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Introduction

What is a Panel?

Wikipedia search for " Panel Data” : http://en.wikipedia.org
There are different panel units:

@ Persons: Newborns; entrants into educational system; entrants into
firms,entrants into unemployment, poverty, etc.

@ Households (unstable units!): poverty measurement at household
level; marriage, divorce, child-birth at household level

e Families (unstable units!): (Intergenerational) stability, time to first
child after marriage.

e Firms (unstable units!): Investments, R&D activities at firm level

e Employer/Employees files(unstable relationship): Employee data at
individual level

e Towns, states: aggregates, (international) comparisons
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Panel data
From'YWikipedia, the free encyclopedia
IPEDIA
+ Encyclopedia In statistics and econometiics, the term panel data rsfers to two-dimensional data. In marketing, panef data refers to data collected at the point-of-sale (alsa called scanner dats)

Data are broadly classified according to the number of dimensions. A data set containing obsenvations on a single phenomenon observed over multiple time periods is called time series. In
e time series data, both the vaiues and the ordering of the data points have meaning, A data set containing observations on multiple phenomena observed at a single point in time is called

e crose-sectional. In crose-sectional data sets, the vaiues of the data points have meaning, but the ordering of the data points does not. A data set containing observations an muliple
d content phenomena observed over multiple time periods is called panel data. Altematively, the second dimension of data may be some other than time. For example, when there is a sample of
events
it groups, like siblings or families, and several observations from every group, the data is panel data. Whereas time series and cross-sectional data are both one-dimensional, panel data
sets are two-cimensional.
Data sets with more than two are typically called muk pane! data
sikipedia
Jnity portal Contents [nide]
changes 1 Example
us 2 Data sets which have a panel design
donation

3 Data sets which have a multi-dimensional panel design
4 References

55eealsn

& External links

Search

Example [edit]

s here balanced panel: unbalanced panel:
'ﬁb‘:“ﬂ% persnr year income age Sex persnr year income age Sex
pages 1 2003 1500 27 1 1 2003 1500 27 1
e version 1 2004 1700 28 1 1 2004 1700 28 1
e 12005 2000 29 1 2 2003 2100 41 2
e 2 2003 2100 41 2 2 2004 2100 42 2

2 2004 2100 42 2 2 2005 2200 43 2

2 2005 2200 43 2 3 2004 3000 35 1

In the example above, two data sets with a two-dimensional panel structure are shown. Individual characteristics (ncome, age, sex) are collected for different persons and difierent years
In the left data set two persons (1, 2) are observed over three years (2003, 2004, 2005). Due o the fact that esch person is ohserved every year, the lefi-hand data set is called an
balanced panel, whersas the data set on the right hand is called an unbalanced panel, since Person 1 is not obsemed in year 2005 and person 3 only in 2004

Data sets which have a panel design [edit)

= German Socio-Economic Panel (SOEF)
= Household, Income and Labour Dynamics in Australia Suwey (HILDA)



Introduction

Information on panels from the internet

@ List of Panel projects: http://www.paneldata.eu
@ Mentioned in the course:
o ECHP (CHINTEX project):
http://www.destatis.de/CHINTEX/
e SOEP:
http://www.diw.de/en/soep
e German Micro Census Panel:
http://www.forschungsdatenzentrum.de/bestand /mikrozensus-panel /
@ European Union Statistics of Income and Living Conditions
(EU-SILC):
http://epp.eurostat.ec.europa.eu/portal /page/portal /microdata/eu_silc/
e National Education Panel Survey (NEPS):
http://www.uni-bamberg.de/neps/
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PanelData

Haome
- Europe

Morth america
Asia/Oceania
- Transcontinental
Fanelhiz

Tools

Asbout the author

Cantact

World Panel Data Sets for Econamics Researchers
* Europe:
- [BE] BSBH / Belgian Househaold Panel
- [BH] BaHPS / Bosnia and Herzegovina Househald Panel
- [CH] SHE / Swiss Household Panel
- [DE] SOEP / German Socio-Economic Panel (PanelWhiz supported!)
- [DE] 18B-BP / German Firm Panel fram 1AB-Nusrnberg
- [DE] 1AB-Matched / Matched Employer-Employese from 1AB-Nuernberg
- [DE] MZ Panel / German Mikrozensus Panel
= [HU] HHP ¢ Hungarian Househaold Fanel
= [LU] PSELL ¢ Lugembourg Househald Panel
- [RU] RLMS / Russian Longitudinal Monitoring Survey
- [SE] LINDA / Longitudinal Individual Data for Sweden

- [UK] BHPS / British Househald Panel Study

* Pan Europe:

- [EU] ECHP / European Community Household Panel
- [EU] EPAG / European Panel Analysis Group
- [EU] CHINTEX / ECHP User Group

@ 2006 Dr. John P. Haisken-Delew, Essen, Germany



Introduction

Formats of panels

e Simple panel: unlimited participation (from the cradle to the grave),
all household panels.

