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Introduction

What is a Panel?

Wikipedia search for ”Panel Data” : http://en.wikipedia.org
There are different panel units:

Persons: Newborns; entrants into educational system; entrants into
firms,entrants into unemployment, poverty, etc.

Households (unstable units!): poverty measurement at household
level; marriage, divorce, child-birth at household level

Families (unstable units!): (Intergenerational) stability, time to first
child after marriage.

Firms (unstable units!): Investments, R&D activities at firm level

Employer/Employees files(unstable relationship): Employee data at
individual level

Towns, states: aggregates, (international) comparisons
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Introduction

Information on panels from the internet

List of Panel projects: http://www.paneldata.eu

Mentioned in the course:

ECHP (CHINTEX project):
http://www.destatis.de/CHINTEX/
SOEP:
http://www.diw.de/en/soep
German Micro Census Panel:
http://www.forschungsdatenzentrum.de/bestand/mikrozensus-panel/

European Union Statistics of Income and Living Conditions
(EU-SILC):
http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eu silc/

National Education Panel Survey (NEPS):
http://www.uni-bamberg.de/neps/
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Introduction

Formats of panels

Simple panel: unlimited participation (from the cradle to the grave),
all household panels.

Cohort sample: Sample from selected cohorts with unlimited
participation (NEPS)

Rotation panel: fixed, limited participation duration, for example 4
waves (EU-SILC), German MC Panel, all labour force surveys (LFS)

Split panel: Simple panel + series of independent cross-sections
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Introduction

Selection strategies

Selection from register frame: known individual identifiers, possibility
to use stratified sampling, known selection probabilities, automatic
tracing.

Selection from access panel (mostly commercial use): known
individual identifiers, possibility to use stratified sampling, mostly
quota sampling, automatic tracing.

Multi-stage sampling from population: unknown individual identifiers,
stratified sampling, known design selection probabilities, tracing only
if intended.
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Introduction

Follow-up rules

No follow-up in case of residential mobility (Area sampling): save field
costs

Follow-up of residential movers via telephone mode.

Follow-up of only first wave panelists (”Sample persons”) (PSID,
ECHP, EU-SILC, BHPS, ....)
Consequence: loss of all ”Non-sample persons” who separate from
”sample persons”.

Follow-up of all interviewed persons in households.
Consequence: Additional information about household nets,
over-sampling of persons who live in households with fusions,
possibility of exploding sample size. (SOEP)

Follow-up of firms in case of fusions, change of branch, etc. even
more complicated.
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Introduction

Refreshment samples (1/2)

Inclusion of new units entering the population: start-ups (firms),
newborns, immigrants.

Sampling of population gains feasible with register (otherwise not).
Immigrant samples in the SOEP: Cumulation of households with
immigrants after the first wave of the SOEP (1984) by screening
interviews. Over-sampling of mixed households. (Mainly immigrants
from eastern Europe after the fall of the ”iron curtain” (1989).
Sample of newborns taken from the panel parents (easy to manage in a
household panel). Advantage: Intergenerational analysis becomes
possible.
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Introduction

Refreshment samples (2/2)

Start of a ”fresh”second panel in order to include population gains,
increase sample sizes and counteract panel attrition (SOEP2
(Subsample F) starting in wave 2000) Over-sampling of persistent
population.

Inclusion of a new cohort

Selective sample to counteract panel attrition: selection of ”statistical
twins” from an access panel.
Correction of cross-sectional distributions at best. Statistical
properties not clear.
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Introduction

Relationship of Panel Analysis and Time Series Analysis

Number of units: N ; Number of points in time T

Panel analysis: N large and T small.

Time series analysis: N small and T large.

2-dim asymptotics :

limN/T →∞
limN/T → 0
limN/T → const

Ulrich Rendtel (FU Berlin) Panel surveys 13 / 225



Introduction

What are the aims of panel analysis?

Estimation of statistical models (”Model based approach”):

Causal effects: Change of X causes change of Y (before and after
treatment measurement)
Variation of growth curves (for example in nutrition surveys)
Duration of episodes (for example duration of unemployment)
Transitions between states (for example labour force states in
successive years)

Population counts (Inclusion probabilities according to a sampling
design (”Design based approach”) :

Number of persons with specified longitudinal profiles (for example,
persons in persistent poverty)
Separation of gross and net change (Gross change = flows between
labour force states, net change = change of marginal distribution over
labour force states)
Trend analysis: trends in the marginal population counts over panel
waves.
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Introduction

Poverty Analysis from Finish ECHP (1/2)
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Introduction

Poverty Analysis from Finish ECHP (2/2)
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Introduction

Need for meta information and data management

Information is typically stored in a wave-based scheme. Household
files + person files. Gross-sample information + net-sample
information (10 files per wave). The SOEP is a collection of about
250 single flat files that must be combined!
Web support of the SOEP: http://panelgsoep.de/soepinfo2009/

Meta data: Link to ”PanelWhiz”: http://www.panelwhiz.eu
Charity ware (20 Euro): Generates Stata-Files for the management of
several household panels.
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Introduction

The 2 formats of panel files (1/2)

The Compressed or Flat-File Format:
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Introduction

The 2 formats of panel files (2/2)

The Long Format:
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Introduction

Transformation into Long Format

proc panel data=mysas.flat;

flatdata indid=persnr tsname="t"

transform=(income satis tenure)

keep=(sex prgroup) /out=mysas.long;

id persnr t;

run;
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Introduction

Useful descriptive statistics: Spaghetti Plots (1/3)

Trend plus large unit variation and large shocks:
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Introduction

Useful descriptive statistics: Spaghetti Plots (2/3)

Random slope plus moderate unit variation and moderate shocks:
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Introduction

Useful descriptive statistics: Spaghetti Plots (3/3)

Data Sim;

Do PID=1 to &n;

alpha=&sigma_alpha*rannor(0) ;

Beta_ran=&beta+ &sigma_beta*rannor(0); *Random slopes;

Do time=1 to &t;

u=&sigma_u*rannor(0); * Variance Components;

X=time+rannor(0); * x strongly correlated with time;

y=alpha +&beta*x+ u; * RE model;

xx=x+&rho* alpha; * xx correlated with alpha;

yy=alpha+ &beta*xx +u; * FGLM inconsistent ;

YYY=alpha+ Beta_ran*x +u;* Mixed model with random slope;

output;

end;

end; run;

symbol I=j v=none r=100; * join obs, no values, 100 repli.;

proc gplot data=sim; plot Growth*time=pid;
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Introduction

Useful descriptive statistics: Spaghetti Plots (3/3)

/* Programm simulates panel with n units and t waves */

/* Setting of the parameters via Macro variables: */

%Let n=20; * Number of units;

%let t=10; * Number of points in time;

%let sigma_alpha=3; * Std. dev. of constants;

%let sigma_u=1; * Std. dev. of shocks;

%let beta=2; * Fixed effect of x;

%let rho=2; * Covariance(X,alpha) inflation factor;

%let sigma_beta=1; * Std. dev. of random slope of X;
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Introduction

Literature and further reading on general aspects

Kasprzyk et al. (eds)(1989): Panel surveys, Wiley, New York.

Lynn, P. (ed) (2009): Methodology of Longitudinal Surveys, Wiley,
New York
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Statistical models for panel data

Introduction
Statistical models for panel data

Linear models
Analysis of contingency tables
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Estimation of the hazard function

Design-based estimation of population totals and proportions
Elements of design-based reasoning
Model assisted estimation
Calibration
Design-based estimation in panel surveys
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Overview and some empirical results
The fade-away hypothesis of initial nonresponse in panel surveys
Empirical results for SILC

model based treatment of nonresponse
MAR: a typology for missing values
Missing cells in contingency tables
The LEM package
Use of control variables
Weighting by inverse response probabilities
Pattern Mixture models
Imputation
Sample Selection models
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Statistical models for panel data Linear models

Two linear models : The Fixed Effects (FE) Model

Index for units i = 1, . . . ,N, index for time t = 1, . . . ,T
Outcome variable Yi ,t and covariate vector Xi ,t for each unit at each point
in time.
For each unit there is a specific constant αi i = 1, . . . ,N and for each
point in time there is a specific intercept γt in the linear model:

yi ,t = αi + γt + β′Xi ,t + ui ,t

Interpretation: the model parameters refer explicitly to the units and
time periods. Hence we condition on these units and time periods.
Makes sense in the case of state panels, for example, all federal states
of the US or Germany or the member states of the EU.
The number of coefficients may increase considerably.
Alternative naming: Two-way model, because of the similarity with
the two-way ANOVA model. Factor 1 identifies the units and factor 2
identifies the points in time.
If time dependence is omitted: One-way model.

Ulrich Rendtel (FU Berlin) Panel surveys 27 / 225



Statistical models for panel data Linear models

Two linear models : The Random Effects (RE) Model
(1/2)

For each unit there is a specific variance component αi i = 1, . . . ,N that
is independent from the shock component ui ,t and follows a Normal
distribution with expectation 0 and variance σ2

α.

yi ,t = α + γt + β′Xi ,t + αi + ui ,t

Interpretation: the model does not condition on the single units. It is
a model that refers to the whole population. However the time
periods are considered as fixed.

Makes sense in the case of household panels.

The number of coefficients increases by 1 (the variance σ2
α) at the

price of a distributional assumption (Normality of the αi )
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Statistical models for panel data Linear models

Two linear models (3/3): The Random Effects (RE) Model

Alternative naming: Variance Component Model because for the
random component εi ,t = αi + ui ,t we get:

Cov(εi ,t , εj ,s) =


σ2
α + σ2

u, if i = j and t = s;
σ2
α, if i = j and t 6= s;

0, i 6= j .

Matrix notation for Cov -matrix of εi = (εi ,1, . . . , εi ,T )′:

Cov(εi ) = σ2
α

 1 . . . 1
...

...
1 . . . 1

+ σ2
u

 1 0
. . .

0 1


= σ2

α11′ + σ2
uE

where 1 is a row vector of T ones and E is the unit matrix of
dimension T .
If time dependence is omitted: One-way model Random Effects model.
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Statistical models for panel data Linear models

The Kronecker Product notation

Econometric textbooks often use the Kronecker product notation.
Let A a matrix of Dimension I × J and let B a matrix of dimension M ×N
then the Kronecker product of the two matrices A and B is defined as a
matrix of dimension (IM)× (JN) with:

A⊗ B =


...

. . . a(i ,j)B . . .
...


Then Σ the covariance matrix of ε = (ε1, . . . , εn)′ can be written as:

Σ = EI ⊗ Σi where Σi = σ2
α11′ + +σ2

uET

Thus Σ is a block diagonal matrix with diagonal elements Σi .
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Statistical models for panel data Linear models

5 different panel estimators (1–3)

The Pooled Estimator: OLS applied to yi ,t and xi ,t and time dummies.
FE-Model: inconsistent (because of missing αi ’s)
RE-Model: consistent but wrong significance results (because of
independence assumption)

Dummy Variable (DV)-Estimator: OLS applied to yi ,t and xi ,t and
unit and time dummies.
FE-Model: Efficient
RE-Model: Does not apply to model

Within-Estimator: OLS applied to yi ,t − yi ,t−1 and xi ,t − xi ,t−1

FE-Model without time dummies: consistent for β
RE-Model without time dummies: Consistent
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Statistical models for panel data Linear models

5 different panel estimators (4)

Feasible Generalized Least Squares Estimator (FGLS): The covariance
of error terms for unit i is the T × T Matrix:

Σi =


σ2
α + σ2

u σ2
α . . . σ2

α

σ2
α σ2

α + σ2
u . . . σ2

α

...
...

. . .
...

