dK_y}{dx} = H_y \qquad \frac{1}{Sk} \frac{dK}{dx} = H \quad (3b)$

missä $H_{y} = \frac{1}{4\pi} \int I_{y} \cos \Theta d\omega = \frac{1}{4\pi} \mathcal{F}_{y}$

$$K_{\nu} = \frac{1}{4\pi} \int I_{\nu} \cos^{2} \Theta d\omega = \frac{c}{4\pi} P_{red}$$

$$I = \int I_{\nu} d\nu , \quad J = \int J_{\nu} d\nu , \quad H = \int H_{\nu} d\nu , \quad K = \int K_{\nu} d\nu$$

Seuraavassa tarkastellaan mahdollisuutta löytää keskimääräinen absorptiokerroin (opasiteettikerroin) siten, että integroitaessa monokromaattinen yhtälö yli kaikkien taajuuksien saadaan harmaan atmosfäärin vastaava yhtälö.

1) Chandrasekharin keskimääräinen absorptiokerroin k

Määritellään keskimääräinen absorptiokerroin k siten, että <u>kokonaisvuo</u> on <u>sa</u>ma harmaassa ja ei-harmaassa tapauksessa:

Š k,.	ታ ^ን ዋእ	= k	«له ^۲ ۴	=	k	¥
⇒	ŔF	= ຼີ	k, F, d» F			

CHANDRASEKHARIN KESKIMÄÄ-RÄINEN ABSORPTIOKERROIN

Käyttämällä tätä keskimääräistä absorptiokerrointa saadaan vastaavuus yhtälöiden (3a) ja (3b) välille (H, = $\frac{1}{4\pi}$ $\frac{2}{5}$). Sen sijaan \overline{k}_{F} :n käyttö ei anna vastaavuutta yhtälöiden (2a) ja (2b) välille.

Luvussa 2.1.3.c saatiin säteilypaineen gradientin lausekkeeksi :

$$\frac{dP_{R}}{dx} = \frac{3}{c} \int_{c}^{\infty} R_{y} \tilde{\tau}_{y} dy \qquad : S\overline{R}_{F}$$

$$\frac{dP_{R}}{d\overline{T}} = \frac{1}{c} \frac{\delta \tilde{S} R_{y} \tilde{\tau}_{y} dy}{\frac{1}{c} SR_{y} \tilde{\tau}_{y} dy} = \frac{\tilde{T}}{c} = \frac{S\overline{T}_{eff}}{c}$$

Käyttämällä Chandrasekharin keskimääräistä absorptiokerrointa \overline{k}_{F} saadaan oikea säteilypaineen gradientti (tärkeä laskettaessa varhaiseen spektriluok-kaan kuuluvan tähden malliatmosfääriä).

2) Rosselandin keskimääräinen absorptiokerroin \overline{k}_{p}

Äsken tarkasteltiin yhtälöiden (3a) ja (3b) oikeanpuoleisia lausekkeita. Kun tarkastellaan näiden yhtälöiden vasemmanpuoleisia lausekkeita, saadaan ne vastaamaan toisiaan määrittelemällä keskimääräinen absorptiokerroin siten,

$$-\frac{1}{S}\int_{\overline{R}}^{\infty}\frac{1}{R_{y}}\frac{dK_{y}}{dx} = \int_{\overline{R}}^{\infty}H_{y}dy = H = -\frac{1}{S\overline{R}}\frac{dK}{dx}$$
$$\Rightarrow \frac{1}{\overline{R}} = \frac{\int_{\overline{R}}^{\infty}\frac{1}{R_{y}}\frac{dK_{y}}{dx}dy}{\int_{\overline{R}}^{\infty}\frac{dK_{y}}{dx}dy}$$

Tämä \overline{k} on yhtäpitävä Chandrasekharin absorptiokertoimen $\overline{k}_{\overline{F}}$ kanssa. Koska funktiota K, ei tunneta, <u>oletetaan isotrooppinen säteilykenttä</u>, jolloin K, = 1/3 J, (kts. luku 2.2.6.b).

$$\Rightarrow \frac{1}{R} = \frac{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy} dy}{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy} dy} = \frac{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy}}{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy} \frac{d}{dx} \frac{d}{dy}} = \frac{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy}}{\int_{0}^{\infty} \frac{d}{dx} \frac{d}{dy}}$$

Koska edelleen J_y on tuntematon, on tehtävä lisäapproksimaatio: atmosfäärin <u>syvemmissä kerroksissa</u> pätee <u>LTE oletus</u>, jolloin keskimääräinen intensiteetti voidaan korvata Planckin funktiolla: J_y \rightarrow B_y

<u>HUOM.1</u> Rosselandin käyttämää approksimaatiota kutsutaan myös <u>diffuusioapp-</u> <u>roksimaatioksi</u>: kun Υ suuri, niin $I_{\nu} \rightarrow B_{\nu}$ (ts. <u>LTE voimassa</u>). Koska terminen emissio ja sironta tapahtuvat isotrooppisesti, niin säteilykenttä tulee sitä isotrooppisemmaksi mitä suuremmaksi Υ kasvaa. Näillä oletuksilla saadaan tulokseksi, että Υ on verrannollinen intensiteetin gradienttiin (kts. luku 2.2.6.b)

$$H_{y} = \frac{1}{3} \frac{dB_{y}}{dT_{y}} = -\frac{1}{3} \frac{1}{SR_{y}} \frac{dB_{y}}{dX}$$

$$H_{y} = -\frac{1}{3} \left(\frac{1}{k_{y}g} \frac{dB_{y}}{dx} \right) \frac{dT}{dx}$$

Integroimalla yli taajuuksien saadaan

$$H = -\frac{1}{39 \, \text{k}} \frac{dB}{dT} \frac{dT}{dX}$$

Tämä tulos on tarkka, vain mikäli $\overline{k} = \overline{k}_{R}$.

<u>HUOM.2</u> \overline{k}_R takaa, että saadaan vastaavuus yhtälöiden (3a) ja (3b) välille, mutta ei yhtälöiden (2a) ja (2b) välille.

3) Planckin keskimääräinen absorptiokerroin k_p

Planckin keskimääräinen absorptiokerroin \overline{k}_{p} määritellään siten, että terminen kokonaisemissio on sama harmaassa ja ei-harmaassa atmosfäärissä: $\int_{0}^{\infty} k_{y} B_{y} dy = \overline{k} \int_{0}^{\infty} B_{y} dy = \overline{k} B$ $\Rightarrow \overline{k}_{p} = \circ \frac{\int_{0}^{\infty} k_{y} B_{y}(\tau) dy}{R(\tau)} = \frac{\pi}{6\tau^{4}} \int_{0}^{\infty} k_{y} B_{y} dy$ PLANCKIN KESKIMÄÄRÄINEN ABSORPTIOKERROIN

Mikäli halutaan saada vastaavuus yhtälöiden (2a) ja (2b) välille, on ei-harmaassa atmosfäärissä $-\frac{\int dH_{\nu}d\nu}{dx} = 3\int k_{\nu}(J_{\nu} - S_{\nu})d\nu$ harmaassa atmosfäärissä $-\frac{dH}{dx} = 0 = 8k(J - S) = 5\int k(J_{\nu} - S_{\nu})d\nu$ Vastaavuus saadaan siis relaatiolla = 0 säteilytasapainossa $\int k_{\nu}(J_{\nu} - S_{\nu})d\nu$

sekä säteilytasapainon oletuksella.

- 190 -

Jos lisäksi oletetaan LTE, niin $S_{\nu} \rightarrow B_{\nu}$, jolloin $\overline{k} \rightarrow \overline{k}_{p}$. Tähden pintakerroksissa vallitsee säteilytasapaino, minkä johdosta opasiteettikerrointa \overline{k}_{p} on käytetty tarkasteltaessa tähden ulompia atmosfäärikerroksia.

<u>HUOM</u>. Vaikka LTE-oletus tähden pintakerroksissa ei vastaisikaan todellisuutta, on huomioitava, että ennen suurten tietokoneitten aikakautta absorptiokertoimien $\overline{k_p}$ ja $\overline{k_R}$ käyttö oli ainoa tapa saada edes jonkinlainen arvio atmosfääreissä vallitsevista fysikaalisista olosuhteista.

Nähdään, että mikään näistä keskimääräisistä absorptiokertoimista ei anna täydellistä vastaavuutta harmaan ja ei-harmaan, todellisen atmosfäärin välille. Valitsemalla keskimääräinen absorptiokerroin sopivasti voidaan kuitenkin tietyissä rajoissa palauttaa ei-harmaa säteilynkuljetusprobleema harmaaseen tapaukseen. Näin saadaan ainakin ensimmäiset approksimaatiot atmosfäärimallien iterointiproseduureihin. Klassinen säteilyteoria käsittelee värähtelevän dipolin lähettämää jatkuvaa emissiota. Kvanttiteoriassa taas säteily syntyy kvantteina elektronin siirtyessä atomin energiatilalta toiselle: $h\gamma = E_n - E_n$. Kvanttimekaniikan avulla voidaan kullekin siirtymälle laskea elektronin siirtymätodennäköisyys. Näitä siirtymätodennäköisyyksiä merkitään seuraavasti: $A_{nn'}$ (spontaani emissio), $B_{nn'}$ (indusoitu emissio) ja $B_{n'n}$ (absorptio). Pieni johdatus siirtymätodennäköisyyksien kvanttimekaanisiin laskuihin on esitetty liitteessä II.

a) Elektronisiirtymien Einsteinin todennäköisyyskertoimet

1) Spontaani emissio

Todennäköisyys, että energiatilassa n oleva atomi siirtyy ajassa dt alempaan tilaan n' on

 $\frac{N(n \rightarrow n^{2})}{N_{n}} = A_{nn}, dt$

 $N(n \rightarrow n') = N_n \cdot A_{nn}, dt$ = siirtymien lukumäärä/cm³ ajassa dt

missä N_n = tilassa n olevien atomien lukumäärä/cm³ A_{nn}, = spontaanin emission todennäköisyyskerroin yleensä A_{nn}, = $10^8 - 10^9$ 1/s <u>ESIM</u>. Oletetaan, että N_n = 10^8 atomia/cm³ ja A_{nn}, = 10^6 1/s

Tällöin N(n→n') = 10¹⁴ siirtymää/cm³·s

<u>HUOM</u>. Spontaani siirtymä <u>ei riipu</u> mahdollisesti läsnä olevasta <u>säteily</u>-<u>kentästä</u>. Spontaanin emission säteilyä vapautuu isotrooppisesti kaikkiin suuntiin:

2) Absorptio

$$\frac{N(n^{2} \rightarrow n)}{N_{n^{2}}} = B_{n^{2}n} I_{\nu} dt$$

$$\frac{I_{\nu}}{N_{n^{2}}} \xrightarrow{B_{n^{2}n}} n$$

$$\frac{N(n^{2} \rightarrow n) = N_{n^{2}} \cdot B_{n^{2}n} I_{\nu} dt}{N(n^{2} \rightarrow n) = N_{n^{2}} \cdot B_{n^{2}n} I_{\nu} dt}$$
missä $N_{n^{2}} = \text{tilassa n' olevien atomien lukumäärä/cm}^{3}$

- B_{nn} , = absorption todennäköisyyskerroin
- I = saapuvan säteilyn intensiteetti Saapuvasta säteilystä vain taajuus $y = \frac{E_n - E_n}{h}$ aiheuttaa absorptiota

HUOM. Absorptio ssa aallon vaihe säilyy.

$$I_{\nu} \longrightarrow I_{\nu} - dI_{\nu}$$

3) Indusoitu emissio (negatiivinen absorptio)

Saapuvan säteilyn fotoni laukaisee elektronin siirtymään ylemmältä tilalta alemmalle.

$$N(n \rightarrow n^{2}) = N_{n} \cdot B_{nn}, \cdot I_{y} dt$$

HUOM. Indusoitu emissio on epäisotrooppista.