@ Cohort sample: Sample from selected cohorts with unlimited
participation (NEPS)

@ Rotation panel: fixed, limited participation duration, for example 4
waves (EU-SILC), German MC Panel, all labour force surveys (LFS)

@ Split panel: Simple panel + series of independent cross-sections
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Introduction

Selection strategies

@ Selection from register frame: known individual identifiers, possibility
to use stratified sampling, known selection probabilities, automatic
tracing.

@ Selection from access panel (mostly commercial use): known
individual identifiers, possibility to use stratified sampling, mostly
quota sampling, automatic tracing.

@ Multi-stage sampling from population: unknown individual identifiers,
stratified sampling, known design selection probabilities, tracing only
if intended.
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Introduction

Follow-up rules

@ No follow-up in case of residential mobility (Area sampling): save field
costs

o Follow-up of residential movers via telephone mode.

@ Follow-up of only first wave panelists (" Sample persons”) (PSID,
ECHP, EU-SILC, BHPS, ....)
Consequence: loss of all "Non-sample persons” who separate from
"sample persons”.

o Follow-up of all interviewed persons in households.
Consequence: Additional information about household nets,
over-sampling of persons who live in households with fusions,
possibility of exploding sample size. (SOEP)

@ Follow-up of firms in case of fusions, change of branch, etc. even
more complicated.
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Introduction

Refreshment samples (1/2)

@ Inclusion of new units entering the population: start-ups (firms),
newborns, immigrants.

e Sampling of population gains feasible with register (otherwise not).

o Immigrant samples in the SOEP: Cumulation of households with
immigrants after the first wave of the SOEP (1984) by screening
interviews. Over-sampling of mixed households. (Mainly immigrants
from eastern Europe after the fall of the "iron curtain” (1989).

o Sample of newborns taken from the panel parents (easy to manage in a
household panel). Advantage: Intergenerational analysis becomes
possible.
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Introduction

Refreshment samples (2/2)

@ Start of a "fresh”second panel in order to include population gains,
increase sample sizes and counteract panel attrition (SOEP2
(Subsample F) starting in wave 2000) Over-sampling of persistent
population.

@ Inclusion of a new cohort

@ Selective sample to counteract panel attrition: selection of "statistical
twins” from an access panel.
Correction of cross-sectional distributions at best. Statistical
properties not clear.
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Introduction

Relationship of Panel Analysis and Time Series Analysis

Number of units: N ; Number of points in time T
@ Panel analysis: N large and T small.
@ Time series analysis: N small and T large.
@ 2-dim asymptotics :
o limN/T — o0

o limN/T —0
o limN/T — const
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Introduction

What are the aims of panel analysis?

e Estimation of statistical models (" Model based approach”):

o Causal effects: Change of X causes change of Y (before and after
treatment measurement)

o Variation of growth curves (for example in nutrition surveys)

o Duration of episodes (for example duration of unemployment)

o Transitions between states (for example labour force states in
successive years)

@ Population counts (Inclusion probabilities according to a sampling
design (" Design based approach”) :

o Number of persons with specified longitudinal profiles (for example,
persons in persistent poverty)

o Separation of gross and net change (Gross change = flows between
labour force states, net change = change of marginal distribution over
labour force states)

e Trend analysis: trends in the marginal population counts over panel
waves.

Ulrich Rendtel (FU Berlin) Panel surveys 14 / 225



Introduction

Poverty Analysis from Finish ECHP (1/2)

Table 4: Register and survey based estimates of inequality and
poverty in 1995 and 1999
1995 1999
Survey Register Survey Register

Measures of inequality

- d90/d10 decile ratio 292 2.58 323 2.86

- Coefficient of variation  0.467 0.599 0.581 0.603

- Gini coefficient 0.238 0.226 0.265 0.251
Measures of poverty

- Head count ratio 0.071 0.045 0.084 0.059

- Poverty gap ratio 0.020 0.012 0.026 0.016

Note: Poverty line= 50 percent of median income.
Note: Survey weights used.
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Introduction

Poverty Analysis from Finish ECHP (2/2)

Table S: Transitions between the states ’Poor” and ”Non-poor”
for survey and register income. Time interval: 1995 and 1999.
(Un-weighted results)

Transitions in percent
Poor Non-Poor
Register

Poor 31.65 68.34
Non-Poor | 5.34  94.65
Survey

Poor 30.40 69.59
Non-Poor | 8.66  91.33
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Introduction

Need for meta information and data management

@ Information is typically stored in a wave-based scheme. Household
files + person files. Gross-sample information + net-sample
information (10 files per wave). The SOEP is a collection of about
250 single flat files that must be combined!