σ2
α σ2

α . . . σ2
ασ

2
u


If we use σ̂2

u and σ̂2
α as appropriate estimators for the respective

variance components we obtain the estimated covariance Σ̂i . The
GLS estimate with the estimated variance components is given by:

β̂FGLS =

(∑
i

x′i Σ̂i
−1

xi

)−1(∑
i

x′i Σ̂i
−1

yi

)
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Statistical models for panel data Linear models

5 different panel estimators (4+5)

FGLS estimator:
FE-Model: does not apply
RE-Model without time constants: asymptotical efficient

The ML-estimate: can be derived by standard calculations (See Hsiao
(1986 p.38 ff). Iterative Computation is necessary.
The FGLS-estimator can be shown to be the first step in an iterative
procedure to solve the ML-estimates. Therefore it is asymptotically
efficient.
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Statistical models for panel data Linear models

Two different ways for the computation of the FGLS
estimator

The FGLS estimator can be shown to have the following two
representations (see Màtyàs (1996, p.56)):

OLS applied to ỹi ,t = yi ,t − θȳi ,. and x̃i ,t = yi ,t − θx̄i ,.

where θ = 1−
√

σ̂2
u

σ̂2
u+T σ̂2

α

Between Estimator: OLS applied to ȳi ,. and x̄i ,.

The FGLS estimator can be shown to a linear combination of the
Within- and the Between-Estimator
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Statistical models for panel data Linear models

The Hausman Test in panel analysis (1/3)

A frequent argument in econometric textbooks about panels:
In the RE model the αi represent unobserved variables that are
specific to the unit, for example, intelligence if the outcome variable is
the log of earned income. If education level is a covariate then the αi

are correlated with one of the covariates.

In this case the FGLS Estimator β̂FGLS is no longer consistent, as the
estimated education level effect includes the intelligence effect.

However: The Within Estimator β̂W remains consistent, because the
αi are eliminated.

Under the RE-Model (=Null Hypothesis) β̂FGLS is asymptotically
efficient and β̂W is consistent. The test alternative (”Some of the
covariates is correlated with the αi ”) is not explicitly formulated.
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Statistical models for panel data Linear models

The Hausman Test in panel analysis (2/3)

The Hausman Test uses a general asymptotic result on the covariance of
β̂consistent − β̂efficient :

Cov(β̂consistent − β̂efficient) = Cov(β̂consistent)− Cov(β̂efficient)

The Hausman Test:

THausman = (β̂W − β̂FGLS )′(Cov(β̂W )− Cov(β̂FGLS ))−1(β̂W − β̂FGLS )

∼ χ2
DF

The number of degrees of freedom DF is equal to the number of
estimated parameters.

Ulrich Rendtel (FU Berlin) Panel surveys 36 / 225



Statistical models for panel data Linear models

The Hausman Test in panel analysis (3/3)

(cov(β̂W )− cov(β̂FGLS )) is sometimes not invertible.

Time-constant variables have to be removed from the model.

Often covariates, like education level, are time-constant for the large
majority of the sample. The Within estimator of education level then
depends only on those few, who changed their education during the
panel. Instability of Within estimate!
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Statistical models for panel data Linear models

Example: SOEP data from (1984–2008)
Dependent variable: Logearning

Proc Panel data=mysas.human_cap(obs=1000);

class svyyear ;

id pid svyyear;

model logearning = svyyear education_years marital_status

experience experience_q

/noint fixone ranone pooled;

run;

id Person identifier ”pid” then time identifier ”svyyear”!

Model options: pooled, fixone, fixtwo, ranone, rantwo,

Class statement generates dummies for each survey year.

The data should be in the ”Long”-format.
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Statistical models for panel data Linear models

The General Mixed Model

In the RE model the intercept has a random variation over the
population.

Maybe, some of the slope coefficients vary over the population.

Furthermore one is interested in the impact of other covariates on
these random slope coefficients.

The Mixed Model (in matrix notation):

Y = Xβ + Zγ + ε

β = parameter vector of the fixed effects with known design matrix X
γ = parameter vector of the random effects with known design matrix
Z
The vector of errors ε and the random effects γ are independent and
multivariate Normal distributed with expectations 0 and covariances
Cov(ε) = R and Cov(γ) = G
Cov(Y ) = ZGZ ′ + R
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Statistical models for panel data Linear models

An example: growth curves of children (1/2)

data pr;

input Person Gender $ y1 y2 y3 y4;

y=y1; Age=8; output;

y=y2; Age=10; output;

y=y3; Age=12; output;

y=y4; Age=14; output;

drop y1-y4;

datalines;

1 F 21.0 20.0 21.5 23.0

2 F 21.0 21.5 24.0 25.5

...

;

Transformation into Long-format!
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Statistical models for panel data Linear models

An example: growth curves of children (2/2)

proc mixed data=pr method=ml;

class Person Gender;

model y = Gender Age Gender*Age / s;

random intercept Age / type=un sub=Person g;

run;

Model option ”s”: display FE solution vector.

”Type=un” requests unstructured covariance matrix for the random
effects.

Option ”g”: display the estimated G matrix.
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Statistical models for panel data Linear models

Overview of several SAS-Mixed procedures

HPmixed: High case numbers of fixed and random effects can decrease
the efficiency of Proc Mixed considerably. Proc HPmixed is
specialized for a few Mixed models with simple covariance
structures but more efficient in handling of the covariance
structures.

GLIMmix: The linear Mixed model assumes a multivariate Normal
distribution for the error terms. Proc GLIMmix deals with
Non-Gaussian distributions.

NLmixed: Nonlinear models, like the Logit model, can be estimated by
Proc NLmixed (Non-Linear Mixed).
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Statistical models for panel data Linear models

Literature and further reading

Hsiao, Ch. (1986): Analysis of Panel Data, Cambridge University
Press, Cambridge

Wooldridge, J (2002): Econometric analysis of cross-section and panel
data. MIT Press

Baltagi, B. (2001): Econometric Analysis of Panel Data. Second
Edition, Wiley, New York.

Verbeke,G., Molenberghs, G. (2000): Linear mixed models for
longitudinal data, Springer, New York. (Biometrical textbook)
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Statistical models for panel data Analysis of contingency tables

The representation of state sequences by Loglinear Models
(1/2)

Let the state space be given by the set
{e(mployed),u(memployed),n(ot in labour force) }.
Zt indicates the state at wave t = 1, 2, 3.The state sequence
(Z1,Z2,Z3) generates a 3× 3× 3 contingency table.

In the cells there are the observed numbers NZ1=z1,Z2=z2,Z3=z3 in the
panel.

In order to simplify the notation we write Z1 = A,Z2 = B and Z3 = C .

The expected number of cell counts NA=a,B=b,C=c is denoted by

µA,B,C
a,b,c
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Statistical models for panel data Analysis of contingency tables

The representation of state sequences by Loglinear Models
(2/2)

A Loglinear Model the expected cell counts is given by:

log(µA,B,C
a,b,c ) = β0 + βA

a + βB
b + βC

c + βA,B
a,b + βB,C

b,c + βA,C
a,c + βA,B,C

a,b,c

βA
a is the main effect of A. (Notation A).

βA,B
a,b is the interaction term of A and B. (Notation A*B).

βA,B,C
a,b,c is the (3-fold) interaction term of A,B and C. (Notation A*B*C).
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Statistical models for panel data Analysis of contingency tables

Hierarchical Loglinear Models (1/2)

A Loglinear Model is called hierarchical, if the model contains for each
interaction term of higher order all lower corresponding interaction terms.
By dropping higher order interaction terms, one can formulate statements
about independence and conditional independence:

Joint independence:

Def.: πA,B,C
a,b,c = πA

a π
B
b π

C
c for all a, b, c

Model representation: A + B + C

C is independent from A and B:

Def.: πA,B,C
a,b,c = πAB

ab πC
c for all a, b, c

Model representation: A + B + A ∗ B + C
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Statistical models for panel data Analysis of contingency tables

Hierarchical Loglinear Models (2/2)

Conditional independence: A and C are independent for fixed values
of B

π
AC |B
ac|b =

πABC
abc

πB
b

= π
A|B
a|b π

C |B
c|b

=
πAB

ab

πB
b

πCB
cb

πB
b

Model representation: A + B + A ∗ B + C + B ∗ C
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Statistical models for panel data Analysis of contingency tables

A Markov Chain Model over 4 panel waves

Markov Chain for Z1 = A,Z2 = B,Z3 = C and Z4 = D is given by:

πABCD
abcd = π

D|CBA
d |cba π

C |BA
c|ba π

B|A
b|a π

A
a

= π
D|C
d |c π

C |B
c|b π

B|A
b|a π

A
a

Model representation: A + B + C + D + A ∗ B + B ∗ C + C ∗ D
Note that there is no interaction between A and C (and A and D)
because there is no direct impact of state A on state C (and D). The
same holds for the direct impact of B on D.
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Statistical models for panel data Analysis of contingency tables

Graphical Models

Graphical models are special hierarchical Loglinear models where the
conditional independence relations can be directly read from a graph that
connects the variables.

Interpretation: A influences C and D only thru B

Conditional independence: A⊗ (C ,D) | B
The cliques (Direct connections of all members) of the graph: {A,B}
and {B,C ,D}
Graphical model: The cliques of the graph generate the highest
interaction terms in the hierarchical model.

Hierarchical model representation.
A + B + A ∗ B + C + D + B ∗ C + B ∗ D + C ∗ D + B ∗ C ∗ D
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Statistical models for panel data Analysis of contingency tables

Loglinear Models with SAS

PROC CATMOD DATA=mysas.Divorce;

WEIGHT number;

MODEL sex*sex_b*sex_o*mstatus=_Response_ ;

LOGLIN sex|sex_b mstatus|sex_o|sex_b;

RUN; QUIT;

You have to choose the ”WEIGHT” statement for the counts
(”number”) of the table.

The ”MODEL” statement generates the contingency table.

The ”LOGLIN” statement specifies the cliques of the graph. A|B|C
means all 3-interaction terms of variables A,B and C plus all lower
terms.
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Statistical models for panel data Analysis of contingency tables

A latent Markov model (1/3)

Model transitions between poverty states for the years (19)96. (19)97,
(19)98, (19)99 and (20)00.

For 1996 and 2000 two measurements for each person: one
measurement from (ECHP) survey and one measurement from
Finnish national register.

Survey measurement indicated by Syear . Register measurement
indicated by Ryear .

Years in between only register measurement.

Assumption 1: Measurements depend only on the true but latent
poverty state (indicated by circles).

Assumption 2: The transitions between latent Markov states follow a
Markov chain.
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Statistical models for panel data Analysis of contingency tables

A latent Markov model (2/3)

The graphical representation of the latent Markov model:
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Statistical models for panel data Analysis of contingency tables

A latent Markov model (3/3)

Observed and estimated transitions between the states ”Poor” and
”Non-poor”. Time interval: 1996 and 2000

Transitions in percent
Start Poor Non-Poor

Register

Poor 3.91 31.65 68.34
Non-Poor 96.8 5.34 94.65

Survey

Poor 7.56 30.40 69.59
Non-Poor 92.44 8.66 91.33

True

Poor 8.20 70.04 29.95
Non-Poor 91.79 3.06 96.93
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Statistical models for panel data Analysis of contingency tables

Literature & Software (1/2)

Hierarchical Models: every standard statistical package
In SAS Proc Catmod with ”loglin” statement

Latent and Mixed Markov Models: PANMARK Package by v.d. Pol
Useful but a little bit old.
See. http://www.john-uebersax.com/stat/soft.htm

However, Latent Markov models may be also estimated by LEM,
which is freeware.

Example can be found in Rendtel, U. / Nordberg, L. / Jäntti, M./
Hanisch, J. / Basic, E.(2004): Report on quality of income data
CHINTEX Working Paper No.21, Statistisches Bundesamt,
Wiesbaden. see http://www.destatis.de/CHINTEX/

Ulrich Rendtel (FU Berlin) Panel surveys 54 / 225



Statistical models for panel data Analysis of contingency tables

Literature & Software (2/2)

Langeheine, R., Pol F., v.d.(1990):A Unifying Framework for Markov
Modeling in Discrete Space and Discrete Time, Sociological Methods
Research, Vol. 18, 416-441.

Pol, F.,v.d., R. Langeheine and W. de Jong (1991): PANMARK User
Manual, Panel Analysis Using Markov Chains, Netherlands Central
Bureau of Statistics, Voorburg.

Pol, F., v.d., and J. de Leeuw (1986): A latent Markov Model to
Correct for Measurement Error, Sociological Methods and Research,
15, 118-141.

Rendtel, U., R. Langeheine and R. Berntsen (1998): “The estimation
of poverty dynamics using different measurements of household
income”, Review of Income and Wealth, 44, 81-97.
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Statistical models for panel data Analysis of duration

Basic considerations (1/4)

After the begin of an episode (spell), say unemployment, one is
interested in the duration of this period.