Vahvistunut aalto etenee samaan suuntaan ja samassa vaiheessa kuin saapuva säteily.

$$\overbrace{I_{\nu}}^{I_{\nu}} \overbrace{}^{J_{\nu} + dI_{\nu}}$$

<u>Nettoabsorptio</u> saadaan vähentämällä absorptiosta indusoi tuneen emission osuus :

absorptio:
$$N(n' \rightarrow n) = N_n, B_{n'n} I_y dt$$

indusoitu emissio : $N(n \rightarrow n') = N_n \cdot B_{nn'} \cdot I_y dt$

nettoabsorptio = $(N_n, B_{n'n} - N_n B_{nn'}) I_{n} dt$

<u>HUOM.</u> Yleensä nettoabsorptio > 0, koska alemman energiatilan miehitys N_n , on suurempi kuin N_n . Termodynaamisessa epätasapainossa saattaa tilanne olla toisin päin ($N_n > N_n$), jolloin nettoabsorptio tulee negatiiviseksi. Tällöin saapuva intensiteetti vahvistuu huomattavasti (esim. maseroivat lähteet).

4) Spontaani ja indusoitu emissio

Rajoitutaan seuraavassa tilanteisiin,joissa esiintyy vain säteilyn aiheuttamia siirtymiä sekä spontaania emissiota (ts. riittävän harva kaasu, jossa ei tapahdu atomien välisiä törmäyksiä).

Säteilytasapainossa:

$$N_n(A_{nn}, +B_{nn}, I_{\nu}) dt = N_n, B_{n'n} \cdot I_{\nu} dt$$

siirtymien 1km. alaspäin

siirtymien 1km. ylöspäin

$$\Rightarrow N_n A_{nn'} = I_{\nu} \left(N_n, B_{n'n} - B_{nn'}, N_n \right) \left| I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/RT} - 1} \right| : N_n,$$

$$\Rightarrow \frac{N_n}{N_n}, A_{nn'} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/RT} - 1} \left(B_{n'n} - B_{nn'} \frac{N_n}{N_{n'}} \right) \left| \text{Boltzmann} : \frac{N_n}{N_{n'}} = \frac{q_n}{2n} e^{-(X_n - X_n)/kT}$$

$$\Rightarrow \frac{q_n}{q_{n'}} e^{-h\nu/kT} \cdot A_{nn'} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/RT} - 1} \left(B_{n'n} - B_{nn'}, \frac{q_n}{N_{n'}} - B_{nn'}, \frac{q_n}{q_{n'}} e^{-h\nu/kT} \right) \left| \cdot e^{h\nu/kT}$$

$$\Rightarrow \frac{q_n}{q_{n'}} \cdot A_{nn'} = \frac{q_{n'}}{c^2} \frac{1}{e^{h\nu/RT} - 1} \left(B_{n'n} - B_{nn'}, \frac{q_n}{q_{n'}} e^{-h\nu/kT} \right) \left| \cdot e^{h\nu/kT} \right|$$

$$\Rightarrow \underbrace{\frac{9n}{3n'} \cdot A_{nn'}}_{\text{vakio}} = \underbrace{\frac{9hy^3}{c^2}}_{\text{vakio}} \underbrace{\frac{9n'n}{c^2}}_{\text{vakio}} \underbrace{\frac{e^{hy/kT} - \frac{9n}{3n'}}{e^{hy/kT} - 1}}_{\text{vakio}}$$

Jotta atomaariset vakiot $A_{nn'}$, $B_{nn'}$ ja $B_{n'n}$ olisivat lämpötilasta riippumattomia, on lopussa esiintyvän osamäärän osoittajan oltava yhtäsuuri kuin nimittäjä :

$$\Rightarrow \begin{cases} \frac{3n}{3n} \frac{B_{nn'}}{B_{n'n}} = 1\\ \frac{3n}{3n} \cdot A_{nn'} = \frac{2h\nu^3}{c^2} \cdot B_{n'n} & \stackrel{B_{n'n} = \frac{3n}{2n} \cdot B_{nn'}}{\swarrow} & A_{nn'} = \frac{2h\nu^3}{c^2} B_{nn'} \end{cases}$$

Einsteinin kertoimet A_{nn}, B_{nn}, ja B_{n'n} ovat atomaarisia vakioita, jotka voidaan määrittää kullekin siirtymälle kokeellisesti tai teoreettisesti kvanttimekaniikkaa hyväksi käyttäen. Kun yksi Einsteinin kerroin tunnetaan, saadaan muut kertoimet em. kaavoilla.

<u>HUOM. 1</u> Jotta Planckin säteilylaki $I = I(T_{ex})$ olisi voimassa, on atomissa tapahduttava indusoitua emissiota (Einstein, 1917).

<u>HUOM. 2</u> Kun hy/kT >> 1 (Wienin approksimaatioalue), on $I_{\nu} = \frac{2h\nu}{c^{2}} e^{-h\nu/kT} | \cdot B_{nn'}$ $B_{nn'} I_{\nu} = B_{nn'} \frac{2h\nu}{c^{2}} e^{-h\nu/kT}$ $B_{nn'} I_{\nu} = A_{nn'} \frac{e^{-h\nu/kT}}{c^{4}} \leq A_{nn'}$ Ts. <u>spontaanit emissiot dominoivat UV-alueella</u>. Kun h $\nu/kT \ll 1$ (Rayleigh-Jeansin approksimaatioalue) $I_{\nu} = \frac{2\nu^{2}kT}{c^{2}} | \cdot B_{nn'} = \frac{2}{2h\nu^{3}} A_{nn'}$ $B_{nn'} I_{\nu} = B_{nn'} \frac{2\nu^{2}kT}{c^{2}} | B_{nn'} = \frac{2}{2h\nu^{3}} A_{nn'}$ Ts. induscituneet emissiot dominoivat radicalueella

Luvun 2.5.2 e-kohdassa todettiin, että yhteeen kuutiosenttimetriin absorboituneen säteilytehon määrä on

 $P_{y} = 4\pi I_{y} \overline{k} S$

Kytkemällä tämä kvanttiteoreettiseen tarkasteluun, saadaan yhdessä sekunnissa yhteen kuutiosenttimetriin väliainetta absorboituneen energian määräksi:

$$H\pi I, \overline{k} g dt = N(n' \rightarrow n) h v_{o}$$

=
$$N_m$$
, B_m , I_v dt hy

$$\Rightarrow \overline{R} S = \frac{1}{4\pi} N_n, B_n, h v_o$$

Tarkasteltaessa todellista nettoabsorptioita, on <u>indusoituneen emission</u>. osuus poistettava :

$$4\pi I_{y} \overline{k'} S = (N_{n'} B_{n'n} - N_{n} B_{nn'}) I_{y} h_{y}$$

missä k' = negatiiviset absorptiot huomioiva massa-absorptiokerroin N_n, = energiatilan n' miehitysluku N_n = energiatilan n miehitysluku

$$4\pi I_{y} \overline{k'} S = N_{n'} B_{n'n} \left(1 - \frac{N_{n}}{N_{n'}} \frac{B_{nn'}}{B_{n'n}}\right) I_{y} h v_{o} \left| \begin{array}{c} Boltzmann: \frac{N_{n}}{N_{n'}} = \frac{g_{n}}{g_{n'}} e^{-h v_{o}/kT} \\ 1uvussa 2.5.3.a \text{ kohdassa 4:} \\ \frac{g_{n}}{g_{n'}} = \frac{B_{n'n}}{B_{nn'}} \\ \frac{g_{n'}}{g_{n'}} = \frac{B_{n'n}}{B_{nn'}} \\ 4\pi I_{y} \overline{k'} S = N_{n'} B_{n'n} \left(1 - e^{-h v_{o}/kT}\right) I_{y} h v_{o} \left| 4\pi I_{y} \overline{k} S = N_{n'} B_{n'n} I_{y} h v_{o} \right| \right|$$

$$\Rightarrow N_{n}, B_{n'n} = \frac{4\pi I_{\nu} \overline{k} g}{I_{\nu} h \nu_{o}}$$

$$\Rightarrow 4\pi I_{y} \overline{k'} S = \frac{4\pi \overline{k} S}{h \nu_{o}} (1 - e^{-h \nu_{o}/kT}) I_{y} h \nu_{o}$$
$$\Rightarrow \overline{k'} = \overline{k} (1 - e^{-h \nu_{o}/kT})$$

Nettoabsorptiota tarkasteltaessa on siis absorboituneesta säteilyenergiasta vähennettävä säteilyn synnyttämät indusoituneet emissiot (negatiiviset absorptiot), jolloin massa-absorptiokerrointa \overline{k} on korjattava yo. sulkutekijällä.

<u>HUOM.</u> Normaalissa absorptiossa $\frac{h\nu}{kT} > 0 \Rightarrow 0 < 1 - e^{-h\nu/kT} < 1$ Absorptio maseroivassa kohteessa: $\frac{h\nu}{kT_{ex}} < 0$, koska $T_{ex} < 0$ (muodollinen merkintä) $\Rightarrow (1 - e^{-h\nu/kT_{ex}}) < 0$ $\Rightarrow \overline{k^2} < 0$

c) Einsteinin kertoimien yhteys oskillaattorivoimakkuuksiin

Yhdessä sekunnissa absorboituu yhteen kuutiosenttimetriin ainetta säteilyenergiaa

 $E_{y} = 4\pi I_{y} \$ \overline{k}$ $\$ \overline{k} = \pounds \cdot N_{oy} \cdot \frac{\pi e^{2}}{mc} \quad (kts. \ 1uku \ 2.5.2.e)$ missä f = oskillaattorivoimakkuus $N_{oy} = \text{atomien } 1km/cm^{3}, \text{ joilla}$ ominaistaajuus ν_{o}

Kytkemällä jälleen klassisen teorian energia-absorptio kvanttiteorian energia-absorption lausekkeeseen saadaan

$$4\pi I_{\nu} \cdot f N_{\nu} \frac{\pi e^2}{mc} = N_{\nu}, B_{\nu} \cdot n I_{\nu} h \nu_{\nu}$$

Tarkasteltaessa siirtymää n'n, on $N_{oy} = N_n$, ja f = f_{n'n}

$$\Rightarrow B_{n'n} = \frac{4\pi}{h\nu} \frac{\pi e^2}{mc} f_{n'n}$$

Spontaanin emission todennäköisyyskertoimelle pätee

$$A_{nn'} = \frac{2h\nu^3}{c^2} \frac{3n'}{3n} B_{n'n}$$

Sijoittamalla , absorption todennäköisyyskertoimen B_{n'n} lauseke saadaan

6

$$A_{nn} = \frac{g_{n'}}{g_{n}} \frac{8\pi^{2}e^{2}y^{2}}{mc^{3}}f_{n'n} = \frac{g_{n'}}{g_{n}}\cdot 3\chi\cdot f_{n'n}$$

Huomioimalla, että klassisen säteilijän vaimennuskerroin on

$$\chi = \frac{8\pi^2 e^2 y^2}{3 m c^3} = \frac{0.2223}{(\lambda [cm])^2}$$

voidaan oskillaattorivoimakkuudet f ilmaista Einsteinin kertoimien avulla :

$$f_{n'n} = \frac{1}{38} \frac{g_n}{g_{n'}} A_{nn'} = 1.5 \times 10^{-8} \left(\lambda \left[\mu m\right]\right)^2 \cdot \frac{g_n}{g_{n'}} A_{nn'}$$

HUOM. Liitteessä II on kvanttimekaaninen "johto" oskillaattorivoimakkuuden lausekkeelle.