Web support of the SOEP: http://panelgsoep.de/soepinfo2009/

e Meta data: Link to " PanelWhiz": http://www.panelwhiz.eu
Charity ware (20 Euro): Generates Stata-Files for the management of
several household panels.
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Introduction

The 2 formats of panel files (1/2

The Compressed or

Output 18.5.1 Compressed Data Set

Flat-File Format:

Obs i cs num
1 1 CS1 -156058
2 2 €S2 030989
3 3 CS3 085054
4 4 CS4 018885
5 5 CS5 -004761

h Rendtel (FU Be

X1
0.40268
1.01950
060325

-0.64946
-0.79692

X2
0.91951
-0.04699
071154
1.23355
063445

X3
0.69482
-0.96695
066168
0.04554
-2.23539

X 4
-2.28899
-1.08345
-0.66823
-0.24996
-0.37629

X5

-1.32762
-0.05180
-1.87550

0.09685

-0.82212

X_6
1.92348
030266
055065

-0.92771
-0.70566

Panel surveys

Y1
230418
450982
4.07276
240304
368092

Y2
211850
373887
489621
148182
608917

Y3
2.66009
144984
3.90470
2.70579
3.08249

Y 4
-4.94104
-1.02996
1.03437
3.82672
4.26605

Y5
-0.83053
278260
054598
401117
3 65452

Y.
5.0138
1.73851
5.01461
1.9763
081821
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Introduction

The 2 formats of panel files (2/2)

The Long Format:
QOutput 18.5.2 Uncompressed Data Set

Obs |

[ RS RS SUR Y

Ulrich Rendtel (FU Berlin) Panel surveys

[ IS R Y FUR N1

X
0.40268
0.91951
0.69482

-2.28899
-1.32762
1.92348

Y
2.30418
211850
2.66009
-4.94104
-0.83053
5.01359

Cs

CS1
Cs1
Ccs1
CS1
CS1
Ccs1

NUM

-1.56058
-1.66058
-1.56058
-1.56058
-1.66058
-1.56058
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Introduction

Transformation into Long Format

proc panel data=mysas.flat;
flatdata indid=persnr tsname="t"
transform=(income satis tenure)
keep=(sex prgroup) /out=mysas.long;
id persnr t;
run;

Ulrich Rendtel (FU Berlin) Panel surveys
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Introduction

Useful descriptive statistics: Spaghetti Plots (1/3)

Trend plus large unit variation and large shocks:
Spaghetti-Plot

10 profiles with 10 obs

time

PID

i

Sigma_u = 6, Sigma_eps = 6
Ulrich Rendtel (FU Berlin) Panel surveys
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Introduction

Useful descriptive statistics: Spaghetti Plots (2/3)

Random slope plus moderate unit variation and moderate shocks
Spaghetti-Plot

Growth curves with random slope
10 profiles with 10 obs

3 — 4
8 — 9

2
7

o=

22 / 225

sigma_siope = 2
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Introduction

Useful descriptive statistics: Spaghetti Plots (3/3)

Data Sim;
Do PID=1 to é&n;

alpha=&sigma_alpha*rannor(0) ;

Beta_ran=&beta+ &sigma_beta*rannor(0); *Random slopes;
Do time=1 to &t;

u=&sigma_uxrannor (0) ; * Variance Components;
X=time+rannor (0); * x strongly correlated with time
y=alpha +&beta*x+ u; * RE model;
xx=x+&rho* alpha; * xx correlated with alpha;
yy=alpha+ &beta*xx +u; * FGLM inconsistent ;
YYY=alpha+ Beta_ran*x +u;* Mixed model with random slope;
output;

end;

end; run;

symbol I=j v=none r=100; * join obs, no values, 100 repli.;

Rro onlo data=<s1m D q .
Ulrich Rendtel (FU Berlin) Panel surveys 23 / 225




Introduction

Useful descriptive statistics: Spaghetti Plots (3/3)

/* Programm simulates panel with n units and t waves */

/* Setting of the parameters via Macro variables: */

%Let n=20; * Number of units;

%let t=10; Number of points in time;

%let sigma_alpha=3; Std. dev. of constants;

%let sigma_u=1; Std. dev. of shocks;

%let beta=2; Fixed effect of x;

%let rho=2; Covariance(X,alpha) inflation factor;
%let sigma_beta=1; Std. dev. of random slope of X;

* X ¥ X ¥ *

Ulrich Rendtel (FU Berlin) Panel surveys 24 / 225



Introduction

Literature and further reading on general aspects

o Kasprzyk et al. (eds)(1989): Panel surveys, Wiley, New York.