The exit from unemployment may result in different events, say
employment, out-of-the-labour-force or some kind of training. The
exits are regarded as competing risks. There are two types of analysis:
One ignores the exit while the other makes inferences with respect to
the exit.

A new feature: the censoring of episodes (spells).

Right Censoring:The begin of a spell is observed, however, the end
was not observed. Reasons: Spell continues after survey ends or person
left the survey (not followed or discontinued cooperation)
Left Censoring: The start of the spell is not observed, however the
end is observed. Reasons: The spell has begun, before the person
entered the panel. Retrospective interviewing is imprecise.
Left and right Censoring: Start and end of the spell are unknown.
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Statistical models for panel data Analysis of duration

Basic considerations (2/4)

Units of duration measurement:

Days (register)
Month (survey, register)
year (Survey)

The three clocks: Calender time, process time and age

Calender time: often month 0 is the start of the panel.
Process time: elapse of time since the beginning of a spell, for example
no. of month since the beginning of an unemployment.
Age: elapse of time since birth.
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Statistical models for panel data Analysis of duration

Basic considerations (3/4)

Statistical analysis of the distribution of T , duration of spell
(episode), time to event, ...
Survival time: S(t) = P(T > t) = 1− F (t)
Contribution to likelihood in case of right censored spells!
The hazard rate h(t):

h(t) = lim
∆t→0

P(t < T ≤ t + ∆t|T > t)

∆t

= lim
∆t→0

P(t < T ≤ t + ∆t)

∆t(1− F (t))

=
f (t)

1− F (t)

where f (t) is the density of T and F (t) is the distribution function of
T .
The hazard rate is measures the instant risk to stop the episode at
time t, if the episode lasts at least until time t.

Ulrich Rendtel (FU Berlin) Panel surveys 58 / 225



Statistical models for panel data Analysis of duration

Basic considerations (4/4)

There are unique relationships between these 3 descriptions:

h(t) =
f (t)

1− F (t)
=

f (t)

S(t)

S(t) = exp

(∫ t

0
h(u)du

)

f (t) =− d(S(t)

dt
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Statistical models for panel data Analysis of duration

Typical hazard curves

Declining (Infant mortality)

Constant (electronic equipment without attrition)

increasing (mechanical components with attrition)

Bath tub shape (human life)
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Statistical models for panel data Analysis of duration

The hazard of some distributions

The exponential distribution is a distribution ”without memory”:
F (t) = 1− e−λt and f (t) = F ′(t) = λe−λt :

h(t) =
λe−λt

e−λt
= λ

Weibull distribution: Hazard is a polynomial!

h(t) =
k

λ
(
t

λ
)k−1
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Statistical models for panel data The estimation of the survivor function

3 different estimators of the survival function

Parametric model, for example Exponential or Weibull, estimate
model parameters, compute Ŝ(t) from estimated parameters.
Handling of censored observations necessary!

Nonparametric model:

Life table method:
Subdivision of time axis into fixed, typically even spaced, time intervals
Kaplan-Meier (or Product Limit) estimate:
Observations are ordered with respect to ascending duration or
censoring times.
Intervals are given by time-spans between the ordered data. Even
spaced time intervals of the Life table method are regarded as
restrictive!
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Statistical models for panel data The estimation of the survivor function

The Kaplan-Meier estimate

- t1 ≤ t2 ≤ . . . ≤ tn ordered set n durations

- Ri = number of episodes under risk in time interval (ti−1, ti )

- Ei = number of episodes with termination in time interval
(ti−1, ti )

- ri = Ri−Ei
Ri

estimated risk of survival in time interval (ti−1, ti )

-
Ŝ(t) =

∏
ti≤t

ri = r1 × r2 × . . .× ri

- Ŝ(t) is a monotone decreasing step function that is constant
on the intervals (ti−1, ti ).

- The largest time value with defined Ŝ(t) is tmax = maximum
over all durations and censoring times.
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Statistical models for panel data The estimation of the survivor function

A numerical example

Data with censorings (indicated by +):
4,4,5+,6,7,7,7+,7+,9,12,12,14+,17,17,23+

i ti Ei Ci Ri Ŝ(ti )

1 4 2 0 16 1 · 14
16 = 0.8750

2 5 0 1 14 14
16 ·

14
14 = 0.8750

3 6 1 0 13 14
16 ·

12
13 = 0.8077

4 7 2 2 12 0.8077 · 10
12 = 0.6731

5 9 1 0 8 0.6731 · 7
8 = 0.5889

6 12 3 0 7 0.5889 · 4
7 = 0.3365

7 14 0 1 4 0.3365 · 4
4 = 0.3365

8 17 2 0 3 0.3365 · 1
3 = 0.1122

9 23 0 1 1 0.1122 · 1
1 = 0.1122
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Statistical models for panel data The estimation of the survivor function

The resulting Kaplan-Meier Plot

Beispiel

Helga Wagner Lebensdauermodelle WS 2007 73
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Statistical models for panel data The estimation of the survivor function

The use of Kaplan-Meier Plots

The main use of Kaplan-Meier Plots is the comparison of survival
curves between groups (or strata), for example comparison of treated
vs control.

The Log-Rank test is the standard test of group comparisons. It tests:

H0 : S1(t) = S2(t) vs. H1 : S1(t) 6= S2(t)

The test bases on a comparison of observed ranks with the ranks that
are expected under the NULL-hypothesis.

Extensions to k > 2 groups are possible
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Statistical models for panel data The estimation of the survivor function

The SAS-code

Survival time of HIV-patients

Variables:
TIME: Survival time in months
CENSOR: 1:deceased, not censored; 0: censored
DRUG: Drug consumption (1:yes; 0:no)
AGE: Age at start of the study

Generation of the Kaplan-Meier plots

ODS GRAPHICS ON;

PROC LIFETEST DATA=hmohiv PLOTS=(s);

TIME time*censor(0);

RUN;

ODS GRAPHICS OFF;
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Statistical models for panel data The estimation of the survivor function

Plot of a survival functions
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Statistical models for panel data The estimation of the survivor function

Local confidence limits

An estimate of the variance of Ŝ(t) is given by the Greenwood
formula:

V̂ar(Ŝ(t)) = Ŝ(t)2
∑

t(i)≤t

Ei

Ri (Ri − Ei )

The local confidence interval at time t is given by:

Ŝ(t)± z1−α/2 ·
√
V̂ar(Ŝ(t))

SAS code:

ODS GRAPHICS ON;

PROC LIFETEST DATA=mysas.hmohiv plots=survival(cl);

TIME time*censor(0);

STRATA drug; RUN;

ODS GRAPHICS OFF;
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Statistical models for panel data The estimation of the survivor function

Comparison of the survival functions
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Statistical models for panel data Estimation of the hazard function

Different Hazard models

Parametric model, for example Exponential or Weibull, estimate
model parameters, compute ĥ(t) from estimated parameters.
Handling of censored observations necessary!

Nonparametric model: the semi-parametric of Cox

h(t, x) = h0(t)exp(x′β)

where h0(t) is an unrestricted baseline hazard function
(nonparametric part). exp(βpxp) displays the effect of covariate xp on
the hazard function (parametric part).
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Statistical models for panel data Estimation of the hazard function

Proportionality of Hazard rates

Proportionality of the Hazard rates h(t, x1), h(t, x2) for 2 individuals with
covariates x1, x2:

h(t, x1)

h(t, x2)
=

h0(t)ex1β

h0(t)ex2β
= e(x1−x2)β

Therefore the resulting Hazard curves are proportional (not necessary
parallel!)

Cox-Modell References

Analyse von Lebensdauern

Michael Höhle1

1Institut für Statistik
Ludwig-Maximilians-Universität München

Analyse von Lebensdauern
WiSe 2009/10

17. Veranstaltung – 16. Dezember 2009

Michael Höhle Analyse von Lebensdauern 1/ 17

Cox-Modell References

Kapitel 3: Regressionsmodelle für Survivaldaten (cnt’ed)

1 Das Proportional-Hazards Modell von Cox
Das Modell
Partial-Likelihood-Inferenz für das Cox-Modell

Michael Höhle Analyse von Lebensdauern 2/ 17

Cox-Modell References

3.2.1 Cox-Modell

Das Modell von Cox (1972)

Multiplikatives Hazardraten-Modell

λ(t, x) = λ0(t) exp(x′β) = λ0(t) · exp(β1x1) · . . . · exp(βpxp)

Dabei ist

λ0(t) Grundhazardrate, Baseline-Hazardrate.;
identisch für alle Individuen; wird nicht spezifiziert,
als Nuisance-Parameter betrachtet

x′β enthält keine Konstante (steckt in λ0(t)), d.h.
x′β = β1x1 + · · ·+ βpxp

Das primäre Interesse besteht in der Schätzung der Effekte β.

Michael Höhle Analyse von Lebensdauern 3/ 17

Cox-Modell References

Proportionalität der Hazardraten
Charakteristische Eigenschaft des Cox-Modells:
Proportionalität der Hazardraten λ(t, x1), λ(t, x2) für 2
Individuen mit Kovariablen x1, x2.
Es gilt

λ(t, x1)

λ(t, x2)
=
λ0(t)

λ0(t)
· exp(x′1β)

exp(x′2β)
= exp((x1 − x2)′β)⇔

log λ(t, x1)− log λ(t, x2) = (x1 − x2)′β

Dadurch entsteht ein paralleler bzw. proportionaler Verlauf

t

λ(
t, 

x)

0.0 0.2 0.4 0.6 0.8 1.0

λ(t, x1)
λ(t, x2)

Michael Höhle Analyse von Lebensdauern 4/ 17
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Statistical models for panel data Estimation of the hazard function

The SAS code for the Proprotional Hazard model

Have drug use and age an effect on the hazard rate of the HIV survival
time?

proc phreg data=mysas.hmohiv;

model time*censor(0)=age drug;

run;

Note, the values after variable censor indicate Right-censored spells.
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Statistical models for panel data Estimation of the hazard function

Testing the proportionality of the model

Check of the proportionality assumption by an extra interaction term
of the covariate with log(t). The interaction is computed for every
time of event.
This is automatically done by the PROC PHREG.

Example:

proc phreg data=mysas.hmohiv;

model time*censor(0)=age drug drugtime;

drugtime=drug*time;

run;
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Statistical models for panel data Estimation of the hazard function

Output of the survival function

SAS code:
BASELINE OUT=SAS-data-set COVARIATES=SAS-data-set
SURVIVAL=s;
Calculates for each covariate pattern listed in data set after the
COVARIATES statement the survival function. Values in the data set
after the OUT statement. The values of the survival function are
written under a variable named by ”s”

Example:

proc phreg data=mysas.hmohiv;

model time*censor(0)=age drug ;

baseline out=test covariates=mysas.hmohiv survival=s;

run;
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Statistical models for panel data Estimation of the hazard function

Literature & References

Lawless. J.F. (2003): Statistical models and Methods for Lifetime
Data, Second Edition, Wiley, New York.

Allison, P. (1995): Survival Analysis using SAS, SAS Institute, Cary,
NC. USA
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Design-based estimation of population totals and proportions
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning (1/3)

A sample s is taken from a finite universe U

The sampling follows a probability distribution over the set of possible
samples. Thus S is a random set with realisation s and
Pr(S = s) = p(s).

For each unit k ∈ U the selection is indicated by a variable Ik :

Ik =

{
1, if k ∈ s;
0, else .

Inclusion probabilities Pr(Ik = 1) = Pr(k ∈ s) = πk

Twofold inclusion probabilities
Pr(Ik = 1, Ij = 1) = Pr(k , j ∈ s) = πk,j

Ulrich Rendtel (FU Berlin) Panel surveys 78 / 225



Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning(2/3)

Characteristic of interest of unit k yk is not a random variable!

Population totals ty =
∑

U
yk are to be estimated by sample s.

The π-estimator of ty : t̂y =
∑

U

Ik
πk
yk =

∑
s

1
πk
yk

Note: πk > 0 for all k ∈ U must hold.
The π-estimator is often called Horvitz-Thompson (HT) estimator.

The design weights dk = 1/πk .