- 198 -

d) Säteilyvaimennuksen kvanttimekaaninen lauseke

Mikäli säteilykenttä ei vaikuta, on atomin lähettämä säteily yksinomaan spontaania emissiota. Ylemmässä energiatilassa n olevien atomien lukumäärä pienenee tällöin seuraavasti.

$$\frac{d N_n}{dt} = -N_n \sum_{n'} A_{nn'}$$

$$\implies N_n = N_n (0) e^{-\sum_{n'} A_{nn'} t}$$

Vertaamalla tätä klassisen oskillaattorin säteilyenergiaan W = W_o e⁻ X^t saadaan vaimennuskertoimen kvanttimekaaniseksi lausekkeeksi

$$T_{m}^{1} = \sum_{m'} A_{nm'}$$

SÄTEILYVAIMENNUS, KUN SÄTEILYKENTTÄ EI VAIKUTA.

Samoin kuin $1/\chi^{*}$ edusti klassisen säteilijän keskimääräistä elinikää, edustaa T = $1/T_{n}$ atomin keskimääräistä elinikää tilassa n.

<u>HUOM.</u> Tarkemmat laskut osoittavat, että energiatilojen n ja n' välisessä siirtymässä on säteilyvaimennus

$$T = T_m + T_n,$$

Mikäli säteilykenttä vaikuttaa riippuu viritystilan miehitys myös virityksistä korkeampiin energiatiloihin sekä negatiivisesta absorptiosta. Tällöin

$$T_{m}^{i} = \sum_{n''} A_{nn''} + \sum B_{nn'} I(\nu_{nn'}) + \sum_{m''} B_{nn''} I(\nu_{nn''})$$

SÄTEILYVAIMENNUS, KUN SÄTEILYKENTTÄ VAIKUTTAA

Käyttämällä hyväksi yhtälöitä

 $I = \frac{2hy^{3}}{c^{2}} \frac{1}{e^{hy/kT} - 1}$ ($g_{n} B_{nn} = g_{n} B_{nn}$

(Planckin funktio)

$$\frac{g_n}{g_n}A_{nn} = \frac{2h^3}{c^2}B_{n'n}$$

$$\frac{3n}{3n'}A_{nn'} = \frac{8\pi^2 e^2 y^2}{mc^3} fn'n$$

voidaan ______ säteilyvaimennuksen lauseke kirjoittaa muotoon

$$T_{n}^{1} = \frac{8\pi e^{2}}{mc} \left[\sum_{n'} \frac{\partial n'}{\partial n} \frac{f_{n'n}}{\lambda^{2}} \frac{1}{1 - e^{-h\nu/kT}} + \sum_{n''} \frac{f_{nn''}}{\lambda^{2}} \frac{1}{e^{h\nu/kT} - 1} \right]$$

HUOM. Radio- ja infrapuna-alueella, jossa h ν /kT >> 1, on

$$I_{v} = \frac{2kTv^{2}}{c^{2}}$$
 (Rayleigh-Jeans approksimatio)

Jättämällä siirtymät ylemmille energiatasoille n' pois tarkastelusta sekä huomioimalla Einsteinin kertoimien välinen yhteys $B_{nn''} = \frac{c^2}{2 k_{\nu}^3} \cdot A_{nn''}$, saadaan

$$T_{m} = \sum_{n} \left[A_{nn} + B_{nn} + \frac{2kTy^{2}}{c^{2}} \right] = \sum_{n} A_{nn} \left[1 + \frac{kT}{hy} \right]$$

Koska spontaanit emissiot eivät ole tärkeitä tällä aaltoalueella voidaan sulkulausekkeessa oleva 1 jättää huomiotta, jolloin

$$T_n \approx \frac{kT}{h \nu} \sum_{n'} A_{nn'}$$

SÄTEILYVAIMENNUS RADIOALUEELLA

ESIM. Call ionin resonanssiviiva K(3933Å) vastaa siirtymää $4 {}^{2}S_{\frac{1}{2}} - 4 {}^{2}P_{\frac{1}{2}}$ (termin yläindeksi = 2S+1, alaindeksi = $J = L \pm S$) Siirtymälle laskettu Einsteinin kerroin A =1.59 \times 10^{8}, jolloin f = 1.5 $10^{-8}(\lambda [/mm])^{2} {}\frac{An}{8m} A_{nn}$ = 0.738. Koska Call energiatasokaaviossa on 4 ${}^{2}P$ - tason alapuolella vielä $3 {}^{2}D$ - taso, on huomioitava myös nämä siirtymät siirtymälle $3 {}^{2}D_{3/2} - 4 {}^{2}P_{3/2}$: $\lambda = 8498$, $A = 1.4 \times 10^{7}$ $3 {}^{2}D_{5/2} - 4 {}^{2}P_{3/2}$: $\lambda = 8542$, $A = 1.2 \times 10^{7}$ K-viivan vaimennusvakio on siten $\mathbf{1} = \sum_{m} A_{nn}$, = $1.59 \times 10^{8} + 0.12 \times 10^{8} + 0.014 \times 10^{8} = 1.72 \times 10^{8} 1/s$

Klassinen vaimennusvakio puolestaan on

$$\chi = \frac{8\pi^2 e^2 y^2}{3mc^3} = \frac{0.2223}{(\lambda [cm])^2} = 1.45 \times 10^8 \frac{4}{5}$$

Täten T = 1.19 Y tässä esimerkissä.

2.5.6 Spektriviivaprofiilit

Ideaalitapaus: Elektroni siirtyy kahden tarkasti määritellyn energiatason välillä:

- 202 -

 $\Delta E = hy$

Tässä tapauksessa on äärettömyyteen ulottuvan aaltojonon taajuus täsmälleen $\mathcal V$, ja absorptiokerroin on muodoltaan

S -funktio

Todellisuus: Äärelliset aaltojonot, jotka kestävät ajan t verran. Aaltojen Fourieranalyysi leventää spektriviivaa ⇔ atomin energiatasojen epätarkkuus.

 \Rightarrow

spektriviivan luonnollinen leveneminen

^trad

ン

säteilyvaimennus

Säteilyvaimennuksen aikana häiritsevät myös atomien väliset törmäykset

t : atomi voi häiriöttömästi säteillä vain ajan t

Lisäksi atomit liikkuvat eri nopeuksilla, ja absorboivat säteilyä siten eri taajuuksilla.

🛁 viivan Dopplerin leveneminen eli terminen leveneminen

a) Säteilyvaimennuksen aiheuttama viivan luonnollinen leveneminen

Säteilyn kulkiessa ∆x paksuisen atmosfäärikerroksen läpi heikentyy intensiteetti :

$$I_{y}(\tau_{2}) = I_{y}(\tau_{1}) e^{-k_{y} \xi \Delta X} , \text{ missä } \tau_{1} = \text{alemman atmosfäärikerroksen}$$
optinen syvyys
$$\tau_{2} = \text{ylemmän atmosfäärikerroksen}$$
optinen syvyys

Oletetaan seuraavassa, että tarkastelukerroksella on pieni optinen syvyys, ts. $\gamma_2 - \gamma_1 << 1$. Tällöin

$$I_{y}(\tau_{2}) = I_{y}(\tau_{1})(1 - k_{y} \leq \Delta X)$$

$$\Rightarrow I_{y}(\tau_{2}) - I_{y}(\tau_{1}) = -k_{y} \leq \Delta X$$

$$\Delta I_{y} = -\Delta X \cdot \frac{N_{oy}e^{2}}{mc} \frac{\xi/4\pi}{(y-y_{y})^{2} + (\chi/4\pi)^{2}}$$

Todetaan, että absorboitunut intensiteetti on verrannollinen absorptiokertoimeen k_{y} S .

Viivan absorptiomaksimi saadaan resonanssitapauksessa, kun säteilyn taajuus on yhtäsuuri kuin värähtelijän ominaistaajuus.

$$\Delta I_{\nu_{0}} \stackrel{\nu=\nu_{0}}{=} -\Delta x \quad \frac{N_{o\nu} e^{2}}{mc} \quad \frac{\delta/4\pi}{0 + (\delta/4\pi)^{2}}$$
Absorptiomaksimin puolivälissä :

$$\Delta I_{\nu} = \frac{1}{2} \Delta I_{\nu_{0}} = -\Delta x \quad \frac{N_{o\nu} e^{2}}{mc} \quad \frac{\delta/4\pi}{(\nu-\nu_{0})^{2} + (\delta/4\pi)^{2}}$$

$$\Rightarrow \qquad FwHP = 2 |\Delta \nu_{1/2}| = \frac{\delta}{2\pi}$$
LUONNOLLISEN VIIVAPROFIILIN (Lorentz-profiilin) PUOLIARVOLEVEYS

missä FWHP on lyhennys sanoista "full width at half power".

HUOM. 1 Klassisessa teoriassa luonnollinen leveneminen ei riipu siirtymän taajuudesta :

$$FWHP = 9 \Delta y_{1/2} = \frac{1}{2\pi} \frac{3\pi^2 e^2 y^2}{3mc^3}$$

$$\frac{9 \Delta \lambda_{1/2}}{1/2} = \frac{2}{3mc^2} = \frac{4\pi e^2}{3mc^2} = 0.00024 \text{ Å}$$

HUOM. 2 Aikaisemmin todettiin, että klassisen oskillaattorin energia pienenee seuraavasti:

$$W(t) = W_0 e^{-\chi t}$$
, missä $\chi = \frac{8\pi^2 e^2 \chi^2}{3mc^3} = vaimennuskerroin$
 $\chi = \frac{1}{T}$, T = värähdystilan elinikä

Säteilyvaimennuksen aiheuttama puoliarvoleveys ja värähdystilan elinikä kytkeytyvät siten toisiinsa :

$$FWHP = \frac{Y}{2\pi} = \frac{1}{2\pi T}$$

Klassisessa teoriassa viivan leveneminen aiheutuu siitä, että sidottu elektroni voi värähdellä ominaistaajuuden γ_o molemmin puolin samalla vaimentuen. Kvanttiteoriassa spektriviivan leveneminen aiheutuu siitä, että energiatasot eivät ole aivan tarkkoja, vaan niissä esiintyy epämääräisyys ΔE , joka liittyy energiatilan elinikään Δt Heisenbergin epätarkkuusperiaatteen mukaisesti.