@ Lynn, P. (ed) (2009): Methodology of Longitudinal Surveys, Wiley,
New York
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Statistical models for panel data

Statistical models for panel data
Linear models
Analysis of contingency tables
Analysis of duration
The estimation of the survivor function
Estimation of the hazard function

Ulrich Rendtel (FU Berlin) Panel surveys 26 / 225



Statistical models for panel data Linear models

Two linear models : The Fixed Effects (FE) Model

Index for units i = 1,..., N, index for time t =1,..., T

Outcome variable Y;;: and covariate vector X; ; for each unit at each point
in time.

For each unit there is a specific constant o; 7= 1,..., N and for each
point in time there is a specific intercept 7; in the linear model:

Yit =0+ + 5/Xi,t + ujt

@ Interpretation: the model parameters refer explicitly to the units and
time periods. Hence we condition on these units and time periods.

@ Makes sense in the case of state panels, for example, all federal states
of the US or Germany or the member states of the EU.

@ The number of coefficients may increase considerably.

@ Alternative naming: Two-way model, because of the similarity with
the two-way ANOVA model. Factor 1 identifies the units and factor 2

identifies the points in time.
Ulrich Rendtel (FU Berlin) Panel surveys 27 / 225



Statistical models for panel data Linear models

Two linear models : The Random Effects (RE) Model

(1/2)

For each unit there is a specific variance component «; i=1,..., N that
is independent from the shock component u;; and follows a Normal
distribution with expectation 0 and variance o2

o

Vie=0a+v+ B Xie+aj+ uy

@ Interpretation: the model does not condition on the single units. It is
a model that refers to the whole population. However the time
periods are considered as fixed.

@ Makes sense in the case of household panels.

@ The number of coefficients increases by 1 (the variance 02) at the
price of a distributional assumption (Normality of the «;)
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Statistical models for panel data Linear models

Two linear models (3/3): The Random Effects (RE) Model

@ Alternative naming: Variance Component Model because for the
random component €; ; = a; + u;; we get:

o2 +02 ifi=jandt=s;

Cov(eit,€js) = 02, ifi=jand t#s;
0, i)
Matrix notation for Cov-matrix of ¢; = (€j1,...,€ 7)":
1 ... 1 1 0
Cov(e})) = o2 | : s .
1 ... 1 0 1

= 0211 +o°E
where 1 is a row vector of T ones and E is the unit matrix of
dimension T.
@ If time dependence is omitted: One-way model Random Effects model.
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Statistical models for panel data Linear models

The Kronecker Product notation

Econometric textbooks often use the Kronecker product notation.

Let A a matrix of Dimension / x J and let B a matrix of dimension M x N
then the Kronecker product of the two matrices A and B is defined as a
matrix of dimension (IM) x (JN) with:

Then X the covariance matrix of € = (e1,...,€,)" can be written as:
Y=FE ®%; where ¥; = aill' + +0L2,IET

Thus X is a block diagonal matrix with diagonal elements ;.
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Statistical models for panel data Linear models

5 different panel estimators (1-3)

@ The Pooled Estimator: OLS applied to y; ; and x; ; and time dummies.
FE-Model: inconsistent (because of missing «;'s)
RE-Model: consistent but wrong significance results (because of
independence assumption)

e Dummy Variable (DV)-Estimator: OLS applied to y;  and x;  and
unit and time dummies.
FE-Model: Efficient
RE-Model: Does not apply to model

@ Within-Estimator: OLS applied to y;: — yi¢r—1 and Xj: — Xj¢t—1
FE-Model without time dummies: consistent for
RE-Model without time dummies: Consistent
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Statistical models for panel data Linear models

5 different panel estimators (4)

o Feasible Generalized Least Squares Estimator (FGLS): The covariance
of error terms for unit i is the T x T Matrix:

aé + 03 aé . 03
0(21 Ug + 05 Ug
Y= _ . :
o4 o 0304

If we use 6*5 and 63 as appropriate estimators for the respective
variance components we obtain the estimated covariance ¥ ;. The
GLS estimate with the estimated variance components is given by:

5 —1 < -1
BreLs = ZX X; ZX Yi
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Statistical models for panel data Linear models

5 different panel estimators (4+5)

@ FGLS estimator:
FE-Model: does not apply
RE-Model without time constants: asymptotical efficient

@ The ML-estimate: can be derived by standard calculations (See Hsiao
(1986 p.38 ff). lterative Computation is necessary.
The FGLS-estimator can be shown to be the first step in an iterative
procedure to solve the ML-estimates. Therefore it is asymptotically
efficient.
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Statistical models for panel data Linear models

Two different ways for the computation of the FGLS

estimator

The FGLS estimator can be shown to have the following two
representations (see Matyas (1996, p.56)):
@ OLS applied to yi+ = yi+ — Oy, and X; + = yi+ — 0X; .
52
@ Between Estimator: OLS applied to y; and X;
The FGLS estimator can be shown to a linear combination of the
Within- and the Between-Estimator

where § =1 —
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Statistical models for panel data Linear models

The Hausman Test in panel analysis (1/3)

o A frequent argument in econometric textbooks about panels:
In the RE model the «; represent unobserved variables that are
specific to the unit, for example, intelligence if the outcome variable is
the log of earned income. If education level is a covariate then the ¢;
are correlated with one of the covariates.

@ In this case the FGLS Estimator BA,:GLS is no longer consistent, as the
estimated education level effect includes the intelligence effect.

@ However: The Within Estimator BAW remains consistent, because the
«; are eliminated.

o Under the RE-Model (=Null Hypothesis) SrgLs is asymptotically
efficient and [y is consistent. The test alternative (" Some of the
covariates is correlated with the «;") is not explicitly formulated.
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Statistical models for panel data Linear models

The Hausman Test in panel analysis (2/3)

The Hausman Test uses a general asymptotic result on the covariance of
5cons:stent - Befflaent

COV(Bconsistent - Befﬁcient) = COV(Bconsistent) - COV(Befficient)

The Hausman Test:

Thausman = (Bw — Brers) (Cov(Bw) — Cov(Brars)) ™ (Bw — BreLs)

2
XDF

The number of degrees of freedom DF is equal to the number of
estimated parameters.
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Statistical models for panel data Linear models

The Hausman Test in panel analysis (3/3)

o (cov(Bw) — cov(BreLs)) is sometimes not invertible.
@ Time-constant variables have to be removed from the model.

o Often covariates, like education level, are time-constant for the large
majority of the sample. The Within estimator of education level then
depends only on those few, who changed their education during the
panel. Instability of Within estimate!
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Statistical models for panel data Linear models

Example: SOEP data from (1984-2008)

Dependent variable: Logearning

Proc Panel data=mysas.human_cap(obs=1000) ;
class svyyear ;
id pid svyyear;
model logearning = svyyear education_years marital_status
experience experience_q
/noint fixone ranone pooled;
run;

@ id Person identifier "pid” then time identifier " svyyear”!
@ Model options: pooled, fixone, fixtwo, ranone, rantwo,

o Class statement generates dummies for each survey year.
@ The data should be in the "Long"-format.
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Statistical models for panel data Linear models

The General Mixed Model

@ In the RE model the intercept has a random variation over the
population.

@ Maybe, some of the slope coefficients vary over the population.

@ Furthermore one is interested in the impact of other covariates on
these random slope coefficients.

@ The Mixed Model (in matrix notation):

Y =XB+Zy+e

e 3 = parameter vector of the fixed effects with known design matrix X

e = parameter vector of the random effects with known design matrix
V4

e The vector of errors € and the random effects  are independent and
multivariate Normal distributed with expectations 0 and covariances
Cov(e) = R and Cov(y) = G

o Cov(Y)=2GZ' +R
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Statistical models for panel data Linear models

An example: growth curves of children (1/2)

data pr;

input Person Gender $ yl y2 y3 y4;
y=yl; Age=8; output;

y=y2; Age=10; output;

y=y3; Age=12; output;

y=y4; Age=14; output;

drop yil-y4;

datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5

Transformation into Long-format!
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Statistical models for panel data Linear models

An example: growth curves of children (2/2)

proc mixed data=pr method=ml;

class Person Gender;

model y = Gender Age Genderx*Age / s;

random intercept Age / type=un sub=Person g;
run;

@ Model option "s": display FE solution vector.

@ "Type=un" requests unstructured covariance matrix for the random
effects.