Design-weighted sample results: t̂y =
∑

s
dkyk

In official statistics ”Weighting” is mostly associated with the use of a
linear estimator with weights for the observations.

Under random sampling t̂y is unbiased: Eπ(t̂y ) = ty

Notice: No statistical model for y is assumed! The only randomness is
the randomness of S!
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning (3/3)

The variance of the π-estimator:

V (t̂y ) =
∑∑

U
Cov(Ik , Il )

yk

πk

yl

πl

with Cov(Ik , Il ) = πk,l − πkπl and
∑∑

U
as a shorthand for∑

k∈U

∑
l∈U

The general task in the design-based approach is to find sampling
designs to keep the variance of the population estimates small.

Often the coefficient of variation
√
V (t̂y )/ty is used as quality

criterion.

The variance of t̂y has to be estimated on the basis of the sample:

V̂ (t̂y ) =
∑∑

s

Cov(Ik , Il )

πk,l

yk

πk

yl

πl
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (1/3)

Simple (SI) random sampling with or without replacement: the
classical urn experiment.

Fixed sample size n

πk = n
N πk,l = n(n−1)

N(N−1)

t̂y =
∑

s

N
n yk = Nȳs where ȳs is the mean of the y -values in s.

Variance of π-estimator V (t̂y ) = (N2/n)(1− n/N)σ2
y ,U

where σ2
y ,U is the population variance of the y -values in U.

Mind the difference to the model-based calculation of the variance of
Nȳs !

There are other sampling strategies than SI-sampling: sampling
proportional to size (PPS), Bernoulli sampling (BE) with unequal
sampling probabilities for the units.
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (2/3)

Stratified (ST) sampling: SI sampling within non-overlapping strata
Uh (h = 1, . . . ,H), for example cross-classification of regions with
age-sex groups. Sampling is independent, strata sizes Nh are known.

The strata sample sizes nh can be used to minimize the variance of the
population estimate (Neyman allocation): nh ∝ Nhσy ,Uh

where σy ,Uh
is the standard deviation of the y -values in stratum h.

The result is intuitively appealing as it proposes to allocate sample size
in those strata where the variation of the y -values is large. It marks the
end of ’representative sampling’ !
Population estimate: t̂y ,ST =

∑H
h=1 t̂y ,h

where t̂y ,h is the π-estimate of the y -total in stratum h.
Because of the independence of sampling between strata we have:
V (t̂y ,ST ) =

∑H
h=1 V (t̂y ,h)

Stratification can reduce the variance of population estimates
considerably in case of large between strata variance of y values!
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (3/3)

In cases where no register for the original units exists, for example
pupils, one switches to larger units, for example schools, with a
register. The schools form clusters of pupils.

Cluster (CL) sampling: all units of the selected clusters are selected.
The German micro census uses area sampling: all households of a
selected area form a cluster of households. Increases variance!
2-Stage (2ST) sampling: the clusters form the primary sampling units
(PSU’s). From each PSU a sample of secondary sampling units (SSU’s)
is selected.

Second stage sampling is independent between PSU’s.
Inclusion probabilities: πk = πiπk|i if SSU k lies in PSU i
where πi is the inclusion probability of PPS i and πk|i is the conditional
probability to include SSU k if PSU i is selected.
Often we have: πi ∝ Ni and πk|i = nSSU/Ni where Ni is the number of
SSU’s in PSU i .
This convenient for the field organisation (fixed sample size nSSU in
every PSU). The result is an equal probability sample which is not SI.
This selection scheme was used for the first wave of the SOEP
(Subsample A).
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Selection of samples with Proc Surveyselect

proc surveyselect data=mysas.universe

out=mysas.sample

method=SRS

sampsize=1000

stats ; * stats generates weights;

run;
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The HT-estimator with Proc Surveymeans

Proc surveymeans data=mysas.human_cap_sample(where=(svyyear=2000))

sum total=13119; * Total=number of elements in Univ;

var earnings ;

weight samplingWeight;

run;
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Literature & Software

About the Design-based Approach: Särndal, C.-E., Swensson, B.,
Wretman, J. (1992): Model Assisted Suvey sampling,
Springer, New York.

A practical textbook: Lehtonen, R; Pahkinen, E. (2004): Practical
Methods for Design and Analysis of Complex Surveys,
Second Edition, Wiley, New York.

Sampling of the SOEP: Haisken-DeNew, J.; Frick, J. (Eds.) (2005)
Desktop Companion to the German Socio-Economic Panel
(SOEP), Download under:
http://www.diw.de/en/diw 02.c.222846.en/desktop companion overview.html

SAS Procedures: Proc SURVEYSELECT: Sampling from a frame.
Proc SURVEYMEANS: Estimation with Survey weights.
Proc SURVEYFREQ, SURVEYREG,
SURVEYLOGISTIC: Frequency, Regression and Logistic
Regression with survey data.
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (1/4)

Idea:

Step 1: Take a good prediction ŷk of yk on the basis of a covariate
vector xk .

B̂ =
(∑

s
dkxkx

′
k

)−1(∑
s
dkxkyk

)
Calculate ŷk = x ′kB̂ and the sample residuals ek = yk − ŷk k ∈ s

Step 2: Calculate the prediction total for U! Estimate the residual

total by
∑

s

ek
πk

Step 3: In order to calculate the prediction total one has to know the
total tx of the covariate vector∑

U
ŷk = t ′x B̂
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (2/4)

The GREG estimator can be written as:

t̂y ,GREG =
∑

U
ŷk +

∑
s

ek

πk

=t ′x B̂ +
∑

s
dk (yk − ŷk )

=t ′x B̂ + t̂y ,π − t̂ ′x ,πB̂

=t̂y ,π + (tx − t̂x ,π)′B̂

where t̂y ,π is the π-estimator of the y -total.
Thus t̂y ,GREG can be read as an correction of the π-estimator.
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (3/4)

Properties of the GREG

The GREG is asymptotically design unbiased!
Important: The unbiasedness holds whether or not the prediction
model is correct!
Therefore the Särndal et al. (1992) call this approach ”model
assisted” in contrast to ”model based”.

The GREG weights wk may be written as corrections of the design
weights dk :

wk = dkgk = dk (1 + x ′kλ)

where:

λ =
(∑

s
dkxkx

′
k

)−1
(tx − t̂x ,π)
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (4/4)

The variance of the GREG may be approximated by:

V̂ (t̂y ,GREG) =
∑∑

s

Cov(Ik , Il )

πk,l

gkek

πk

glel

πl

Notice: This is very similar to the variance formula of the π-estimate,
however the y ’s are replaced by the residuals.

If the y ’s are a linear combination of the covariate vectors x the
variance of the GREG is 0!

The GREG fulfills the calibration property:

t̂x ,GREG = tx
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Design-based estimation of population totals and proportions Model assisted estimation

The GREG estimator with Proc Surveyreg (1/2)

ods output estimates=mysas.total_predicted;

proc surveyreg data=mysas.human_cap_sample(where=(svyyear=2000)) total=13119 ;

class marital_status gender_cohort;

model earnings=gender_cohort marital_status /noint;

weight samplingweight;

output out=mysas.from_reg r=residual_reg;

estimate ’total of predicted values in 2000 population’

gender_cohort 331 1320 1892 2318 1208 77 156 1033 1689 1822 1177 96

marital_status 8591 3123 214 1191 /e;

run;

ods output close;
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Design-based estimation of population totals and proportions Model assisted estimation

The GREG estimator with Proc Surveyreg (2/2)

ods output statistics=mysas.HT_residuals;

Proc surveymeans data=mysas.from_reg sum total=13119;

var residual_reg ;

weight samplingWeight;

run;

ods output close;

data greg;

merge mysas.Total_predicted mysas.ht_residuals ;

T_GREG=estimate+sum ;

std_Greg=stddev ; std_REG=stdErr;

keep T_Greg std_greg std_Reg;

run; proc print; run;
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Design-based estimation of population totals and proportions Model assisted estimation

Extensions of the GREG

Ignore the residual term: ; ’synthetic’ estimators (model dependent);
small variances but possible bias.

Model inhomogeneity on subgroups: ; Small Area estimators, Fixed
and Random Effects Models for Areas (see Lehtonen/Pahkinen
textbook)

Departure from the linear model, for example use of the Logit model
(see Lehtonen/Pahkinen textbook)
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (1/3)

Modify the design-based weights in such a way, that with the modified
weights for some variables the known population totals are met:∑

k∈s
dkgkxk =

∑
k∈U

xk

where dk is the design weight, gk is the correction factor and Xk is a
vector with known population totals.

The calibration estimator for variable y is then given by:

T̂y ,CAL =
∑

k∈s
dkgkyk

The correction factors are not well-defined unless:

we have specified a distance function to the design-weights that is to
be minimized .
we have restricted the functional form of the correction factors gk
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (2/3)

General approach of Deville/Särndal (1992): Select wk = dkgk such that:∑
s
dkG

(wk

dk

)
= minimum

and G fulfills:

1 G (x) ≥ 0 is strictly convex

2 G (1) = 0, ⇒ 1 is the absolute minimum of G .

3 G ′(1) = 0, ⇒ 1 is the only absolute minimum of G .

4 G ′′(1) = 1, ⇒ G behaves until the second derivative like a parabola
1/2(x − 1)2
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (3/3)

The Lagrange multiplier gives:∑
s
dkG

(wk

dk

)
− λ′

(∑
s
wkxk −

∑
U
xk

)
Derivative for wk :

dkG
′
(wk

dk

) 1

dk
− λ′xk = 0

With F = (G ′)−1 one obtains:

gk = F (λ′xk )
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Design-based estimation of population totals and proportions Calibration

Calibration with quadratic distances

G (x) =
1

2
(x − 1)2 x ∈ R

G ′(x) = x − 1

F (u) = u + 1 u ∈ R

wk = dk (1 + x ′kλ)

This results in the GREG!
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Design-based estimation of population totals and proportions Calibration

Logarithmic distances

G (x) = x ln(x)− x + 1 x ∈ R
G ′(x) = ln(x)

F (u) = exp(u) u ∈ R

wk = dk exp(x ′kλ)

This results in the Iterative Proportional Fitting (IPF) solution!
(Fitting-to-Margins, Raking, ...)
Here xk is a vector consisting of groups of dummy variables like:

x ′ = (Agegroup-Dummy1, . . . ,Agegroup-DummyL,

= Edu.group-Dummy1, . . . ,Edu.group-DummyM

= . . .)
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Design-based estimation of population totals and proportions Calibration

The racking procedure (1/5)

2 discrete variables: A (r values) B (c values)
Joint distribution of A ? B unknown,

Marginal distr. of A known: Ni+ (i = 1, . . . , r)
Marginal distr. of B known: N+j (j = 1, . . . , c)

π-estimator of Nij :

N̂ij =
∑

sij

1

πk
where sij = subsample withA = i ,B = j

B
1 . . . c

1 N1+

A
... N̂ij

...
r Nr+

N+1 . . . N+c
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Design-based estimation of population totals and proportions Calibration

The racking procedure (2/5)

1. Step (Fit to A-margins):

Compute: N̂i+ =
c∑

j=1

N̂ij (Estimated total of A)

Compare:
Total

Estimate
=

Ni+

N̂i+

(i = 1, . . . , r)

Proportional correction factor for A:

Ñij =
Total

Estimate
N̂ij =

Ni+

N̂i+

N̂ij

guarantees
c∑

j=1

Ñij = Ni+ (i = 1, . . . , r)

Replace N̂ij by Ñij
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Design-based estimation of population totals and proportions Calibration

The racking procedure (3/5)

2. Step (Fit to B-margins):
Proportional correction factor for factor B:

Ñij =
Total

Estimate
N̂ij =

N+j

N̂+j

N̂ij

guarantees
r∑

i=1

Ñij = N+j (j = 1, . . . , c)

Replace N̂ij by Ñij

3. Step: Fit to A margins!

4. Step: Fit to B margins!

...
until Total

Estimate ≈ 1 holds for A and B.
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Design-based estimation of population totals and proportions Calibration

The racking procedure (4/5)

- For the solution N∗ij it holds:

N∗ij =
∑

sij

1

πk
αiβj =

∑
s

1

πk
gk

where

gk =

{
αiβj if A = i ,B = j

0 else

- x ′k = (δ1•k , . . . , δr•k , δ•1k , . . . , δ•ck )
where

δi•k =

{
1 A = i for unit k

0 else

δ•jk =

{
1 B = j for unit k

0 else
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Design-based estimation of population totals and proportions Calibration

The racking procedure (5/5)

The calibration constraint is fulfilled:∑
U
xk = (N1+, . . . ,Nr+,N+1, . . . ,N+c)′

∑
s

1

πk
gkxk =

( c∑
j=1

N∗1j , . . . ,

c∑
j=1

N∗rj ,
r∑

i=1

N∗i1, . . . ,
r∑

i=1

N∗ic
)′

= (N1+, . . . ,Nr+,N+1, . . . ,N+c )′ =
∑

U
xk
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Design-based estimation of population totals and proportions Calibration

Model assisted estimation vs Calibration

Statisticians are quite experienced in statistical modeling.