Energiatilan elinikä:

$$\Delta E \cdot \Delta t \approx h \Rightarrow \Delta t \approx \frac{h}{\Delta E} \approx \frac{1}{T}$$

Perustilan ikä on pitkä, joten ∆E on pieni ja perustilaan liittyvät viivat ovat suhteellisen kapeita. Ylempien lyhytikäisten tilojen välisistä siirtymistä aiheutuvat viivat ovat vastaavasti leveämpiä. Mitä todennäköisempi siirtymä on, sitä leveämpi on viiva:

 $\Delta E \sim T' = \sum_{m'} A_{mm'},$

b) Atomien lämpöliikkeen aiheuttama spektriviivan leveneminen

Dopplerin periaatteen mukaisesti on hiukkasen nopeuskomponentti näkösäteen suunnassa

$$U_{T} = C \frac{\Delta v}{v_{o}}$$

Atomien lämpöliikkeestä johtuva säteisnopeushajontaa kuvaa parametri $\Delta \mathcal{V}_{D}$, joka kytkeytyy hiukkasten todennäköisimpään nopeuteen $\mathcal{K} = \sqrt{\frac{2 \kappa T}{m}}$. $(\Delta \mathcal{V}_{D}$ kuvaa todennäköisimmällä nopeudella liikkuvan atomin Doppler in siirtymää)

 $\alpha = c \frac{\Delta \nu_{\rm D}}{\nu_{\rm c}} \Rightarrow \frac{\Delta \nu}{\Delta \nu_{\rm D}} = \frac{\Delta \nu \cdot c}{\alpha \nu_{\rm c}} = \frac{\nu_{\rm T}}{\alpha}$

Huomioimalla nopeusvälissä (v,v+dv) olevien hiukkasten lukumäärä/cm³ eli Maxwellin nopeusjakautuma näkösäteen suunnassa saadaan

$$dN(\sigma_{r}) = N\sqrt{\frac{m}{2kT}} e^{-\frac{m}{2kT}\sigma_{r}^{2}} d\sigma_{r} \qquad d\sigma_{r} = c \frac{dv}{v_{o}}$$
$$= N \frac{1}{\sqrt{\sqrt{\pi}}} e^{-\frac{(\sigma_{r})^{2}}{\sqrt{\sigma}}} \frac{c}{v_{o}} dv \qquad \frac{c}{\sqrt{v_{o}}} = \frac{1}{v_{b}}$$
$$= N \frac{1}{\Delta v_{b}} \sqrt{\pi} e^{-\frac{(\Delta v)}{\Delta v_{b}}^{2}} dv$$

Koska viivan luonnollinen leveys on huomattavasti pienempi kuin lämpöliikkeestä johtuva viivan leveneminen, voidaan olettaa, että jokainen atomi absorboi säteilyä vain yhdellä taajuudella $\mathcal{V} = \mathcal{V}_0 \left(1 + \frac{\sigma_T}{c}\right)$. Koska säteilyintensiteetin absorptio on verrannollinen taajuudella \mathcal{V} absorboivien atomien lukumäärään, on

Koska Maxwellin nopeusjakautuma yhdessä ulottuvuudessa on gaussinen on myös spektriviivan Doppler-profiili gaussinen.

- 206 -

Viivan puoliarvoleveys FWHP = $2 \Delta v_{1/2}$ saadaan ehdosta

ა

HUOM. 1 Spektriviivan leveys riippuu absorboivan molekyylin massasta. Mitä suurempi molekyylin massa, sitä pienempi on molekyylin nopeus ja sitä kapeampi on spektriviiva. Todettakoon, että turbulenttisen liikkeen aiheuttama viivan leveneminen ei riipu molekyylin massasta.

m

HUOM. 2 Mittaamalla spektriviivan puoliarvoleveys voidaan määrittää yläraja tarkastelukohteen lämpötilalle - yläraja siitä syystä, että mahdollisen turbulenttisen liikkeen läsnäollessa on hiukkasten todennäköinen nopeus

$$\alpha = \sqrt{\frac{2kT}{m} + v_t^2}$$
, missä v_t^2 turbulenttisen liikkeen

säteisnopeus

c) Atomien törmäyksistä aiheutuva viivan leveneminen

Lähiatomien häiriöiden vuoksi säteilevän atomin energiatasot siirtyvät. Siirtymän määrä riippuu häiritsijän etäisyydestä r. Alla olevassa kuvassa on kaksi energiatasoa esitetty r:n funktiona. Häiriintymättömässä tilassa tasojen välinen etäisyys vastaa säteilytaajuutta \mathcal{V}_{o} . Häirityssä tilassa sen sijaan taajuus $\mathcal{V} \neq \mathcal{V}_{o}$, koska energiatasot ovat hieman siirtyneet. Eri atomeilla on häiritsijä eri etäisyydellä r, joten törmäysvaimennuksen seurauksena spektriviiva levenee ja samalla myös siirtyy pois häriintymättömän säteilijän keskustaajuudelta \mathcal{V}_{o} .

FIG. COLLISIONAL DISPLACEMENT OF A SPECTRAL LINE The left part of the figure depicts the distortion of the energy levels as a function of the separation r between the atom and perturber. The undisturbed frequency is ν_0 . The resultant spectral line (right) not only is broadened because encounters take place at different r values but is shifted as well.

Törmäysvaimennuksen vakio \mathbf{T}_{coll} riippuu häiritsevien atomien (tai ionien) tiheydestä N_b, niiden suhteellisesta nopeudesta v säteilevän atomin suhteen sekä etäisyydestä r_o, jolle häiritsijän on vähintään tultava, jotta se aiheuttaisi vaimennusta. Säteilyä vaimentavien törmäysten lukumäärä aikayksikössä on tällöin

$$S = \frac{N_{b} \cdot dV}{dt}$$

$$S = N_{b} \cdot \pi \tau_{o}^{2} \cdot v$$

$$T_{o} \begin{cases} \bullet \to v^{-} \\ \bullet \to v^{-} \end{cases}$$
atomi

missä πr_o^2 on ns. vaikutusala.

- 208 -

evän

Törmäysvaimennuksen aiheuttama absorptio voidaan laskea tavallisesta absorptiokertoimen $R_{y}S$ yhtälöstä, kunhan säteilynvaimennusvakion korvaa törmäysvaimennusvakiolla

$$T_{coll} = \frac{2}{T_{c}} = 2S$$

missä T_o = keskimääräinen häiritsevien törmäysten välinen aika (ts. atomi voi häiriöttömästi säteillä vain ajan T_o)

d) Yhdistetty luonnollinen leveneminen, Doppler leveneminen ja törmäysleveneminen

Johdetaan seuraavassa kokonaisabsorptiokertoimen lauseke atomia ja taajuusyksikköä kohti, jossa huomioitu lämpöliikkeestä johtuva spektriviivan leveneminen, törmäysleveneminen (jolloin $T_{eff} =$ $T_{rad} + T_{coll}$) sekä luonnollinen leveneminen, jossa absorptiokerroin yhtä atomia kohden on

$$\alpha_{\nu} = f \cdot \frac{\pi e^2}{mc} \frac{T_{rad}}{4\pi^2} \frac{1}{(\nu - \nu_o)^2 + (T_{rad}/4\pi)^2}$$

Atomin liikkuessa nopudella v havaitsijan suhteen on viivan maksimi siirtynyt määrällä $\Delta v = \frac{v}{c} v_{o}$, joten viivan havaittu taajuus on

 $\mathcal{Y}_{hav} = \mathcal{Y}_{o} - \frac{\sigma}{c} \mathcal{Y}_{o}$ (huom. etäisyyden kasvaessa \mathcal{Y}_{hav} pienenee ja v on positiivinen)

Yhden atomin absorptiokerroin on tällöin

$$\alpha_{y} = \int \frac{\pi e^{2}}{mc} \frac{T_{eff}}{4\pi^{2}} \frac{1}{(\nu - \nu_{o} - \frac{\nu}{c} \nu_{o})^{2}} + (T_{eff}/4\pi)^{2}}{(\nu - \nu_{o} - \frac{\nu}{c} \nu_{o})^{2}}$$

Kokonaisabsorptiokerroin saadaan kertomalla tämä lauseke niiden atomien lukumäärällä, joiden nopeus on välissä (v,v+dv) sekä integroimalla yli kaikkien niiden nopeuksien, jotka aiheuttavat emissiota (tai absorptiota) taajuudella γ .

$$R_{\nu} g = \int_{N} \alpha_{\nu} dN , \text{ missä } dN = \text{nopeusvälissä } (v,v+dv) \text{ olevien}$$

atomien lukumäärä
$$dN = N \sqrt{\frac{m}{2\pi kT}} e^{-\frac{mv^2}{2kT}} dv$$

$$R_{\nu} g = \int_{N} \alpha_{\nu} \cdot N \sqrt{\frac{m}{2\pi kT}} e^{-\frac{mv^2}{2kT}} dv$$

Sijoittamalla ∝, saadaan

$$k_{y} S = N - f \frac{\pi e^{2}}{mc} \frac{T_{eff}}{4\pi^{2}} \int_{-\infty}^{\infty} \frac{\sqrt{\frac{m}{2\pi RT}} \cdot e^{-\frac{m v}{2kT}}}{(v - v_{o} - \frac{v}{c}v_{o})^{2} + (T_{eff}/4\pi)^{2}} dv$$

Viivaprofiilin muodon määrää yo. integraalilauseke, jossa "summataan" yli yksittäisten Lorentz-profiilien. Lorentz-profiilien "verhokäyrän" muoto riippuu siitä, kuinka paljon atomeja on "painoina" kullekin Lorentz-viivalle.

٩.

- 210 -

on viivan maksimi siirtyny määrällä $\Delta \nu = \frac{\omega}{2} \nu_{a}$

Jotta ≪, voitaisiin esittää muodollisesti hieman yksinkertaisemmalla lausekkeella, tehdään seuraavat muokkaukset.

$$\begin{aligned} \alpha'_{y} &= f \cdot \frac{\pi e^{2}}{mc} \frac{1}{4\pi^{2}} \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{mu^{2}}{2RT}} \cdot \sqrt{\frac{m}{2RT}} dv}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= f \frac{\pi e^{2}}{mc} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\frac{u^{2}}{2}} dy}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= f \frac{\pi e^{2}}{mc} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\frac{u^{2}}{2}} dy}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= f \frac{\pi e^{2}}{mc} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\frac{u^{2}}{2}} dy}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= f \frac{\pi e^{2}}{mc} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\frac{u^{2}}{2}} dy}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= \int_{-\infty}^{\infty} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\frac{u^{2}}{2}} dy}{(v - v_{o} - \frac{v}{c} v_{o})^{2} + (T_{off}/4\pi)^{2}} \\ \alpha'_{y} &= \int_{-\infty}^{\infty} \frac{1}{4\pi^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{4\pi^{2}} \frac{1$$

$$\alpha'_{y} = \frac{f}{\Delta y} \frac{\pi e^{2}}{mc} \frac{T_{eff}}{4\pi \Delta y} \frac{1}{\pi \sqrt{\pi}} \int \frac{e^{0}}{[(v-v_{0}) - \frac{\omega}{2}v_{0}]^{2} + (T_{eff}/4\pi)^{2}}{\Delta v_{0}^{2}} \qquad \left| \frac{\omega}{e} v_{0} = \Delta v$$

$$\alpha'_{y} = \frac{\ell}{\Delta y} \frac{\pi e^{2}}{mc} \frac{T_{eff}}{4\pi \Delta y_{D}} \frac{1}{\pi \sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\sqrt{2}}}{\left(\frac{\gamma - \gamma_{O}}{\Delta y} - \frac{\Delta \gamma}{\Delta y_{D}}\right)^{2}} + \left(\frac{T_{eff}}{4\pi \Delta \gamma_{D}}\right)^{2}$$

Merkitään $\alpha_0 = \frac{4}{\Delta \gamma} \frac{\pi e^{-1}}{mc}$

$$a = \frac{T_{eff}}{4\pi \Delta v_{D}}$$

$$u = \frac{y - v_{o}}{\Delta v_{D}}$$

$$\frac{\Delta V}{\Delta v_{D}} = \frac{v_{o} \frac{V}{C}}{\frac{V + V_{o}}{C}} = \frac{V}{\sqrt{\frac{2 k T}{m}}} = \frac{V}{\sqrt{\frac{2 k T}{m}}}$$

- 211 -
$\alpha_{y} = \alpha_{o} \frac{\alpha}{\pi} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\sqrt{3}} dy}{(u-y)^{2} + \alpha^{2}} = \alpha_{o} \cdot H(a,u)$

$$\frac{\alpha_{y}}{\alpha_{o}} = H_{o}(u) + a \cdot H_{1}(u) + a^{2} H_{2}(u) + ...$$

missä funktiot H_o, H₁,... arvot on taulukoitu u:n funktiona.

Teoreettiset laskut osoittavat, että säteilyvaimennuksesta aiheutuva viivaprofiili (kuvan katkoviiva) eroaa säteily- ja törmäysvaimennuksen viivaprofiilista (kuvan yhtenäinen viiva).