@ Option "g": display the estimated G matrix.
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Statistical models for panel data Linear models

Overview of several SAS-Mixed procedures

HPmixed: High case numbers of fixed and random effects can decrease
the efficiency of Proc Mixed considerably. Proc HPmixed is
specialized for a few Mixed models with simple covariance
structures but more efficient in handling of the covariance
structures.

GLIMmix: The linear Mixed model assumes a multivariate Normal
distribution for the error terms. Proc GLIMmix deals with
Non-Gaussian distributions.

NLmixed: Nonlinear models, like the Logit model, can be estimated by
Proc NLmixed (Non-Linear Mixed).
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Statistical models for panel data Linear models

Literature and further reading

@ Hsiao, Ch. (1986): Analysis of Panel Data, Cambridge University
Press, Cambridge

e Wooldridge, J (2002): Econometric analysis of cross-section and panel
data. MIT Press

e Baltagi, B. (2001): Econometric Analysis of Panel Data. Second
Edition, Wiley, New York.

o Verbeke,G., Molenberghs, G. (2000): Linear mixed models for
longitudinal data, Springer, New York. (Biometrical textbook)
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Statistical models for panel data Analysis of contingency tables

The representation of state sequences by Loglinear Models

(1/2)

@ Let the state space be given by the set
{e(mployed),u(memployed),n(ot in labour force) }.

@ Z; indicates the state at wave t = 1,2, 3. The state sequence
(Z1, 2>, Z3) generates a 3 x 3 x 3 contingency table.

@ In the cells there are the observed numbers Nz _,1 7,—,2 7z,—,3 in the
panel.

@ In order to simplify the notation we write Z; = A,Z, = B and Z3 = C.

@ The expected number of cell counts Na—, g—p c—c is denoted by

AB,C
ua,b,c
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Statistical models for panel data Analysis of contingency tables

The representation of state sequences by Loglinear Models

(2/2)

A Loglinear Model the expected cell counts is given by:

A,B,C
) =

log(1e.") = Bo+ B + BE + BE + B + Bo + BN + S

a,b,c

B2 is the main effect of A. (Notation A).

ﬂaAbB is the interaction term of A and B. (Notation A*B).

,beBCC is the (3-fold) interaction term of A,B and C. (Notation A*B*C).
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Statistical models for panel data Analysis of contingency tables

Hierarchical Loglinear Models (1/2)

A Loglinear Model is called hierarchical, if the model contains for each
interaction term of higher order all lower corresponding interaction terms.
By dropping higher order interaction terms, one can formulate statements
about independence and conditional independence:

@ Joint independence:

. ABC __A_B_C
Def.: @} e =75 T Te for all a, b, c

Model representation: A+ B + C
@ C is independent from A and B:

AB
Def.: Wa,b,éc = 728 7€ for all a, b, c

Model representation: A+ B+ AxB+ C
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Statistical models for panel data Analysis of contingency tables

Hierarchical Loglinear Models (2/2)

o Conditional independence: A and C are independent for fixed values

of B
ABC
ACIB T abc
Trac\b = B
Tp
_ AB_CIB
- a\b c\b
AB CB
Tab Tecb
B B
s Tp

Model representation: A+ B+ Ax B+ C+ B« C
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Statistical models for panel data Analysis of contingency tables

A Markov Chain Model over 4 panel waves

@ Markov Chain for Zy = A,Z, = B,Z3 = C and Z, = D is given by:
ABCD __D|CBA_C|BA_BIA_A
Tabed = Tqjcba "clba "bla "a
D|C_C|B_B|A_a
7Td|t: 7Tc|b 7Tb|a Ta
Model representation: A+ B+ C+D+AxB+BxC+ CxD
Note that there is no interaction between A and C (and A and D)
because there is no direct impact of state A on state C (and D). The
same holds for the direct impact of B on D.
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Statistical models for panel data Analysis of contingency tables

Graphical Models

Graphical models are special hierarchical Loglinear models where the
conditional independence relations can be directly read from a graph that
connects the variables.

C D

O

4 Bz

e}

@ Interpretation: A influences C and D only thru B

e Conditional independence: A® (C,D) | B

@ The cliques (Direct connections of all members) of the graph: {A, B}
and {B,C,D}

@ Graphical model: The cliques of the graph generate the highest
interaction terms in the hierarchical model.

@ Hierarchical model representation.
A+B+A«xB+C+D+BxC+B+«D+CxD+BxCxD
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Statistical models for panel data Analysis of contingency tables

Loglinear Models with SAS

PROC CATMOD DATA=mysas.Divorce;

WEIGHT number;

MODEL sex*sex_b*sex_o*mstatus=_Response_ ;

LOGLIN sex|sex_b mstatus|sex_olsex_b;
RUN; QUIT;

@ You have to choose the "WEIGHT" statement for the counts
("number") of the table.