Statistical agencies are more familiar with the calibration idea. There
are some non-statistical benefits from calibration:

Calibration increases comparability across countries in European
surveys.
Calibration increases comparability across panel waves in a panel survey.

Negative weights may result from the GREG.

Extensive Fitting-to-Margins may result in large variations of the
sample weights.
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Design-based estimation of population totals and proportions Calibration

Literature

Review Article Särndal, C.-E. (2007): The calibration approach in survey
theory and practice, Survey Methodology, Vol. 33, 99–119
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Calibration in panels

Initial calibration: Initial wave.

Final calibration: Last wave.

Sequential calibration: First initial wave, then last wave. (Example:
ECHP)

Simultaneous calibration: First and last wave.

Longitudinal calibration: Simultaneous calibration + calibration on
known population changes (births, deceased persons, divorces)
(Example: German MC Panel)
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Use of linear panel models for prediction

Random and Fixed Effects models may be estimated from the panel
sample

However, the predictions for the whole population are in general not
feasible: ∑

U
ŷk =

∑
U

(x ′kβ + αk )
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

A simple example

yk,t = α0 + xk,tβ
′ + αk + εk,t t = 1, 2

and αk ∼ N(0, σ2
α) and εk,t ∼ N(0, σ2

ε )

Take ML estimator of α0, β, obtain α̂0, β̂

α̂k = ȳk − α̂0 − x̄k β̂

For k ∈ s calculate yk,1 − ŷk,1:

yk,1 − ŷk,1 = yk,1 − α̂k − α̂0 − xk,1β̂

= yk,1 − ȳk − (xk,1 − x̄k )β̂∑
U
ŷk,1 = (

∑
U
xk,1)β̂ +

∑
U
α̂k

However by model assumption
∑

U
α̂k = 0

⇒ Gain in precision over the cross-sectional estimator!
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (1/7)

Household context is important for many analyses (poverty defined
via household equivalence income) despite persons are the natural
units of longitudinal analysis

A simple example: persons i and j live in different households at wave
1 and move together in wave 2.
Inclusion probabilities in wave 1 for person i : πi and for person j : πj

Inclusion probability for persons i and j in wave 2:

P(i selected in wave 1 or j selected in wave 1 ) = πi + πj − πij

If i selected in wave 1 and j not selected in wave 1: πi known, πj and
πij often unknown!
⇒ unknown design inclusion probabilities in wave 2!
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (2/7)

A stupid rule: do not use information from the so-called ”non-sample”
persons, loss in efficiency!

A better alternative: Ii , Ij inclusion indicators wave 1 for i and j ;
0 ≤ λi ≤ 1 and λj = 1− λi fixed (!) numbers.

Compute: wi ,j = w(Ii , Ij ) = λi
Ii
πi

+ λj
Ij
πj

Then: E (w) = 1 ⇒ Use of weight w produces unbiased population
total estimates in wave 2 without knowledge of inclusion probability!

Selection of λ ?
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (3/7)

A famous rule (”Fair share”): w = average of all individual weights of
adult sample persons. number=nh,adult

individual weighti =

{
1/πi , if Ii = 1 (i.e. i is a sample person);
0, if Ii = 0 (i.e. i is not a sample person).

What is the corresponding λ–representation?

wh =
1

nh,adult

∑
i∈household h

Ii
πi

=
1

nh,adult

∑
i∈household h

Iidi
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (4/7)

A more formal approach:

U0,U1,U2, . . . ,Ut = Universe of persons at wave 0, 1, 2, . . . , t
s0 ⊂ U0 sample of persons with Ii = 1
y t

k = variable of interest for person k ∈ Ut

Total of interest: Ty t =
∑

k∈Ut y t
k

Design weights: di = 1/πi

Link function lj ,k : mapping U0 × Ut → R+ reflects tracing from person j
in wave 0 to person k in wave k.
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Link Functions

Redistribute initial weights di of i ∈ s0 onto k ∈ st .

Grafik 3

∑∈
= 0si iikk dlw

tsk ∈0si ∈

id

ikl
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Example: Link Functions

Typically defined from wave to wave:

NO WEIGHT SHARE

lik =

{
1 i identical to k
0 otherwise

EQUAL WEIGHT SHARE

lik =

{
1/Nh i in household h
0 otherwise

k lives in household h, size Nh.
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Example: Link Functions

NO WEIGHT SHARE
Grafik 5
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (5/7)

Usually link functions are constructed between persons j and k from
the populations Ut−1 and Ut

Connecting link functions:

l0,tik =
∑

j∈Ut−1
l t−1,t
jk

∑
i∈U0

l0,t−1
ij
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (6/7)

The estimator of Ty t :

T̂y t =
∑

k∈st
wky

t
k =

∑
k∈st

y t
k

∑
i∈s0

likdi

lik is to be known only for i ∈ s0 and k ∈ st

Convexity condition for the link : for all k ∈ Ut :
∑

i∈U0 lik = 1

E (T̂y t ) =
∑

k∈Ut

∑
i∈U0

likdiE (Ii )y
t
k

=
∑

k∈Ut
y t

k

∑
i∈U0

lik

=
∑

k∈Ut
y t

k
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (7/7)

Variance:

T̂y t =
∑

i∈U0
di Ii
∑

k∈Ut
liky

t
k =

∑
i∈s0

di ỹ
t
i

where ỹ t
i =

∑
k∈Ut liky

t
k can be seen as the “future” contribution y t

of person i ∈ U0 to the estimation of the total of Ty t .

V (T̂y t ) =
∑

i∈U0

∑
i ′∈U0

Cov(Ii , Ij )didi ′ ỹ
t
i ỹ

t
i ′

Variance estimation

V̂ (T̂y t ) =
∑

i∈s0

∑
i ′∈s0

Cov(Ii , Ij )

πi ,j
ỹ t

i ỹ
t
i ′
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Literature on weighting in household panels

Lavallée, P. (1995): Cross-sectional Weighting of Longitudinal Surveys
of Individual Households Using the Weight Share Method. Survey
Methodology, 21, 25-32.

Kalton, G., Brick, J. (1995): Weighting Schemes for Household Panel
Surveys. Survey Methodology, 21, 33-44.

Lavallée, P., Deville, J.-C. (2002): Theoretical Foundations of the
Generalised Weight Share Method. Proceedings of the International
Conference on Recent Advances in Survey Sampling 2002. Carleton
University, Ottawa.

Rendtel, U., Harms,T. (2009): Weighting and Calibration for
Household Panels, In: Lynn (ed.), Methodology of Longitudinal
Surveys, Wiley, New York, 265–286.
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Nonresponse in panel surveys Overview and some empirical results

Causes for nonresponse in surveys

Latest Compilation Book: Groves et al. (eds) (2002): Survey
Nonresponse, Wiley.

Groves, R. (1998): Nonresponse in Household Interview Surveys.
Wiley

Causes for nonresponse:

Invalid address (if selection via register)
No contact
Unable to respond
Unwilling to cooperate (last stage of sequential model)
Nonresponse on sensitive items
Nonresponse by design (Rotating out respondents, no tracing of
residential movers)
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition

Definition:

Successive nonresponse of

eligible persons/households

after start of the panel

This is not panel attrition:

Demographic losses

Identification of deceased persons
Identification of emigrants

Restricted statistical/software ability to analyze unbalanced panels

Ulrich Rendtel (FU Berlin) Panel surveys 123 / 225



Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the SOEP
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the ECHP
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the FIN ECHP (1/2)
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the FIN ECHP (2/2)
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Nonresponse in panel surveys Overview and some empirical results

Specific causes for panel attrition

Tracing failure of residential movers (but follow-up via telephone!)

Unwillingness to cooperate

Late unit nonresponse after previous item nonresponse
Change of the interviewer
”No time” at new residence / household (perception of household as
unit of survey)
Changes in the household composition may exhibit private details (for
example change of partner)

Changes in field work conditions

Change of interview mode (switch to telephone/CAPI/postal)
Changes in the questionnaire (SOEP wave 5: balance of assets)
Cumulative response burden
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Nonresponse in panel surveys Overview and some empirical results

Impact of some variables of ECHP attrition

Ulrich Rendtel (FU Berlin) Panel surveys 129 / 225



Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition:

Some theoretical results:

”Toward a theory of nonresponse in panel surveys” see Lepkowski,
J.;Couper, M. (2002): Nonresponse in the Second wave of
Longitudinal Household Surveys. In: Groves et al. (eds): Survey
Nonresponse, Wiley, 259–272.

Rendtel, U. (2002): Attrition in Household Panels: A Survey.
CHINTEX Working Paper No. 4, URL:
www.destatis.de/chintex/download/paper4.pdf

An econometric view: Verbeek, M.; Nijman, Th. (1996): Incomplete
Panels and Selection Bias. In: Matyas, L; Sevestre, P. (eds), The
Econometrics of Panel Data (Second edition), Kluwer, Dordrecht,
449–490.
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Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition

Some empirical results:

Unit Nonresponse in the ECHP: Behr, A., et al. (2005):Extent and
Determinants of Panel Attrition in the European Community
Household Panel. European Sociological Review, 21,489–512.

Unit Nonresponse in the Finnish subsample of the ECHP: Rendtel et
al. (2004): Report on Panel effects, CHINTEX Working paper 22,
URL: www.destatis.de/chintex/download/paper22.pdf

Item Nonresponse in the ECHP: Buck, N. (2004): Item Nonresponse
in the ECHP, In: Ehling/Rendtel (eds): Harmonisation of Panel
Surveys and Data Quality, Statistisches Bundesamt, Wiesbaden,
188–209.
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Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition

Some empirical results:

PSID: Fitzgerald et al.(1998): An Analysis of Sample Attrition in
Panel Data - The Michigan Panel Study of Income Dynamics. Journal
of Human Resources, 33, 251-299.
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (1/4)

Nonresponse is thought to:

Reduce case numbers: poor significance results

Distort sample distributions: Normal to Non-normal

Lead to invalid statistical inference: Bias and/or Variance

Initial nonresponse and panel attrition may cumulate in their
distorting effects

The last hypothesis can be checked for variables that are known from a
population register for all eligible persons, like in Finland!
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (2/4)

The direct approach in the Finnish subsample of the ECHP linked at
person level with records from the Finnish population register.

Merge the wave 1 gross–sample with information from the population
register files

In later waves ( 2–6) : Add information on dwelling units to calculate
household based figures

Compare results for 3 samples:

Full: gross–sample wave 1
RESP: net–sample wave 1
OBS: net–sample wave t
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (3/4)

Difference FULL – RESP : Effect of initial nonresponse

Difference RESP – OBS : Effect of panel attrition

Difference FULL – OBS : Total effect of nonresponse
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Initial bias fade-away (4/4)

Column ”Full”: Income Quintiles (Household equivalence Income)
defined for the gross-sample FIN-ECHP Wave 1 (=1996) with 14616
persons; Bounds in FIM: 57924, 73136, 88899, 114579
Column ”RESP”: Respondents of the first wave grouped according
above bounds
⇒ High incomes are under-represented in first wave.



Initial nonresponse has almost vanished! Is this a singular result?









Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (1/3)

Variable of interest Xt (t = 1, 2, . . .) follow a Markov chain with a
finite state space S = {1,2,..., k}
Transition matrix P between subsequent states time-homogeneous

There exists a steady state distribution π∗ of P: πt = Ptπ0 → π∗ for
t →∞
Initial nonresponse results in different starting distributions π0,FULL
and π0,RESP
Transition matrix P is the same for both samples!

Then πt,RESP → πt,FULL for t →∞
In a non-formal saying: the effect of the initial nonrespose ”fades”
away!
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (2/3)

The estimated transition matrix between income quintiles:

P =


72.2 18.3 5.4 2.5 1.6
20.6 49.9 21.4 6.3 1.9
6.9 16.7 49.1 23.2 4.1
4.5 5.1 16.3 57.1 17.0
4.0 2.6 4.0 16.0 73.4
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (3/3)
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (1/3)

The fade away hypothesis assumes:

P(Y4|R1 = 1,R2 = 1,R3 = 1,R4 = 1 ≈ P(Y4) (1)

P(Y4 = i |R1 = 1,R2 = 1,R3 = 1,R4 = 1)

=
∑

j3

P(Y4 = i |Y3 = j3,R1 = 1,R2 = 1,R3 = 1,R4 = 1)

× P(Y3 = j3|R1 = 1,R2 = 1,R3 = 1,R4 = 1)

=
∑

j3

P(Y4 = i |Y3 = j3,R1 = 1,R2 = 1,R3 = 1,R4 = 1)

× P(R4 = 1|Y3 = j3,R1 = 1,R2 = 1,R3 = 1)

P(R4 = 1|R1 = 1,R2 = 1,R3 = 1)

× P(Y3 = j3|R1 = 1,R2 = 1,R3 = 1)
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (2/3)

Transition behavior must not depend on the participation behavior:

P(Y4 = i |Y3 = j3,R1 = 1,R2 = 1,R3 = 1,R4 = 1) = P(Y4 = i |Y3 = j3)
(2)

Previous income state does not have an effect on the participation in the
present wave:

P(R4 = 1|Y3 = j3,R1 = 1,R2 = 1,R3 = 1) = P(R4 = 1|R1 = 1,R2 = 1,R3 = 1)
(3)

By these assumptions one gets:

P(Y4 = i |R1 = 1,R2 = 1,R3 = 1,R4 = 1)

=
∑

j3

P(Y4 = i |Y3 = j3)P(Y3 = j3|R1 = 1,R2 = 1,R3 = 1)
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (3/3)

A similar analysis for P(Y3 = j3|R1 = 1,R2 = 1,R3 = 1) gives:

P(Y4 = i |R1 = 1,R2 = 1,R3 = 1,R4 = 1)

=
∑
j3,j2

P(Y4 = i |Y3 = j3)P(Y3 = j3|Y2 = j2)P(Y2 = j2|R1 = 1,R2 = 1)

Finally we arrive at:

P(Y4 = i |R1 = 1,R2 = 1,R3 = 1,R4 = 1)

=
∑

j3,j2,j1

P(Y4 = i |Y3 = j3)P(Y3 = j3|Y2 = j2)P(Y2 = j2|Y1 = j1)

× P(Y1 = j1|R1 = 1)

where P(Y1 = j1|R1 = 1) is the starting distribution at wave 1.
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Nonresponse in panel surveys Empirical results for SILC

Some results on the speed of the fade away process (1/4)
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model based treatment of nonresponse MAR: a typology for missing values

Rubin’s likelihood approach

Distribution of interest: f (Y |θ) = f (Yobs ,Ymis |θ)

Joint distribution of Y and R: f (Y ,R|θ, ψ) = f (Y |θ)f (R|Y , ψ)

Likelihood of observed data:

f (Yobs ,R|θ, ψ) =

∫
f (Yobs ,Ymis |θ)f (R|Yobs ,Ymis , ψ)dYmis

Missing at random (MAR): f (R|Yobs ,Ymis , ψ) = f (R|Yobs , ψ)

Under MAR:

f (Yobs ,R|θ, ψ) = f (R|Yobs , ψ)

∫
f (Yobs ,Ymis |θ)dYmis

= f (R|Yobs , ψ)f (Yobs |θ)
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (1/4)

Covariates Xi always observed, Yi observed with missings indicated
by Ri = 1.

Model of interest: Yi = β′Xi + εi

MAR holds if: P(Ri = 1|Yi ,Xi ) = P(Ri = 1|Xi )

The selection of units is a simple random sample within the strata
formed by the covariates of the model.

Relationship to conditional independence: MAR ⇔ R ⊗ Y |X
The MAR condition cannot be tested from the observed data!

OLS on the basis of the complete units is consistent.
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (2/4)

Covariates Xi and Yi ,t=1 always observed, Yi ,t=2 observed with
missings indicated by Ri = 1.

Model of interest: Yi ,t=2 = β′t=2Xi + εi ,t=2

Ri depends on Yi ,t=1, for example by stochastic censoring model:
R∗i = γ′0 + γ′1Yi ,t=1 + δi

and Ri = 1 if R∗i > 0

Note that Yi ,t=1 does not enter the likelihood for βt=2, the model of
interest! In order to factorize the likelihood, one has to assume:

P(Ri = 1|Yi ,t=2,Xi ) = P(Ri = 1|Xi )

This does not hold unless εi ,t=1 ≡ 0:

R∗i = γ′0 + γ′1(β′t=1Xi ,t=1) + δi

”Missing on observables” (MO, Fitzgerald et al. 1998):
P(Ri = 1|Yi ,t=2,Yi ,t=1,Xi ) = P(Ri = 1|Yi ,t=1)

Ulrich Rendtel (FU Berlin) Panel surveys 154 / 225



model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (3/4)

2–wave panel (Continued)

Controversy: All observed variables should be included in the
likelihood (Rubin):

f (Yt=2|X ) =

∫
f (Yt=2|Yt=1,X )f (Yt=1|X )dYt=1

Then MO=MAR.
Note that we need note formulate a model for the response!

However, the above model equation does not look like a simple
regression model.

One has to formulate two models one is not interested in!
This is the consequence of Rubin’s approach to formulate a likelihood
of all observed variables
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (4/4)

Multiple Imputation (MI):
Estimate the distribution f (Yt=2|Yt=1,X ) from the observed wave 2
data.
For each unit i with value of yt=2 generate M imputations according
f (Yt=2|Yt=1,X )
Regress the yt=2-values (imputed and observed) on X . For each version

of the imputed values one obtains an estimate β̂
(m)
t=2 (m = 1, . . . ,M).

The MI-estimate of βt=2 is the mean of the β̂
(m)
t=2.

The multiple replication serves as a means the compute the correct

variance of the estimate. Let Vm the variance of β̂
(m)
t=2 and compute the

between variance B of the β̂
(m)
t=2 as:

B =
1

M − 1

M∑
m=1

(β̂
(m)
t=2 − β̄t=2)2

Then the variance of β̄t=2 can be estimated by:

V (β̄t=2) =
1

M

∑
Vm + B
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A× B × R contingency
table (1/5)

Analysis of transitions between the labour force states: Employed (E),
Unemployed (U), Not in the labour force (N).
Empirical analysis for the German MC: does not cover residential mobility!
Hypothesis: getting into employment may cause residential mobility.

A labour force state at time 1, B labour force state at time 1,

Quantity of interest: P(B|A)

A always observed, B observed for residential stayers R = 1

P(R = 1|B,A) =


P(R = 1|A) MAR;
P(R = 1|B) Restricted NMAR;
P(R = 1|A,B,A ∗ B) Unrestricted NMAR.
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP
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model based treatment of nonresponse Missing cells in contingency tables
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model based treatment of nonresponse Missing cells in contingency tables
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A× B × R contingency
table (2/5)

R = 1 R=0

B
A E U N

E n(EE ) n(EU) n(EN) n(E .)
U n(UE ) n(UU) n(UN) n(U.)
N n(NE ) n(NU) n(NN) n(N.)

The likelihood:

L =
∏

i∈R=1

P(A,B)P(R = 1|A,B)

×
∏

i∈R=0

∑
B

P(A,B)P(R = 0|A,B) (4)
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A× B × R contingency
table (3/5)

A standard NMAR model: Mobility depends on the last wave labour
force state B

(P(R|A,B) = P(R|B)) =

 1 2 3
1 2 3
1 2 3


Restrictions taken from the SOEP:

(P(R = 1|A = a,B = b)) =

 m m m
h m l or m
h h l


Observed cells: 3× 3 + 3 = 12, Unrestricted model parameters:
9(R|A,B) + 6(B|A) + 2(A) = 17, Model restrictions 6 (+ 1 for size of
sample in Loglinear Model), DF=0.
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model based treatment of nonresponse Missing cells in contingency tables

Bias correction (relative bias)

Brel =
P̂COR,SAMPLE(B|A)− P̂IMMO,SAMPLE(B|A)

P̂ALL,SOEP(B|A)− P̂IMMO,SOEP(B|A)

(1⇒ perfect correction, < 0⇒ ”correction” in the wrong direction, > 1⇒ correction beyond the correct value)

t Bias (Bias correction)/Bias
SOEP MC SOEP MC

Mod1 Mod2 NMAR Mod1 Mod2 NMAR Mod3 Mod3
Transition U → E

1997 1.98 0.62 0.20 -0.09 1.80 1.30 -0.37 0.49 0.46
1998 3.13 0.89 0.15 -0.07 1.78 1.09 -0.59 0.54 0.64
1999 3.91 1.03 0.07 -0.05 1.68 0.94 -0.61 0.87 0.69

Transition N → E
1997 1.10 0.82 0.52 0.32 2.26 1.78 0.21 0.55 0.52
1998 3.59 0.68 0.33 0.27 1.29 0.93 0.08 0.41 0.48
1999 4.56 0.85 0.35 0.28 1.26 0.89 0.01 0.67 0.69

Minor changes of NMAR nonresponse model can have dramatic
consequences for the bias reduction.

The standard NMAR model may even ”correct” into the wrong
direction or not even indicate a bias.

A standard weighting approach (Mod3) performs reasonably well (see
later).
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model based treatment of nonresponse Missing cells in contingency tables

The variances of different NMAR estimates

96 U → E N → E
to ALL IMMO alt1 alt2 alt3 ALL IMMO alt1 alt2 alt3

97 32.84 30.85 32.08 31.24 30.68 12.74 11.64 12.54 12.21 11.99
(1.49) (1.55) (1.83) (1.78) (1.60) (0.68) (0.68) (0.93) (0.87) (0.71)

98 34.92 31.79 34.55 32.26 31.57 19.66 16.07 18.48 17.26 16.89
(1.57) (1.72) (2.41) (2.16) (1.86) (0.86) (0.87) (1.71) (1.39) (0.95)

99 41.37 37.46 41.74 37.74 37.25 25.89 21.13 25.19 22.78 22.48
(1.66) (1.94) (2.46) (2.45) (2.24) (1.00) (1.06) (2.54) (1.84) (1.20)

alt1 : transitions U → N attributed to the low mobility group
alt2 : transitions U → N attributed to the mean mobility
alt3 : Main effect model for B
Standard deviations in parenthesis.
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A× B × R contingency
table (4/5)

Despite more data plus identifying restrictions twice as high standard
errors of estimates!

⇒ Flat likelihood!

Often substantive over-corrections!

Easy estimation with LEM Package (Freeware)
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model based treatment of nonresponse The LEM package

LEM: A useful program

LEM stands for: Loglinear and event history analysis with missing data
using the EM algorithm.