FIG. : THE LINE ABSORPTION COEFFICIENT FOR CA II \$3933

We plot log α_r/α_0 against u and $\Delta\lambda$ as abscissa for $T = 5700^{\circ}$ K. The solid curve applies to combined radiation and collisional broadening at a gas pressure of 7.2×10^{4} dynes; the dotted curve applies for radiation damping alone.

Lämpöliikkeestä aiheutuva viivaprofiili käyttäytyy kuten e^{2RT} jolloin FWHM $\propto \sqrt{T}$. Täten viiva levenee lämpötilan konotessa. Säteilyvaimennuksen aiheuttaman absorptiokertoimen lausekkeesta

$$\alpha'_{\nu} = f \cdot \frac{\pi e^2}{mc} \frac{T_{rad}}{4\pi^2} \frac{1}{(\nu - \nu_{o})^2 + (T_{rad}/4\pi)^2}$$

nähdään, että alueella $| \vee - \vee_o | \gg \frac{1}{\sqrt{\pi}}$ (eli kun ollaan reilusti Lorentzprofiilin puoliarvoleveyden ulkopuolella) spektriviivan voimakkuus heikkenee kuten $(\vee - \vee_o)^{-2}$.

Törmäysvaimennus taas synnyttää spektriviivalle voimakkaat "siivet", jotka ovat paljon merkittävämmät kuin säteilyvaimennuksen aiheuttamat siivet.

Todettakoon, että törmäysleveneminen on verrannollinen tarkastelukohteessa vallitsevaan paineeseen.

e) Spektriviivojen voimakkuudet ja kasvukäyrä

Spektriviivojen voimakkuus ilmaistaan viivojen ekvivalentti leveyden Wy avulla.

$$\underbrace{1 \cdot W_{\nu}}_{\text{suora-kaiteen}} = \frac{1}{2} \underbrace{W_{\nu}}_{\text{suora-kaiteen}}$$

 $W_{\nu} = \int \frac{I_o - I_{\nu}}{I_o} d\nu$ EKVIVALENTTI LEVEYS

missä I_o = kontinuumin intensiteetti I_y = viivan intensiteetti

Mikäli approksimoidaan, että kaikilla viivoilla on samanlainen profiili, voidaan spektriviivan pinta-ala kytkeä ekvivalentti leveyden käsitteeseen. Oheinen kuva esittää, miten ekvivalentti leveys mitataan.

Ensin mormeerataan intensiteetti niin, että se tulee kontinuumispektrissä yksikön suuruiseksi. Sitten mitataan spektriviivan intensiteetin ja kontinuumin väliin jäävän alueen pinta-ala. Lopuksi piirretään suorakaide, jonka korkeus on = 1 ja ala sama kuin yllä mainittu pinta-ala. Näin syntyneen suorakaiteen leveys on spektriviivan ekvivalentti leveys W_y.

Jos absorboivan kerroksen optinen syvyys on pieni, on

$$I = I_{o} e^{-SR\Delta X} \approx I_{o}(1 - SR\Delta X) = I_{o}(1 - Nd_{v}\Delta X)$$

Tällöin

$$W_{y} = \int \frac{I_{o} - I_{y}}{I_{o}} dy = \int N d_{y} \Delta X dy$$

Integrointi suoritettu luvussa 2.5.2.e, joten tuloksena saadaan

$$W_{y} = \Delta X \frac{\pi e^2}{mc} \neq N$$

EKVIVALENTTI LEVEYS (kun $\uparrow << 1$)

missä N = atomien (tai ionien) lukumäärä tietyssä viritystilassa, joka on ko. siirtymän lähtötaso Δx = atmosfäärikerroksen paksuus

Kun ekvivalenttileveys W_y esitetään fN:n funktiona saadaan ns. kasvukäyrä , joka pienillä 个:n arvoilla on lineaarinen funktio (kuva b)

Kuva (a) esittää viivaprofiilin teoreettista muotoa (absorptioviivan puolikas), kun N:n arvo kasvaa kertoimella 10^5 . Nähdään, että absorptioviiva syvenee ja levenee absorboivien atomien lukumäärän kasvaessa. Pienillä N:n arvoilla kuvan absorptioviivan puolikas on Dopplerprofiilin mukainen (tällöin kasvukäyrä \ll fN). Kun Υ << 1 ei enää ole voimassa, hidastuu viivan kasvu N:n kasvusta huolimatta.Kasvukäyrään syntyy tällöin tasainen osa. N:n edelleen kasvaessa alkaa viivaprofiiliin syntyä voimakkaat, törmäysvaimennuksesta aiheutuvat siivet, jotka lopulta määräävät viivan koko muodon. Tällöin kasvukäyrä $\propto \sqrt{\frac{1}{4}NT_{eff}}$ joten eri vaimennusvakion a = $\frac{1}{4\pi\Delta y_{b}}$ arvoilla saadaan tällä alueella toisistaan poikkeavia kasvukäyriä.

(a) Theoretical profiles calculated for the Schuster-Schwarzschild model and pure radiation damping show how the shape of the line changes as the number of absorbing atoms increases. The number $N_0 = 3.4 \times 10^{11}$ is so chosen that the optical depth at the center of the line for N_0 atoms, X_0 , will be 1. N denotes the number of atoms above the photosphere.

(b) From the integration of the profiles of Fig. 8-7a we obtain log W which we plot sense to N, the number of atoms above the photosphere. Curves are given for 0.0035 and 0.0287 (see Eqs. 7-68 and 7-72).

- 215 -

J

<u>HUOM.</u> Kasvukäyrää voidaan käyttä alkuaineiden runsauksien karkeaan määritykseen. Menetelmässä oletetaan tietyt P_g , P_e ja T arvot. Lisäksi oletetaan, että kaikilla viivoilla on samanmuotoinen viivaprofiili, jonka jälkeen teoreettinen kasvukäyrä voidaan laskea. Kun f ja W tunnetaan, saadaan kasvukäyrän avulla N. Käytännössä mitataan sellaisten absorptioviivojen ekvivalenttileveydet, joiden suhteelliset f-arvot tunnetaan. Esimerkiksi tietyn alkuaineen multiplettiviivat ovat käteviä, koska niillä on sama lähtötaso energiatasokaaviossa (siis sama N), mutta eri ekvivalenttileveydet ja oskillaattorivoimakkuudet. Verta ilemalla empiiristä relaatiota f \rightarrow W teoreettiseen kasvukäyrään fN \rightarrow W saadaan atomien runsaus N.

> Käyrien vertailu tapahtuu siten, että empiiristä käyrää siirretään vaakasuunnassa, kunnes tiettyyn viritysenergian \mathfrak{X} arvoon kuuluvat pisteet sijoittuvat parhaiten teoreettiselle kasvukäyrälle (kts. Allerin luku 8.8)

f) Teoreettisen spektriviivaprofiilin laskeminen

Absorptioviivojen muodostumiselle tähtien atmosfääreissä on kaksi yksinkertaista mallia.

1) Schuster-Schwarzsschildin malli

harvemmassa pintakerroksessa

Viiva-absorptio syntyy

Jatkuva spektri muodostuu fotosfäärissä

2) Milne-Eddingtonin malli:

<u>viiva-absorptiokerroin</u> k_{y} = vakio optisen syvyyden funktiona

\Rightarrow absorptioviivoja muodostuu atmosfäärin kaikissa kerroksissa

Absorptioviivan kohdalla on suurempi kokonaisabsorptiokerroin ℓ,+ k, → viivasäteilyä havaitaan vain pintakerroksista.

Koska tähden pintakerroksissa lämpötila on pienempi, on myös viivasäteilyn intesiteetti pienempi 🔿 intensiteettikäyrän absorptioviiva

pintakerroksista

Kontinuumisäteilyn kokonaisabsorptiokerroin on pienempi kuin spektriviivan kohdalla (ℓ_{y} poissa kuvioista), minkä johdosta nähdään syvempiin kerroksiin, jossa suurempi säteilyintensiteetti (T suurempi).

HUOM. Milne-Eddingtonin malli on fysikaalisesti oikeaoppisempi malli. Hyvin monelle absorptioviivalle on Milne-Eddingtonin malli erittäin hyvä approksimaatio.

Teoreettinen viivaprofiili saadaan ratkaisemalla säteilynkuljetusyhtälö. Yksinkertainen ratkaisu säteilynkuljetusyhtälölle saadaan Milne-Eddingtonin mallin oletuksella $k_y/k_y = vakio$

s and the second

Säteilynkuljetusyhtälö :

 $\cos\Theta \frac{dI_{\nu}}{dT_{\nu}} = I_{\nu} - S_{\nu} \qquad \left| dT_{\nu} = (k_{\nu} + \ell_{\nu}) S dX \right|$ $\cos\Theta \frac{dI_{\nu}}{S dX} = (k_{\nu} + \ell_{\nu}) [I_{\nu} - S_{\nu}]$

Absorboituneista kvanteista osa £ absorboituu todellisesti ja osa 1 - £ sirottuu eli re-emittoituu samalla taajuudella, jolloin intensiteetti I, alkuperäisessä suunnassa pienenee suhteessa kontinuumin (kontinuumissa ei sirontaa).

Huomioimalla sironta viivassa, voidaan viivan lähdefunktio esittää muodossa

$$S_{y} = \mathcal{E} \{ B_{y} + (1 - \mathcal{E}) \}$$

- - - -

$$\Rightarrow \cos \Theta \frac{d_{1y}}{sd_{x}} = \underbrace{k_{y}I_{y} - k_{y}B_{y}}_{\text{kontinuumin}} + \underbrace{l_{y}I_{y} - \left[\epsilon l_{y}B_{y} + (1-\epsilon)l_{y}J_{y}\right]}_{\text{viivan osuus}}$$

Tälle Eddingtonin säteilynkuljetusyhtälölle saadaan muodollisesti toinen esitystapa merkitsemällä

$$dt = (k+l)Sdx = k(1+\eta)Sdx , missä \eta = \frac{l}{k}$$

$$L = \frac{1 + \varepsilon \eta}{1 + \eta} = \frac{k + \varepsilon \ell}{k + \ell}$$

$$\Rightarrow \cos \Theta \frac{dI_{\nu}}{dt} = I_{\nu} - L \cdot B_{\nu}(T) - (1 - L) \overline{J}_{\nu}$$

lähdefunktio S,

Olettamalla, että
$$\eta = \frac{\ell}{k} = vakio$$
 optisen syvyyden funktiona
 $\Rightarrow \xi = vakio$
 $\Rightarrow L = vakio$
 \Rightarrow Säteilynkuljetusyhtälölle saadaan yksinkertainen ratkaisu I, $(0, \Theta)$
eli viivaprofiili

(kts. ratkaisuesimerkkiä Allerin oppikirjassa s. 349-351)

- 219 -

Teoreettisen viivaprofiilin tarkka laskeminen (Feinanalyse) sisältää seuraavat vaiheet:

 Oletetaan T_{eff}, g sekä atmosfäärin kemiallinen koostumus (tai oletataan näille kasvukäyrän avulla tehdyn Grobanalyysin antamat arvot), jonka jälkeen lasketaan malliatmosfäärin

 $T(\tau_{o}), P_{e}(\tau_{o}), P_{g}(\tau_{o}) ja k(\tau_{o})$

missä γ_o = optinen syvyys tietyllä aallonpituudella (esim λ = 5000Å)

2. Kun T ja P_e tunnetaan voidaan laskea k_{λ}, jonka jälkeen selviää γ_{λ} ja γ_{ν} välinen riippuvuus:

$$\begin{array}{c} \Upsilon_{\lambda} = \int_{0}^{x} k_{\lambda} \, dx \\ \Upsilon_{0} = \int_{0}^{x} k_{0} \, dx \end{array} \end{array} \right\} \implies \Upsilon_{\lambda} = \pounds (\Upsilon_{0})$$

3.
$$P_{e}(\gamma)$$

 $T(\gamma)$
Boltzmann
Nr
N+•t

missä N = atomien 1km., jotka voivat aiheuttaa ko. absorptioviivan

- 4. Oletetaan ko. alkuaineelle tietty runsaus N_{tot}
- 5. Oletetaan viivaprofiilin muoto (lähinnä oletetaan vaimennuskertoimen a = <u>اوال</u> עדבע_D arvo) sekä lasketaan absorptiokerroin viivan keskellä (kts. merkinnät luvusta 2.5.4.d)
- 6. Kun viivaprofiili $\alpha_{\lambda}/\alpha_{j}$ ja N_r α_{o} tunnetaan, saadaan viivaabsorptiokerroin laskettua:

$$\ell_{\nu} = N_{\tau} \, \alpha_{o} \, \left(\frac{\alpha_{\lambda}}{\alpha_{o}} \right)$$

7. Tämän jälkeen lasketaan $\chi_{\lambda} = \frac{\ell_{\lambda}}{k_{\lambda}}$ ja $dt_{\lambda} = (1 + \gamma_{\lambda}) d\gamma_{\lambda}$

8. Valitaan absorption ja sironnan suhteellinen osuus ko. viivassa

9. Ratkaistaan säteilynkuljetusyhtälö ko. spektriviivalle

Vertaamalla teoreettista viivaprofiilia havaintoihin voidaan interpoloimalla löytää malli, joka parhaiten vastaa havaittua absorptioviivaa.