@ The "MODEL" statement generates the contingency table.

@ The "LOGLIN" statement specifies the cliques of the graph. A|B|C
means all 3-interaction terms of variables A,B and C plus all lower
terms.
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Statistical models for panel data Analysis of contingency tables

A latent Markov model (1/3)

@ Model transitions between poverty states for the years (19)96. (19)97,
(19)98, (19)99 and (20)00.

@ For 1996 and 2000 two measurements for each person: one
measurement from (ECHP) survey and one measurement from
Finnish national register.

@ Survey measurement indicated by Sye.r. Register measurement
indicated by Ryear.

@ Years in between only register measurement.

@ Assumption 1: Measurements depend only on the true but latent
poverty state (indicated by circles).

@ Assumption 2: The transitions between latent Markov states follow a
Markov chain.

Ulrich Rendtel (FU Berlin) Panel surveys 51 / 225



Statistical models for panel data Analysis of contingency tables

A latent Markov model (2/3)

The graphical representation of the latent Markov model:
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Statistical models for panel data Analysis of contingency tables

A latent Markov model (3/3)

Observed and estimated transitions between the states " Poor” and
”Non-poor”. Time interval: 1996 and 2000

Transitions in percent
Start | Poor Non-Poor
Register
Poor 3.91 | 31.65 68.34
Non-Poor | 96.8 | 5.34 94.65
Survey
Poor 7.56 | 30.40 69.59
Non-Poor | 92.44 | 8.66 91.33
True
Poor 8.20 | 70.04 29.95
Non-Poor | 91.79 | 3.06 96.93
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Statistical models for panel data Analysis of contingency tables

Literature & Software (1/2)

@ Hierarchical Models: every standard statistical package
In SAS Proc Catmod with "loglin” statement

o Latent and Mixed Markov Models: PANMARK Package by v.d. Pol
Useful but a little bit old.

See. http://www.john-uebersax.com/stat/soft.htm

@ However, Latent Markov models may be also estimated by LEM,
which is freeware.

e Example can be found in Rendtel, U. / Nordberg, L. / Jantti, M./
Hanisch, J. / Basic, E.(2004): Report on quality of income data
CHINTEX Working Paper No.21, Statistisches Bundesamt,
Wiesbaden. see http://www.destatis.de/CHINTEX/
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Statistical models for panel data Analysis of contingency tables

Literature & Software (2/2)

o Langeheine, R., Pol F., v.d.(1990):A Unifying Framework for Markov
Modeling in Discrete Space and Discrete Time, Sociological Methods
Research, Vol. 18, 416-441.

e Pol, F.,v.d., R. Langeheine and W. de Jong (1991): PANMARK User
Manual, Panel Analysis Using Markov Chains, Netherlands Central
Bureau of Statistics, Voorburg.

e Pol, F., v.d., and J. de Leeuw (1986): A latent Markov Model to
Correct for Measurement Error, Sociological Methods and Research,
15, 118-141.

@ Rendtel, U., R. Langeheine and R. Berntsen (1998): “The estimation
of poverty dynamics using different measurements of household
income”, Review of Income and Wealth, 44, 81-97.
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Statistical models for panel data Analysis of duration

Basic considerations (1/4)

@ After the begin of an episode (spell), say unemployment, one is
interested in the duration of this period.

@ The exit from unemployment may result in different events, say
employment, out-of-the-labour-force or some kind of training. The
exits are regarded as competing risks. There are two types of analysis:
One ignores the exit while the other makes inferences with respect to
the exit.

@ A new feature: the censoring of episodes (spells).

o Right Censoring:The begin of a spell is observed, however, the end
was not observed. Reasons: Spell continues after survey ends or person
left the survey (not followed or discontinued cooperation)

o Left Censoring: The start of the spell is not observed, however the
end is observed. Reasons: The spell has begun, before the person
entered the panel. Retrospective interviewing is imprecise.

e Left and right Censoring: Start and end of the spell are unknown.
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Statistical models for panel data Analysis of duration

Basic considerations (2/4)

@ Units of duration measurement:
o Days (register)
e Month (survey, register)
o year (Survey)
@ The three clocks: Calender time, process time and age
o Calender time: often month 0 is the start of the panel.
o Process time: elapse of time since the beginning of a spell, for example
no. of month since the beginning of an unemployment.
o Age: elapse of time since birth.
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Statistical models for panel data Analysis of duration

Basic considerations (3/4)

@ Statistical analysis of the distribution of T, duration of spell
(episode), time to event, ...