Free download + documentation from:
http://www.uvt.nl/faculteiten/fsw/
organisatie/departementen/mto/software2.html
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model based treatment of nonresponse The LEM package

LEM: Example 1 with SOEP data

P(R|A,B) = P(R|B)
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model based treatment of nonresponse The LEM package

LEM: Example 2 with SOEP data

Medium mobility group: A = 1(e) and B = 1, 2, 3(e, u, n) and
A = 2(u),B = 2(u)
High mobility group: A = 2(u),B = 1(e) and A = 3(n),B = 1, 2(e, u)
Low mobility group: A = 2(u),B = 3(n) and A = 3(n),B = 3(n)
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model based treatment of nonresponse Use of control variables

Control by age-groups

Age turned out to be the most important variable for regional mobility

Control for age by using a break down of tables with respect to
age-group
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model based treatment of nonresponse Use of control variables

Transition U → E N → E
ALL IMMO ∆ ALL IMMO ∆

Age≤30
97 52.43 52.12 0.31 25.98 24.16 1.82
98 55.09 56.02 0.93 37.86 33.33 4.53
99 65.69 64.05 1.64 50.07 46.28 3.79

Age>30
97 24.02 22.04 1.98 6.36 6.13 0.23
98 25.90 23.25 2.75 10.13 8.81 1.32*
99 30.28 28.78 1.50 12.72 11.28 1.44

Total
97 32.84 30.85 1.99 12.74 11.64 1.10
98 34.92 31.79 3.13 19.66 16.07 3.59
99 41.37 37.46 3.89 25.89 21.13 4.76

∆ = estimate of absolute Bias
Boldface figures: Significant differences P̂ALL − P̂IMMO

* indicates: the Hausman test did not apply because of negative difference
of variances
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model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (1/3)

There are often more observable variables for the explanation of
nonresponse than in the model of interest.

Yi outcome variable of interest, for example whether a change E ⇒ U
occurs or not.
Xi a set of covariates to explain P(Yi = 1|Xi ).
Zi a set of covariates to explain P(Ri = 1|Zi ). Some covariates of Xi

may also belong to Zi .
Missing on observables is needed: P(Ri = 1|Yi ,Xi ,Zi ) = P(Ri = 1|Zi )

Idea: Weight observations with Ri with πi = 1/P(Ri = 1) in the score
equation!

n∑
i=1

∂

∂θ
ln li (θ) = 0

⇒
n∑

i=1

Ri

πi

∂

∂θ
ln li (θ) = 0
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model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (2/3)

Example Transition of labour states explained by a Logit model.
Missingness due to residential mobility (NMAR!). Evaluation data
from the SOEP.

ln
P(Yi = 1|Xi )

1− P(Yi = 1|Xi )
= β′Xi

Score equation for the Logit model:

Uβ =
∑

i

Xi (Yi − P(Yi = 1|Xi )) =
∑

i

Xi (Yi − µi )

The weighted score equation is:

Uβ(π) =
∑

i

Ri

πi
Xi (Yi − µi )
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model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (3/3)

ER,Y |X ,Z

[∑
i

Ri

πi (Zi )
Xi (Yi − µi )

]

=EY |X ,Z

[∑
i

ER|Y ,X ,Z

(
Ri

πi (Zi )
Xi (Yi − µi )

∣∣∣∣Yi ,Zi ,Xi

)]

=EY |X ,Z

[∑
i

Xi (Yi − µi )
1

πi (Zi )
ER|Y ,X ,Z (Ri |Yi ,Zi ,Xi )

]

=EY |X ,Z

[∑
i

Xi (Yi − µi )
P(Ri = 1|Yi ,Zi ,Xi )

πi (Zi )

]

=EY |X ,Z

[∑
i

Xi (Yi − µi )

]
(original score equation!)
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model based treatment of nonresponse Weighting by inverse response probabilities

Bias reduction of Inverse Probability Weighting (IPW)

IR =
P̂IPW,MC(B|A)− P̂IMMO,MC(B|A)

P̂FULL,SOEP(B|A)− P̂IMMO,SOEP(B|A)

Ulrich Rendtel (FU Berlin) Panel surveys 176 / 225



model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (1/4)

1 Different factorizations:

P(R,Y ,X ) = P(R|Y ,X )× P(Y |X )× P(X )
P(R,Y ,X ) = P(Y |X ,R)× P(X |R)× P(R)

2 Pattern mixture models assume that the relationship between Y and
X is different for responders and non-responders. The sample before
nonresponse is a mixture. Nonresponse acts like a segregation of the
two populations.

3 However only one part of the mixture is observed! Therefore
identification restrictions are necessary.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (2/4)

The MAR condition and pattern mixture models:

f (y |x , r) =
f (y , x , r)

f (x , r)

=
f (r |y , x)f (y , x)

f (x , r)

=
f (r |x)f (y , x)

f (x , r)

=
f (y , x)

f (x)

= f (y |x)
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (3/4)

A useful routine in panel analysis: Subdivide the wave-1 respondents
according attrition in later waves:
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (4/4)

The idea is that attrition acts like a segregation of the wave-one
respondents.

Compare the estimation results for the FULL first wave sample with
the results for the permanent responders.

H0 states that conditioning on R is irrelevant.

Under H0 the restriction to the subsample of permanent responders
affects only the efficiency of the model estimate.
If the estimator on the basis of the full sample is efficient, one may
apply the Hausman test for the difference of the full and the
restricted sample.

If H0 is rejected, one would conjecture that attrition is de-mixing also
in future waves.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: A simulation study

Sample size N = 1000 with two groups of n1 (Proportion h1=2/3)
and n2 = N − n1 persons (Proportion h2 = 1/3)

No of waves: T = 10

Nonresponse rate in group 1 r1 = 0.05 and in group 2 r2 = 0.25

Lin. model for Yk with covariates X′k = (1;Xk,1;Xk,2;Xk,3)

Yk = X′kβ1 + εk for k = 1, . . . , n1

Yk = X′kβ2 + εk for k = n1 + 1, . . . ,N

Distribution of covariates and errors:

X1 ∼ N(45, 400) X2 ∼ N(10, 20) X3 ∼ B(0.51) εk ∼ N(0, 5)

Parameter for group 1: β′1 = (500, 1, 3, 50)

Parameter for group 2:
β′2 = (500, f ∗ 1, f ∗ 3, f ∗ 50) f ∈ {0.8, 0.9, 1.01, 1.05, 1.5, 2.0}
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Power of the Hausman test for
different values of f
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Power of the Hausman test for
different attrition rates (f = 1.2)
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: A note about the Hausman Test

The Hausman test needs the Variance of β̂FULL − β̂COMPLETE . It uses the
asymptotic representation:

V (β̂FULL − β̂COMPLETE ) = V (β̂COMPLETE )− V (β̂FULL)

In many cases this approximation is not positive definite and the Hausman
test statistic cannot be computed.
An obvious alternative may be to bootstrap the distribution of
β̂FULL − β̂COMPLETE . Form the bootstrap replications the variance of
β̂FULL − β̂COMPLETE is estimated. This bootstrap variance can be inverted
and used in the Hausman test.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Empirical Results

Some results for the ECHP User Data Base (UDB): Period 1994 –
1999 (6 waves)

Does panel attrition disturb comparative analysis, for example, the
ranking of the member states?

Details in: Behr et al. (2003): Comparing poverty, income inequality
and mobility under panel attrition. A cross country comparison based
on the European Community Household Panel. CHINTEX Working
Paper No.12, URL: www.destatis.de/chintex/download/paper12.pdf
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model based treatment of nonresponse Pattern Mixture models

Testing the poverty line

Ulrich Rendtel (FU Berlin) Panel surveys 186 / 225



model based treatment of nonresponse Pattern Mixture models

Testing the poverty rate
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model based treatment of nonresponse Pattern Mixture models

Testing the Gini coefficient
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model based treatment of nonresponse Pattern Mixture models

Testing the proportion of stayers in income position
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model based treatment of nonresponse Pattern Mixture models

Stability of rank position
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model based treatment of nonresponse Imputation

The rule of imputation

Inverse Probability Approach: Find a good model for Ri . Use only the
weighted complete cases.

Now: Find a good prediction for the missing values without
formulating a model for response (MAR)!

Analyse the full sample with the imputed values!
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model based treatment of nonresponse Imputation

Naive imputation in panels

In panel surveys there are some naive approaches for imputation:

Mean of observed values ( ⇒ biased level)

Conditional mean of observed values ( ⇒ biased variance)

Carry forward last observation (⇒ biased serial correlation)

Conditional mean plus error (Single imputation) (⇒ biased inference)

Solution: Multiple Imputation!
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model based treatment of nonresponse Imputation

Multiple Imputation (General 1/3)

Likelihood + Prior: E (θ|YOBS Expected posterior value

Complete data posterior:
p(θ|Yobs ,YMis) ∝ p(θ)L(θ|Yobs ,YMis)

Link observed and complete data posterior:

p(θ|YOBS ) =

∫
P(θ,YMIS |YOBS )dYMIS

=

∫
p(θ|YMIS ,YOBS )P(YMIS |YOBS )dYMIS

E (θ|YOBS ) = E [E (θ|YMIS ,YOBS )|YOBS ]

Var(θ|YOBS ) =
E [Var(θ|YMIS ,YOBS )|YOBS ] + Var [E (θ|YMIS ,YOBS )|YOBS ]
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model based treatment of nonresponse Imputation

Multiple Imputation (General 2/3)

Generate M independent draws:

Y
(m)
MIS ∼ p(YMIS |YOBS ) m = 1, . . . ,M

Estimate E (θ|Y (m)
MIS ,YOBS ) by θ̂(m)

Estimate E (θ|YOBS ) by θ̂ = 1/M
∑M

m=1 θ̂(m)

Estimate Var(θ̂|YOBS ) by:

Var(θ̂|YOBS ) ≈ 1

M

M∑
m=1

Vm +
1

M − 1

M∑
m=1

(θ̂(m)− θ̂)2 = V̄ +B

where Vm is the complete data posterior Variance of θ
calculated for the mth complete data set

An improved Variance estimation is:
Var(θ|YOBS ) ≈ V̄ + (1 + M)−1B
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model based treatment of nonresponse Imputation

Multiple Imputation (General 3/3)

Generation of Y
(m)
MIS ∼ p(YMIS |YOBS ) may be difficult! Use Markov

Chain Monte Carlo -technique!

Selection of a ”non-informative prior”!

Case of multidimensional normal data: Package NORM or SAS
routine PROC MI

SAS: Proc MIANAYSE computes the correct standard errors.

Problem: The imputer and the analyst use different models!

Recommendation: The imputer’s model should the contain the model
of the analyst.

Automatic sequential procedure MICE (Multiple Imputation
Conditional Expectation). See also Ragunathan’s IVEware Package
(Imputation and Variance estimation)

Up to now: No special approach or program for panels. Prediction of
level or change, serial correlation! MICE etc. use level models.
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model based treatment of nonresponse Imputation

Literature on Multiple Imputation

Schafer, J. (1997). Analysis of Incomplete Multivariate Data. New
York: Chapman and Hall.

Little/ Rubin (2002): Statistical Analysis with Missing Data, Second
Edition, Chapter 10, Wiley

Allison, P. (2002): Missing Data, Sage

General information on MI: www.multiple-imputation.com

Meng (1994): Multiple imputation inferences with uncongenial
sources of input (with discussion) Stat. Science, 10, 538–573.
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Model: Stochastic censoring destroys the Normal distribution of the
variable of interest. By value of the model one can make conclusions about
the Normal distribution.



model based treatment of nonresponse Sample Selection models

Sample selection models (1/3)

Regression analysis: X ,V always observed, dependent variable Y is
observed if R = 1:

Y = β′X + ε observed, if R∗ > 0 where

R∗ = γ′1X + γ′2V + δ

Normality assumption for residual terms(
ε
δ

)
= N

(
0,

(
σ2
ε ρσε

ρσε 1

))
Correction for the expected value:

E (Y |X ,V ,R = 1) = β
′
X + ρσε

φ(γ
′
1X + γ

′
2V )

Φ(γ
′
1X + γ

′
2V )
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model based treatment of nonresponse Sample Selection models

Sample selection models

φ/Φ (inverse Mill’s ratio) is an almost linear function.

Without V in R-eq. β is only identified from the non-linearity of φ/Φ.

The instrument variable V must have no impact on distribution of
Y |X but must have an impact on the distribution R|X . The
assumption of an a-priori zero coefficient of V is crucial for the
model!

MAR is equivalent to ρσε = 0

If the a-priori zero assumption is wrong, severe biases and wrong std.
errors may occur, Rendtel (1992). See also the critique of the
approach in Little/Rubin (2002, Chapter 15).

Ulrich Rendtel (FU Berlin) Panel surveys 201 / 225



model based treatment of nonresponse Sample Selection models

The Heckman 2-stage estimator

Response equation for wave 2 (or later), regression equation for wave
2 (or later), joint Normality for ε and δ. Covariates X and V from
wave 1 and always known.