- HUOM. 1 Yleensä lasketaan iso joukko malliatmosfäärejä erilaisilla parametreilla. Täten havaitun spektriviivan interpoloiminen teoreettisiin käyriin on melko mutkatonta.
- <u>HUOM. 2</u> T(γ), P(γ) ja kemiallinen koostumus kytkeytyvät toisiinsa. Kytkentään päästään käsiksi kasvukäyrään perustuvalla ns. Grobanalyysillä.
- HUOM. 3 Jokainen tähti käsiteltävä yksilöllisesti, mitään "yleistä reseptiä" ei ole.
- HUOM. 4 Tarkemmissa Feinanalyyseissä on huomioitava poikkeamat termodynaamisesta tasapainosta.

Hvaintojen kanssa yhteensopivia teoreettisia viivaprofiileja käytetään atmosfäärin kemiallisen koostumuksen määrityksiin. Erityisesti tehdään Feinanalyysejä eri spektriluokkien tyypillisille tähdille. (kts. alla olevaa taulukkoa). Hyviä tuloksia on saatu aikaisen spektriluokan tähdille (aurinkoon saakka). Sen sijaan myöhäisen spektriluokan tähdet ovat vielä problemaattisia (molekyylit, konvektiovyöhykkeet)

- 220 -

Beispiele

٥

5)

		T Sco	∝ Lyr	Sonne	εVir	a Cyg	Population IT		λp	Am
		во V	AO V	G2 V	G8III	A2Ia	(1) [(4)	(?)	(*)
1	H	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
67	C N	6.6	7.2	7.1		6.6 7.8	4.8	6.0		6.7
8 10	0 Ne	7.2	7.7	7.4 6.5		7.7		6.4		
11 12	Na Mg	6.0	5.4 5.9	4.8 6.0	5.1 6.0	6.4	2.2	3.5	5.5	5.6
13	Al Si	4. 7 6.1	4.2 6.1	4.9 6.1	5.0	5.3 6.5	2.3 3.8	3.4 4.8	6.1	5.1
16 20 21	Ca	5.7	4.6	5./ 4.9	5.0	5.2	2.5	3.6	5.4	4.7
22	Ti V		2.8	3.1	3.1	3.5	0.8	2.3	3.7	3.2
24 25	Ċr Mn		4.4	4.4	4.4	4.7	2.0	3.2	6.0	4.6
26 27	Fe Co	5.8	5.8	5.1	5.1 3.1	5.1 3.3	3.6 0.8	4.5	6.8 3.1	6.0 3.5
28 38 39 40	Ni Sr Y Zr		0.6	4.9 1.4 0.1	4.9 1.1 0.0 0.5	1.9	2.3 -0.9	3.2 0.2 -0.5 -0.5	4.9 3.9 0.3 2.4	5.3 2.2 0.8 1.7
56	Ba			0.1	0.0			-0.6	0.9	0.8

Tabelle: Chemische Zusammensetzung für

-drei Hauptreihensterne - ein Riese, ein Überriese } der Population I (s.IX,3.5) (!) Unterzwerg (Schnelläufer) HD 140 283 - (?) Horizontal-Ast-Stern (Schnelläufer) HD 161817 - (?) Mittel aus 2.1 Ap-Sternen der Gruppe Sr-Cr-Eu - (") Mittel aus 16 Am-Sternen (s.IV,9.2)

Angegeben ist log N bezogen auf log H = 10.5 (dies entspricht etwa der sonst häufig verwendeten Normierung auf log Si = 6.00)

Fig. . Comparison of the Flux Distributions Emitted by a Model Atmosphere at $T_{eff} = 30,000^{\circ}$ K and a Black Body at $T = 30,000^{\circ}$ K. The model atmosphere is also represented in Fig. 4-2. Since F_{*} has been divided by π_{*} it is dimensionally equivalent to an intensity and is therefore compared directly with the Planck function $B_{*}(T)$.

Fig. Comparison of the Observed Spectral Distributions of Vega (α Lyrae) and Sirius (α Canis Majoris) with Those of Theoretical Models. The ordinate is apparent magnitude. Crosses represent the observations of Vega and dots the observations of Sirius. Solid lines show the distributions for the corresponding model atmospheres. The details of the theoretical distributions in the region of the closely spaced lines near the Balmer limit (3646 Å or 2.74 μ^{-1}) are not shown, and dashed lines simply connect the curves on either side of the discontinuity. (Adapted from R. Schild, D. M. Peterson, and J. B. Oke, 1971 (1990).]

LIITE I

KAHDEN KAPPALEEN PROBLEEMA

(Newton: Philosophiae Naturalis Principia Mathematica 1687)

- A 1 -

Newtonin selvittäessä Keplerin planeettoja koskevia liikelakeja löysi hän massojen välisen vetovoiman sekä periaatteen, jolla kappaleen liikerata voidaan ennustaa, kun kappaleen ja sen ympäristön väliset vuorovaikutukset (voimat) tunnetaan.

Newtonin lait

- I Kappale, johon ei vaikuta ulkoisia voimia (tai ulkoinen voimaresultantti = 0), säilyttää liiketilansa: levossa oleva kappale pysyy levossa ja liikkuva kappale jatkaa tasaista, suoraviivaista liikettä.
- II Kappaleeseen vaikuttava ulkoinen voima on verrannollinen kappaleen aikayksikössä tapahtuneeseen liikemäärän muutokseen. Verrannollisuuskertoimen arvoksi valittu 1.

$$\overline{F} = \dot{\overline{p}} = \frac{d}{dt} (m\dot{\overline{\tau}})$$

Massan pysyessä vakiona on $\overline{F} = m\overline{r}$.

III Jos kappale A vaikuttaa kappaleeseen B voimalla \overline{F} , niin B vaikuttaa A:han voimalla $-\overline{F}$.

Huom.

- Newtonin lait pätevät vain inertiaalikoordinaatistossa eli levossa tai tasaisessa liikkeessä olevassa koordinaatistossa.
- 2. Newtonin laeista seuraa dynamiikan peruslain yleistys: ulkoinen kokonaisvoima määrää mekaanisen systeemin painopisteen kiihtyvyyden siten, että $\sum \vec{F} = \frac{d}{dt} \left(M \vec{R}_{PP} \right)$, missä M = systeemin kokonaismassa.

Keplerin lait

- I Planeettojen radat ovat ellipsejä, joiden toisessa polttopisteessä on Aurinko. (1609)
- II Auringosta planeettaan piirretty paikkavektori pyyhkii yhtä pitkissä ajanjaksoissa yhtä suuret pinta-alat. Tämä laki voidaan ilmaista myös muodossa: planeetan pintanopeus on vakio. (1609)
- III Planeettojen kiertoaikojen neliöt suhtautuvat kuten niiden ratojen isoakselien kuutiot. (1619)

Ellipsin yhtälö

Kertauksena ellipsin yhtälö napakoordinaatistossa:

Määritelmä:

r + r' = vakio = 2a

F, F' = polttopisteet r, r' = paikkavektorit e = eksentrisyys a = isoakseli b = pikkuakseli $= \sqrt{\alpha^2 - \alpha^2 e^2} = \alpha \sqrt{1 - e^2}$ q = perisentrumin etäisyys Q = (1+e)a = aposentrumin etäisyys

Sijoitetaan tähän ellipsin määritelmästä r' = 2a-r

$$\Rightarrow \tau^2 + 4ae\tau\cos\psi + 4a^2e^2 = (2a - \tau)^2$$

$$\Rightarrow \qquad \Upsilon = \frac{a(1-e^{-})}{1+e\cos^2}$$

Tämä on samalla yleinen kartioleikkauksen yhtälö. Kyseessä on

hyperbeli, jos e > 1 parabeli, jos e = 1 ellipsi, jos 0 < e < 1 ympyrä, jos e = 0

Keskeisvoima

Keplerin ja Newtonin II laeista seuraa, että tähteä kiertävään planeettaan vaikuttaa keskeisvoima.

Koska $|\overline{r}| \neq 0$ ja $|\overline{F}| \neq 0$, seuraa ylläolevasta, että $\gamma = 0$ eli $\overline{F}||\overline{r}$ eli \overline{F} on keskeisvoima.

Kääntäen voidaan osoittaa, että keskeisvoimakentässä pätee Keplerin II laki (harjoitustehtävä)

Kahden kappaleen probleema

Newtonin yleinen massojen välinen vetovoimalaki on

 $\overline{F} = -G \frac{mame}{\tau^3} \overline{\tau} , \quad |F| = G \frac{mame}{\tau^2}$

Koska Newtonin lait pätevät ainoastaan inertiaalikoordinaatistossa, tarkastellaan seuraavassa kappaleiden a ja b liikettä painopistekoordinaatistossa. - A 4 -

Massakeskipisteen yleisen mää-

ritelmän mukaan

 $m_a \overline{r}_1 + m_b \overline{r}_2 = (m_a + m_b) \overline{R}_{pp}$. Valitsemalla painopiste systeemin origoksi on

$$m_{a} \overline{r}_{a} + m_{b} \overline{r}_{b} = 0$$

$$\implies \overline{\gamma}_{b} = - \frac{m_{a}}{m_{b}} \overline{\gamma}_{a}$$

Kappaleiden välinen etäisyys on täten

$$\overline{\tau} = \overline{\tau}_{a} - \overline{\tau}_{b} = (1 + \frac{m_{a}}{m_{b}}) \overline{\tau}_{a}$$

Dynamiikan peruslaki kappaleelle a on siten

$$m_{a} \overline{\tau}_{a} = -G \frac{m_{a} m_{b}}{\tau^{3}} \overline{\tau}$$
$$\frac{\ddot{\tau}_{a}}{\tau_{a}} = -G \frac{m_{b}}{\tau^{3}} \overline{\tau} = -G \frac{m_{b}}{\tau^{3}} (1 + \frac{m_{a}}{m_{b}}) \overline{\tau}_{a}$$

$$\Rightarrow \boxed{\frac{\ddot{\tau}}{\tau_a} = -G \frac{M}{\tau^3} \overline{\tau_a}}, \qquad \text{missä } M = m_a + m_b$$

Vastaavasti:

7

Q

$$\ddot{\overline{T}}_{e} = -G \frac{M}{\gamma^{3}} \overline{T}_{e}$$

$$\Rightarrow \ddot{\tau} = \ddot{\tau}_a - \ddot{\tau}_b = -G \frac{M}{\tau^3} \tau$$

Kappaleiden kiihtyvyys toistensa suhteen riippuu yksinomaan kappaleitten kokonaismassasta sekä kappaleiden välisestä etäisyydestä.

Kertomalla edellinen yhtälö puolittain lausekkeella

$$\mathcal{M} = \left(\frac{1}{m_a} + \frac{1}{m_b}\right)^{-1} = \frac{m_a m_b}{M} = \text{redusoitu massa}$$

saadaan

$$\mu \ddot{\tau} = -G \frac{M_{M}}{r^{2}} \bar{\tau} = -G \frac{m_{a}m_{b}}{r^{3}} \bar{\tau}$$

Painopistekoordinaatistossa on $\overline{F}(m_a, m_b, r) = \overline{F}(M, \mu, r)$ eli kappaleen a rata kappaleen b ympäri on sama kuin 🎮 -massaisen kappaleen rata levossa tai tasaisessa liikkeessä olevan massan M (M = m_a+m_b) ympäri. Sama pätee kappaleen b rataan kappaleen a ympäri. Käytännön kannalta tämä on kätevä tulos, koska paikkavektorin r aikariippuvuus voidaan suoraan havaita.

Toisin sanoen: kahden kappaleen probleema on saatu palautetuksi yhden kappaleen probleemaksi. Tämä on oleellinen ja ei-triviaalinen tulos, koska Newtonin liikelait pätevät vain inertiaalikoordinaatistossa.

Keplerin lait Newtonin laeista johdettuna

Edellä osoitettiin, että gravitaatiokentässä on kappaleitten kiihtyvyys toistensa suhteen

 $\frac{\pi}{7} = - \frac{GM}{r^3} \overline{r}$, missä M = molempien kappaleitten kokonaismassa

Sijoittamalla tähän r ja r, jotka napakoordinaatistossa (yksikkövektorit \overline{e}_r ja \overline{e}_{Θ}) esitettyinä ovat:

$$\vec{r} = \vec{r} \cdot \vec{e}_{r}$$

$$\vec{r} = \vec{r} \cdot \vec{e}_{r} + \vec{r} \cdot \vec{e}_{r}$$

$$= \vec{r} \cdot \vec{e}_{r} + \vec{r} \cdot \vec{e}_{\theta}$$

$$\vec{r} = \vec{r} \cdot \vec{e}_{r} + \vec{r} \cdot \vec{e}_{r} + \vec{r} \cdot \vec{e}_{\theta} + \vec{r} \cdot \vec{e}_{\theta} + \vec{r} \cdot \vec{e}_{\theta}$$

$$= (\vec{r} - \vec{r} \cdot \vec{e}^{2}) \cdot \vec{e}_{r} + (2\vec{r} \cdot \vec{e} + \vec{r} \cdot \vec{e}) \cdot \vec{e}_{\theta}$$

ť,

saadaan

 $\begin{cases} \ddot{r} - r\dot{\Theta}^2 = -\frac{GM}{r^2} \quad (radiaalikomponentti) \\ 2\dot{r}\dot{\Theta} + r\ddot{\Theta} = 0 \quad (tangentiaalikomponentti) \end{cases}$

Tangentiaalikomponentti:

Huomautettakoon, että tuloksesta $\gamma^2 \dot{\Theta}$ = vakio ei vielä seuraa, että L = vakio; liikemäärämomentissa on nimittäin paikkavektori lausuttava painopisteen suhteen (ts. olisi käytettävä etäisyyksiä r_a ja r_b eikä suuretta r)

Radiaalikomponentti:

suorittamalla muuttujanvaihto y = $\frac{1}{r}$

$$\Rightarrow \begin{cases} r = \frac{1}{y} \\ \dot{\tau} = -\frac{1}{y^2} \frac{dy}{dt} = -\frac{1}{y^2} \dot{\Theta} \frac{dy}{d\Theta} = -h \frac{dy}{d\Theta} \\ +uom. \quad \frac{d}{dt} = \dot{\Theta} \frac{d}{d\Theta} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{dt} \left(\frac{dy}{d\Theta^2}\right) = -h \dot{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \frac{d^2y}{d\Theta^2} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \frac{d}{\Theta} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \frac{d}{\Theta} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \frac{d}{\Theta} \\ \dot{\tau} = -h \frac{d}{\Theta} \frac{d}{\Theta} \\ \dot$$

saadaan
$$-h^2 y^2 \frac{d^2 y}{d \theta^2} - h^2 y^3 = -GMy^2$$
 :

$$\implies \frac{d^2 y}{d \theta^2} + y = \frac{MG}{h^2}$$

Ratkaisu y = $B\cos(\Theta - \Theta_0) + \frac{MG}{h^2}$ toteuttaa differentiaaliyhtälön

$$\Rightarrow r = \frac{1}{\gamma} = \frac{1}{\frac{MG}{R^2} + B\cos(\Theta - \Theta_0)} = \frac{1}{\frac{MG}{R^2} \left[1 + \frac{Bh^2}{MG}\cos(\Theta - \Theta_0)\right]}$$

$$r = \frac{\frac{h^2}{MG}}{1 + \frac{Bh^2}{MG}\cos(\Theta - \Theta_0)}$$

$$r = \frac{R^2}{MG} = \alpha(1 - e^2)$$

$$\Theta - \Theta_0 = n^2$$

Vakio B voidaan lausua kokonaisenergian ja pintanopeuden avulla:

$$\begin{array}{c} \operatorname{Kun} \Theta = \Theta_{0} \\ \gamma = \gamma_{\min} \end{array} \end{array} \xrightarrow{k = 1} B = \frac{1}{\gamma_{\min}} - \frac{MG}{h^{2}}$$

Kokonaisenergia yksikkömassaa kohti on $\mathcal{E} = \frac{\sqrt{2}}{2} - \frac{GM}{\gamma}$ Täten tarkastelukohdassa r_{min} on : $\mathcal{E} = \frac{\sigma^2}{2} - \frac{GM}{\gamma}$

$$\mathcal{E} = \frac{P^2}{2\tau_{\min}^2} - \frac{GM}{\tau_{\min}}$$
Perisentrumissa $\overline{\nabla} \perp \overline{\tau_{\min}}$

$$\Rightarrow \psi = \tau_{\min} \hat{\Theta} \quad (\text{tangentiaalinopeus})$$

$$\Rightarrow \frac{\psi^2}{2} = \frac{(\tau_{\min} \hat{\Theta})^2}{2} = \frac{A^2}{2\tau_{\min}^2}$$

$$\Rightarrow \frac{1}{\tau_{\min}} \hat{\nabla}^2 - \frac{2GM}{R^2} \left(\frac{\Lambda}{\tau_{\min}}\right) - \frac{2\tilde{E}}{R^2} = 0$$

$$\Rightarrow \frac{1}{\tau_{\min}} = \frac{MG}{R^2} \pm \sqrt{\frac{M^2G^2}{R^4} + \frac{2\tilde{E}}{R^2}}$$

Sijoittamalla tämä B:n lausekkeeseen saadaan

$$B = \frac{1}{4\pi_{min}} - \frac{MG}{h^2}$$

$$B = \frac{MG}{h^2} + \sqrt{\frac{M^2G^2}{h^4} + \frac{2E}{h^2}} - \frac{MG}{h^4}$$

$$B = \sqrt{\frac{M^2G^2}{h^4} + \frac{2E}{h^2}}$$

Huom. valittava plusmerkki jotta kohdassa r = r B on suurimmillaan î,

Keplerin III laki saadaan Keplerin II lain avulla:

f

1

$$h = 2 \frac{dA}{dt} = vakio$$

$$h = 2 \frac{A}{P} , \text{ missä } P = \text{planeetan kiertoaika}$$

$$h = 2 \cdot \frac{\pi a^{0}}{P} = 2 \cdot \frac{\pi a^{2} \sqrt{1 - e^{2}}}{P}$$

$$\Rightarrow P = \frac{2\pi a^{2} \sqrt{1 - e^{2}}}{\frac{A}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}{\frac{A}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$P = \frac{2\pi a^{2} \sqrt{1 - e^{2}}}{\sqrt{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

$$KI \Rightarrow P = \frac{A^{2}}{\frac{\pi a^{2}}{MGa^{2}} \sqrt{1 - e^{2}}}$$

Johdetaan vielä lopuksi kätevä yhtälö kappaleen ratanopeuden, paikkavektorin ja rataellipsin isoakselin välille.

Perisentrumissa
$$(r = r_{min})$$
 on

$$E = \frac{u^2}{2} - \frac{GM}{\tau_{min}} = \frac{h^2}{2\tau_{min}^2} - \frac{GM}{\tau_{min}}$$

$$r_{min} = \frac{a(1-e^2)}{1+e\cos\theta} = \frac{a(1-e^2)}{1+e}$$

$$= \frac{h^2}{2\tau_{min}^2} - \frac{M^2G^2(1+e)^2}{h^2}$$

$$= \frac{h^2G^2(1+e)\left[1+e-2\right]}{2h^2}$$

$$= \frac{M^2G^2((e^2-1))}{2h^2}$$

$$= \frac{M^2G^2(e^2-1)}{2h^2}$$

$$= \frac{MG(e^2-1)}{2a(1-e^2)}$$

$$\frac{u^2}{2} - \frac{GM}{\tau_{min}} = -\frac{MG}{2a}$$

$$= \frac{MG(\frac{2}{T}-\frac{1}{a})}{u^2}$$

LIITEII

JOHDATUS ELEKTRONIEN SIIRTYMÄTODENNÄKÖISYYKSIEN KVANTTIMEKAANISIIN LASKUIHIN

Elektronin siirtymätodennäköisyys voidaan laskea seuraavilla lähtöoletuksilla:

1) Klassinen atomi ja klassinen sähkömagneettinen kenttä

Elektroni kuvataan vaimenevana harmonisena värähtelijänä. Teoria tulostaa absorptiokertoimelle oikean dimension, mutta kvanttimekaaninen arvo voi heittää useita kertaluokkia. ŋ

2) Kvanttimekaaninen atomi ja klassinen sm-kenttä

Laskut antavat oikean tuloksen todennäköisyyskertoimelle B_{ij} (absorptio) ja B_{ji} (indusoitu emissio). Sen sijaan A_j (spontaani emissio) ei lainkaan esiinny tässä esityksessä.

3) Kvanttimekaaninen atomi ja kvantittunut sm-kenttä

Laskut antavat oikeat arvot kaikille elektronien siirtymätodennäköisyyksille A_{ij}, B_{ij} ja B_{ji}.