Estimation by ML or Heckman’s two step procedure:
1 Estimate response Probit on the basis of wave 1 and calculate from γ̂

the estimated Mill’s ratio Ĥ = H(γ̂′1X + γ̂′2V )
2 Estimate the regression equation for all wave 2 respondents with Ĥ as

an augmented variable. Use OLS.

Use of the model for multi-period panels by collapsing attrition
intervals. X may become poor indicators for attrition.
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model based treatment of nonresponse Sample Selection models

Ridder’s (1990) multi-period extension of the sample
selection model

Yit = β′Xi ,t + µi + νi ,t 1 ≤ t ≤ T

R∗it = γ′1Xi ,t + γ′2Vi ,t + ξi + ηit 1 ≤ t ≤ T

ML estimation in Verbeek/Nijman (1992): For each person evaluation
of a twofold integral!

No such simple procedure as the Heckman procedure

Missing covariates may occur in case of time-dependent covariates.
Model is not suited for such a case.
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Design based treatment of nonresponse

Introduction
Statistical models for panel data

Linear models
Analysis of contingency tables
Analysis of duration
The estimation of the survivor function
Estimation of the hazard function

Design-based estimation of population totals and proportions
Elements of design-based reasoning
Model assisted estimation
Calibration
Design-based estimation in panel surveys

Nonresponse in panel surveys
Overview and some empirical results
The fade-away hypothesis of initial nonresponse in panel surveys
Empirical results for SILC

model based treatment of nonresponse
MAR: a typology for missing values
Missing cells in contingency tables
The LEM package
Use of control variables
Weighting by inverse response probabilities
Pattern Mixture models
Imputation
Sample Selection models

Design based treatment of nonresponse
The general design-based treatment of nonresponse
Calibration under nonresponse
Calibration for attrition in a panel

Ulrich Rendtel (FU Berlin) Panel surveys 204 / 225
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General concepts

Response set r ⊂ s; Response indicator Rk = 1 if unit k ∈ r .

Interpretation: r is sampled from s via Poisson sampling with
selection probabilities θk for unit k .
Response is independent across units and response probabilities
between units.

Response Homogeneity Groups (RHG): Population is divided into G
response homogeneity groups U1, . . . ,Ug , . . . ,UG .
Within group g the response probability is estimated by θk = mg/ng

for k ∈ Ug

where ng = number of s
⋂

Ug and mg = number of r
⋂
Ug

The corrected π−estimator is defined by:

t̂π∗ =
∑

U

Rk Ik
θkπk

yk =
∑

r

1

θkπk
yk
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General concepts

Properties of t̂π∗ in the framework of 2-stage sampling.
Realisation of random sample s according to design.
Realisation of Poisson sampling r from s.

Bias estimation:

B(t̂π∗) = ED [ER(T̂y |s)]−
∑

U
yk

If the correct response probabilities are used, B(t̂π∗) = 0
Important note: Under nonresponse the design-based approach has
lost its ability to produce unbiased estimates independent from a
statistical model!
Bethlehem (200x) has derived the following Bias approximation B̃,
see also Lundström/Sarndal (2005,pp 106–108) :

B̃ = −
∑

U
(1− θk )yk

B̃ can be interpreted as a population covariance of the response
probabilities θk and yk .
The approximation gets better with increasing size of r .
Variance estimation:
V (t̂π∗) = VD [ER(t̂π∗ |s)] + ED [VR(t̂π∗ |s)] = V1(t̂π∗) + V2(t̂π∗)
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Calibration levels under Nonresponse (1/2)

So far calibration has been a tool for variance reduction. In the case of
nonresponse it can be also a tool for bias reduction. Form of corrected
weights wk = dkgk

A1 Calibration to sample:
∑

r
gkxk =

∑
s
xk

A2 Calibration to population estimates:∑
r
dkgkxk =

∑
s
dkxk

A3 Calibration to population totals:
∑

r
dkgkxk =

∑
U
xk

B1 ML-estimation of θk :
∑

r
xk =

∑
s
g−1

k xk

g−1
k = ex ′k λ̂/(1 + ex ′k λ̂) = θ̂k with score function of the Logit

model for the Rk explained by xk :
∑

s
(Rk − θ̂k )xk = 0
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Calibration levels under Nonresponse (2/2)

Functional restriction of gk = θ̂−1
k = f (x ′k λ̂) with f known monotonic

real-valued function and λ̂ chosen to fill calibration constraints.

Standard calibration: f (x ′k λ̂) = 1 + x ′k λ̂ and (A3)

f (x ′k λ̂) = x ′k λ̂ and (A1) yields: λ̂ = (
∑

s
xkx
′
k )−1(

∑
s
xk −

∑
r
xk )

Raking weights: f (x ′k λ̂) = e−x ′k λ̂ and (A3)

The post-stratification estimator is obtained by:
Population is divided into G response homogeneity groups
U1, . . . ,Ug , . . . ,UG . xk = (I1(k), . . . , IG (k)) indicates for each unit
k ∈ U the membership to the response groups.
With f (x ′k λ̂) = x ′k λ̂ and (A1) or (B1) one obtains: gk = ng/mg for
k ∈ Ug

where ng = size of s
⋂
Ug and mg = size of r

⋂
Ug
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A general calibration estimator

Lundström/Särndal discuss a general calibration estimator

T̂GCAL =
∑

r
wkyk :

wk = dα,kgk gk = 1 + λ̂′zk

where:

1 dα,k initial weights, often a general correction of nonresponse by
setting dα,k = (n/m)dk

2 zk vector of instrument variables, often zk = xk

3 Calibration to U and to population estimates:

X = (
∑

U
x1

k ,
∑

s
dkx

2
k )′

4 λ̂ = (X−
∑

r
dα,kxk )′(

∑
r
zkx
′
k )−1
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A bias approximation

The bias of can then be approximated by B̃, see Lundström/Sarndal
(2005,pp 106–108) :

B̃ = −
∑

U
(1− θk )eθ,k

where:

eθ,k = yk − x ′kBU,θ BU,θ =
(∑

U
θkzkx

′
k

)−1 ∑
U
θkzkyk

B̃ can be interpreted as a population covariance of the response
probabilities θk and some regression residuals eθ,k .

The approximation gets better with increasing size of r .
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Conclusions from bias approximation

Bias is independent from sampling design!

Whether we calibrate by some vector x up to population or to
population estimates, does not affect the size of the bias
approximation.

B̃ = 0, if there is some vector λ with:

1

θk
= φk = 1 + λ′zk for all k ∈ U

because we then have: 1− θk = θkλ
′zk for k ∈ U. Therefore:∑

U
(1− θk )eθ,k = λ′

∑
U
θkzk (yk − x ′kBU,θ) = 0

B̃ = 0, if yk = β′xk for all k ∈ U. Because then eθ,k = 0 for all k ∈ U
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Selection of auxiliary information

See Chapter 10 of Lundström/Särndal (2005) for an extended discussion!

Principle 1 The auxiliary vector should explain the inverse response
probability.
Keeps bias small for all study variables. May inflate the
variance of the weights and hence the variance of the
estimates. Often bias is regarded as more important in survey
sampling!

Principle 2 The auxiliary vector should explain the main study variables.
Specific weights might be a good idea, although unusual in
practice.

Principle 3 The auxiliary vector should identify the most important
domains.
Regional stratification often unknown to users.
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Further remarks on calibration

More is better ?.
But avoid: Negative weights, extreme variation of weights.

Number of constraints may depend on the sample size of the survey.

Software: CLAN, CALMAR (SAS based macros, not very user
friendly!)

A variance estimator of the general calibration estimator is given
Lundström/Särndal (2005, p.136)
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Calibration for nonresponse in a panel

Initial wave: similar to every cross-sectional survey, but calibrations
are transferred to later waves.

Later waves: the number of possible control variables ( at the level of
the previous sample) is very large!

Variables like ”Change of the interviewer” are probably unrelated to
many variables of interest, but a powerful for the prediction of
attrition.

Lagged metric variables are powerful predictors for the current value.

The process of participation in a panel survey is sequential, wave by
wave. Variance formulas for such multi-phase surveys are intractable.
Need to variance estimation by other means!

Lump together different waves: ⇒ reduces number of stages. For
example, in PSID: attrition after 5 years.
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Initial Calibration

Properties:

T̂ IC
y0 =

∑
i∈s0 dig

0
i y

0
i

regular calibration ; variance estimator known

T̂ IC
y t =

∑
k∈st y t

k

∑
i∈s0 likdig

0
i

– variance sources: s0 , g0
i = 1 + x0

i
′λ̂0

λ̂0 via C (λ̂0) = Tx0 −
∑

i∈s0 dig
0
i x

0
i = 0

– separation via Taylor: T̂ IC
y t (λ̂0) ≈ T̂ IC

y t (λ0) + H1(λ̂0 − λ0)

0 ≈ C (λ0) + H2(λ̂0 − λ0)

– linearised version : T̂ IC
y t ≈ T̂ IC

y t (λ0)− H1H
−1
2 C (λ0)

depends only on s0
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Future contributions towards y t and x t that comes from person i ∈ U0:

ỹ t
i =

∑
k∈st

liky
t
k and x̃ t

i =
∑

k∈st
likx

t
k

Redistribution of weights dig
0
i for i ∈ s0 onto the persons k ∈ st according

to the follow-up rule: wC
k =

∑
i∈s0 likdig

0
i :

T̂ IC
y t =

∑
k∈st

y t
kw

C
k



Taylor linearisation leads to:

T̂ IC
y t = Tx0

′B̂ IC +
∑

i∈s0
di ẽ

IC
i

with

ẽ IC
i = ỹ t

i − x0
i
′
B̂ IC

B̂ IC = (
∑

i∈s0
dix

0
i x

0
i
′
)−1(

∑
i∈s0

dix
0
i ỹ

t
i )

Interpretation: regression of the future contributions ỹ t
i versus the values

x0
i at wave 0.

Variance estimator:

V̂ (T̂ IC
y t ) =

∑
i∈s0

∑
i ′∈s0

(π−1
i π−1

i ′ − π
−1
ii ′ )g0

i g
0
i ′ ẽ

IC
i ẽ IC

i ′
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Final Calibration

Final Calibration

Grafik 7
Grafik 8

g t
k :

∑
k∈st wkg

t
ky

t
k = Tx t

T̂ FC
y t =

∑
k∈st wkg

t
ky

t
k
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Taylor linearisation leads to:

T̂ FC
y t = Tx t

′B̂FC +
∑

i∈s0
di ẽ

FC
i

with

ẽFC
i = (ỹ t

i − x̃ t
i
′B̂FC )(

∑
k∈st

likg
t
k )

B̂FC = (
∑

k∈st
wkx

t
kx

t
k
′)−1(

∑
k∈st

wkx
t
ky

t
k )

Interpretation: regression of the future contributions y t on x t for the
persons i ∈ s0.
Variance estimator:

V̂ (T̂ FC
y0 ) =

∑
i∈s0

∑
i ′∈s0

(π−1
i π−1

i ′ − π
−1
ii ′ )ẽFC

i ẽFC
i ′
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Two adjustment factors g0
i for i ∈ U0 and g t

k for k ∈ Ut . With
wC

k =
∑

i∈s0 likdig
0
i we have:

T̂ IFC
y t =

∑
k∈Ut

y t
kg

t
kw

C
k

Taylor linearisation leads to:

T̂ IFC
y t ≈ Tx t

′B̂t + Tx0
′B̂0 +

∑
i∈s0

die
IFC
i

Variance estimator:

V̂ (T̂ IFC
y t ) =

∑
i∈s0

∑
i ′∈s0

(π−1
i π−1

i ′ − π
−1
ii ′ )g0

i g
0
i ′e

IFC
i e IFC

i ′

with

e IFC
i = −x0

i
′B̂0 +

∑
k∈Ut

likg
t
k (y t

k − x t
k
′
B̂t)

B̂t = (
∑

k∈st
wkx

t
kx

t
k
′)−1(

∑
k∈st

wkx
t
ky

t
k )

B̂0 = (
∑

i∈s0
dix

0
i x

0
i
′)−1(

∑
i∈s0

dix
0
i

∑
k∈st

lik(y t
k − x t

k B̂
t))
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Further reading (1/2)
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