Seuraavassa lasketaan johdatuksenomaisesti absorption todennäköisyyskerroin B_{ij} tarkastelemalla kvanttimekaanista atomia klassisessa sm-kentässä. Einsteinin todennäköisyyskertoimet A_{ji} (spontaani emissio) ja B_{ji} (indusoitu emissio) saadaan B_{ij}:n avulla seuraavilla relaatioilla:

$$A_{ji} = \frac{2hv^3}{c^2}B_{ji}$$

$$g_iB_{ij} = g_jB_{ji}$$
, missä g_i = energiatilan i statistinen paino

Kvanttimekaniikassa kuvataan atomia aaltofunktiolla $\Psi(\overline{r}_1, \overline{r}_2, \dots, \overline{r}_N, t)$, missä \overline{r}_i on atomin sidoselektronin paikkavektori. Atomin mielivaltainen tila hetkellä t = 0 voidaan esittää ominaisfunktioitten Ψ_n sarjakehitelmänä:

$$\Psi = \sum_{n} a_n \Psi_n$$

ſ

Ominaisfunktioihin φ_n liittyy fysikaalinen suure A siten, että kun $\Psi = \varphi_n$ niin <u>suureella A on arvo α_n </u>. Koska $|\Psi|^2$ esittää todennäköisyystiheyttä, ja ominaisfunktiot φ_n ovat ortogonaalisia $(\int \varphi_i^* \varphi_j d^n x \equiv (\varphi_i^* | \varphi_j) = \xi_{ij})$, on

$$\int |\Psi|^2 dX = |\alpha_n|^2 = \operatorname{arvon} \alpha_n \operatorname{\underline{todennäköisyys tilassa \Psi}}$$

Ajasta riippuvat ilmiöt kuvataan tilafunktiolla

$$\begin{aligned} \Psi(\bar{\tau},t) &= \int \Psi(\tau,o) \cdot K(\bar{\tau},\bar{\tau},t) d^3 \bar{\tau}^{,*} \\ &= \text{alkutila propagaattori} = \text{todennäköisyysamplitudi sille tapahtumal-} \\ &= \text{le, että hiukkanen on aluksi tilassa } \bar{\tau}^{,*} \\ &= \text{ja ajan t kuluttua tilassa } \bar{\tau}^{,*}. \end{aligned}$$

Schrödingerin yhtälö on propagaattorin toinen esitysmuoto:

$$\hat{H} \Psi = \hat{E} \Psi$$
, missä $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\bar{\tau}) = Hamiltonin operaattori $\hat{E} = -\frac{\hbar}{c}\frac{\partial}{\partial t}$$

Ajasta riippuvissa ilmiöissä $\Psi = \sum_{n} \alpha_n(t) \Psi_n(t)$ ja $|a_n(t)|^2 = \operatorname{arvon} \alpha_n$ todennäköisyys tilassa Ψ . Häiriintymättömässä tilassa atomin tilafunktion kertoimet a_n eivät riipu ajasta. Jos sen sijaan atomia häiritään jollain potentiaalilla V, muuttuvat kertoimet a_n yleensä ajan mukana. Tämä voidaan tulkita siten, että atomi siirtyy tilalta toiselle. Esimerkiksi ulkoinen sähkökenttä häiritsee atomia. Ensimmäisessä approksimaatiossa voidaan ulkoinen kenttä kuvata lausekkeella $\overline{E} = E_0 \cos \omega t \overline{i}$, jolloin elektronin potentiaali tässä kentässä on

– B 2 –

dipolimomentin matriisielementit

I)

ŗ

 $\Rightarrow \hat{a}_{m}(t) = \frac{E_{o}}{2i\hbar} \sum a_{m}(t) \overline{i} \cdot \overline{p}_{mn} e^{i\omega_{mn}} (e^{i\omega t} + e^{-i\omega t})$ Oletukset: Kun t = 0, niin $a_{k}(0) = 1$ $a_{n}(0) = 0, n \neq k$ eli atomi on alkuhetkellä määrätyssä stationaarisessa tilassaan k Kun t < T, niin $a_{k}(t) \approx 1$ eli aikaintervalli niin lyhyt, ettei tilan populaatio ehdi juuri

muuttua

⇒ yhtälön summa voidaan korvata yhdellä termillä

Absorptiossa $E_m > E_k$, jolloin $\omega_{mk} > 0$. Koska absorptio on suurimmillaan, kun $\omega \approx \omega_{mk}$,voidaan sulkulausekkeen toinen termi jättää huomiotta. Merkitsemällä $x = \omega - \omega_{mk}$ saadaan siirtymän todennäköisyyskertoimiksi

 $\left| a_{m}(t) \right|^{2} = \frac{8\pi^{2} \cdot 1}{c^{2} + 1} \frac{\left| \frac{1}{c} \cdot \frac{p_{mk}}{x^{2}} \right|^{2} \frac{4 \sin^{2} \frac{x}{x^{2}}}{x^{2}} \left| \int_{-x}^{\infty} dx \right|^{2} \text{ integroidaan yli absorptio$ $viivan taajuuskaistan.}$

> Jos xt >> 1, niin integroimisrajat voidaan muodollisesti ulottaa äärettömyyteen. (Huom. tyypillisesti $\omega \sim 10^{15}$ 1/s ja elektronisiirtymän kesto t $\sim 10^{-8}$ 1/s)

$$\Rightarrow |a_{m}(t)|^{2} = \frac{8\pi^{2} J_{\omega}}{c \hbar^{2}} |\overline{i} \cdot \overline{p}_{mk}|^{2} \cdot 2t \int_{-\infty}^{\infty} \frac{\sin^{2}(\frac{xt}{2})d(\frac{xt}{2})}{(\frac{xt}{2})^{2}} |J_{\nu}d\nu = J_{\omega}d\omega$$

$$J_{\nu}d\nu = J_{\omega}d\omega$$

$$J_{\nu} = 2\pi J_{\omega}$$

1

Ţ

$$\Rightarrow |a_m(t)|^2 = \frac{8\pi^2}{c\hbar^2} |\overline{i} \cdot \overline{p}_{mk}|^2 \cdot t$$

Elektronin siirtymisnopeuden (transition rate) R_{mk} määritelmä:

R_{mk} = todennäköisyys, että siirtymä on tapahtunut aikayksikkö

$$R_{mk} = \frac{\left|a_{m}(t)\right|^{2}}{t} = \frac{8\pi^{2}}{c\pi^{2}} \left|\overline{i} \cdot \overline{p}_{mk}\right|^{2}$$

Einstein esitti v. 1917 siirtymisnopeuden absorptiossa muodossa

$$N_{i}(\nu) R_{ij} \frac{d\omega}{4\pi} = N_{i}(\nu) B_{ij} I_{\nu} \frac{d\omega}{4\pi}$$
, missä $N_{i}(\nu)$ = niitten energiatilassa i ole-
vien atomien lkm/cm³, jotka ab-
sorboivat säteilyä taajuusvä-
lillä $(\nu, \nu + d\nu)$
 N_{i} = energiatilassa i olevien atomien
kokonaislukumäärä/cm³...
 B_{ij} = Einsteinin kerroin (atomaar. vakio)
Naapuriatomien häiritsevän vaikutuksen johdosta ja atomin ylemmän energia-
tilan äärellisen eliniän vuoksi spektriviiva ei ole terävä, vaan se leviää

tilan äärellisen eliniän vuoksi spektriviiva ei ole terävä, vaan se leviää yli tietyn taajuusvälin. Absorptioviivan profiili Ψ_y on normalisoitu si-ten, että

$$\int_{0}^{\infty} \Psi_{y} dy = 1$$

Koska $N_i(v) = N_i \varphi_v$, on Einsteinin yhtälön perusteella

$$R_{mk} = B_{mk} \int_{0}^{\infty} I_{y} P_{y} dy = B_{mk} J_{y} \int_{0}^{\infty} P_{y} dy$$

$$i vivan$$

$$\Rightarrow B_{mk} = \frac{R_{mk}}{J_{y}} = \frac{8\pi^{2}}{ch^{2}} |\overline{i} \cdot \overline{p}_{mk}|^{2}$$

$$Tarkasteltaessa suurta atomijoukkoa, on
$$|\overline{i} \cdot \overline{p}_{mk}|^{2} = P_{mk} \cos^{2} \theta$$

$$= \frac{1}{3} P_{mk}^{2}$$$$

$$B_{mk} = \frac{32 \pi^4 e^2 r_{mk}^2}{3 c h^2}$$

£

EINSTEININ TODENNÄKÖISYYSKERROIN ABSORPTIOSSA

missä
$$T_{mk}^{2} = \left(m \left| \sum_{i=1}^{N} \tilde{\tau}_{i} \right| k \right) \right|^{2}$$

Indusoituneen emission tapauksessa

$$g_{i}B_{ij} = g_{j}B_{ji} , \text{ missä } B_{ij} = \text{absorption Einsteinin kerroin} \\ B_{ji} = \text{ indusoituneen emission Einsteinin kerroin} \\ g_{i} = \text{ energiatilan i statistinen paino} \\ B_{ji} = \frac{Ai}{3j}B_{ij} \\ \hline B_{ji} = \frac{Ai}{3j}\frac{32\pi^{4}(er_{ij})^{2}}{3ch^{2}} \\ \hline \text{EINSTEININ TODENNÄKÖISYYSKERROIN} \\ \text{INDUSOITUNEESSA EMISSIOSSA} \\ \hline \end{array}$$

Spontaanin emission tapauksessa

$$A_{jl} = \frac{2h\nu^3}{c^2} B_{jl}$$

$$A_{ji} = \frac{g_i}{g_j} \frac{64 \pi^4 \nu^3 (e_{\tau_ij})^2}{3hc^3}$$

EINSTEININ TODENNÄKÖISYYSKERROIN SPONTAANISSA EMISSIOSSA

HUOM.1

Ĵ

1.1 Oletetaan yksinkertaisuuden vuoksi, että atomin energiatasot eivät ole degeneroituneita, jolloin g_i = g_j = 1. Spontaaneja siirtymiä tarkasteltaessa on tällöin atomin emin/ttoima säteilyteho

$$P_{i} = A_{i} h y_{i} = \frac{64 \pi^{4} e^{2} y^{4}}{3 c^{3}} r_{i}^{2} = \frac{e^{2} \omega^{4} (2 r_{i})^{2}}{3 c^{3}}$$

Tämä vastaa klassisen oskillaattorin keskimääräistä säteilytehoa, kun dipolin varausten suurin etäisyys on 2 r_{ij}.

- B 6 -:

<u>HUOM. 2</u> Elektronisiirtymien Einsteinin kertoimien avulla päästään siirtymän oskillaattorivoimakkuuteen seuraavasti. Kun huomioidaan energiatilojen degeneroituminen (jakautuminen), on atomin säteilyteho spontaanissa emissiossa (siirtymä j \rightarrow i) :

$$P_{ji} = g_j A_{ji} h v_{ji} = \frac{64 \pi^4 v^4}{3 c^3} \sum_{i,j} P_{ij}$$

summa otettu yli alemman ja ylemmän energiatason degeneroituneitten tilojen }

Į.

Absorption todennäköisyyskerroin degeneraation tapauksessa on täten

$$B_{ij} = \frac{3j}{3i} B_{ji} = \frac{32\pi^4}{3h^2c} \frac{\sum p_{ij}}{3i}$$

Luvussa 2.5.2e todettiin, että 1 cm³:iin väliainetta absorboituu säteilytehoa

$$P_{y} = 4\pi I_{y}gR$$
, missä $gR = N_{oy}\frac{\pi e^{2}}{mc}$.

$$\Rightarrow N_{ov} \frac{\pi e^2}{mc} f_{ij} = N_{ov} \frac{1}{4\pi} B_{ij} hv \qquad \text{Sij. } B_{ij} = \frac{32 \pi^4}{3h^2 c} \frac{\Sigma p_{ij}^2}{g_i}$$

$$\Rightarrow \int f_{ij} = \frac{8 \pi^2 mv}{3hc^2} \frac{\Sigma p_{ij}^2}{g_i} \qquad \text{SIIRTYMÄN ij}$$

$$OSKILLAATTORIVOIMAKKUUS$$

Päätasojen n' ja n välinen kokonaisoskillaattorivoimakkuus voidaan ilmoittaa degeneroituneitten tilojen oskillaattorivoimakkuuksien summana seuraavasti:

$$f(n',n) = \frac{1}{3n} \sum_{\ell'} g_{n'\ell'} f(n',\ell';n,\ell)$$

$$f(n',n) = \frac{\sum_{\ell'} g_{n'\ell'} f(n',\ell';n,\ell)}{\sum_{\ell'} g_{n'\ell'}}$$