@ Survival time: S(t) = P(T > t)=1— F(t)
Contribution to likelihood in case of right censored spells!

@ The hazard rate h(t):

P(t < T <t+ At|T > t)

M= A At
— im P(t< T <t+At)
at—0  At(l— F(t))
_ _f(®)
1 F(b)
where f(t) is the density of T and F(t) is the distribution function of

T.
@ The hazard rate is measures the instant risk to stop the episode at

time t, if the episode lasts at least until time t.
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Statistical models for panel data Analysis of duration

Basic considerations (4/4)

There are unique relationships between these 3 descriptions:

o= 11

F(t)  S(t)
S(t) =exp (/0 h(u)du)
F(t) =— d(jft)
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Statistical models for panel data Analysis of duration

Typical hazard curves

_

@ Declining (Infant mortality)
e Constant (electronic equipment without attrition)
@ increasing (mechanical components with attrition)
@ Bath tub shape (human life)
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Statistical models for panel data Analysis of duration

The hazard of some distributions

@ The exponential distribution is a distribution " without memory":
F(t)=1—e* and f(t) = F/'(t) = Ae
)\e—)\t
o Weibull distribution: Hazard is a polynomial!

(e) = S5
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Statistical models for panel data The estimation of the survivor function

3 different estimators of the survival function

@ Parametric model, for example Exponential or Weibull, estimate
model parameters, compute S(t) from estimated parameters.
Handling of censored observations necessary!

o Nonparametric model:

o Life table method:
Subdivision of time axis into fixed, typically even spaced, time intervals

o Kaplan-Meier (or Product Limit) estimate:
Observations are ordered with respect to ascending duration or
censoring times.
Intervals are given by time-spans between the ordered data. Even
spaced time intervals of the Life table method are regarded as
restrictive!
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Statistical models for panel data The estimation of the survivor function

The Kaplan-Meier estimate

-t <t <...<t,ordered set n durations
- R; = number of episodes under risk in time interval (t;_1, t;)

- E; = number of episodes with termination in time interval
(ti1,ti)
- = % estimated risk of survival in time interval (t;_1, t;)

§(t):Hr,-:r1><r2><...><r,-
ti<t
- §(t) is a monotone decreasing step function that is constant
on the intervals (ti_1, t;).

- The largest time value with defined §(t) IS tmax = mMaximum
over all durations and censoring times.
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Statistical models for panel data

A numerical example

The estimation of the survivor function

Data with censorings (indicated by +):
4,45%6,7,7,77,77,9,12,12,14%,17,17,23"

i t E G R S(t,')

114 2 0 16| 1-1z=0.8750
25 0 1 14| 1.:3=08750
3|16 1 0 13 % : % = 0.8077
417 2 2 1208077 -1 =0.6731
5/9 1 0 8 | 0.6731-%=05889
612 3 0 7 | 058893 =0.3365
7/14 0 1 4| 0.3365-7=0.3365
817 2 0 3| 033651 —0.1122
9(23 0 1 1| 0.1122- ? =0.1122
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Statistical models for panel data The estimation of the survivor function

resulting Kaplan-Meier Plot

Survival Distribution Function

5
o 4
3
a A

20 :
days

Legend : —— Product-Limit Estimate Curve © 2 O Censored Obserwvations

Ulrich Rendtel (FU Berli Panel surveys 65 / 225




Statistical models for panel data The estimation of the survivor function

The use of Kaplan-Meier Plots

@ The main use of Kaplan-Meier Plots is the comparison of survival
curves between groups (or strata), for example comparison of treated
vs control.

@ The Log-Rank test is the standard test of group comparisons. It tests:
Hy : Sl(t) = Sz(t) vs. Hi: Sl(t) 75 Sg(t)

@ The test bases on a comparison of observed ranks with the ranks that
are expected under the NULL-hypothesis.

@ Extensions to k > 2 groups are possible
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Statistical models for panel data The estimation of the survivor function

The SAS-code

@ Survival time of HIV-patients

Variables:
TIME: Survival time in months
CENSOR: 1:deceased, not censored; 0: censored
DRUG: Drug consumption (1:yes; 0:no)
AGE: Age at start of the study

@ Generation of the Kaplan-Meier plots
0ODS GRAPHICS ON;
PROC LIFETEST DATA=hmohiv PLOTS=(s);
TIME time*censor(0);
RUN;
0DS GRAPHICS OFF;

Ulrich Rendtel (FU Berlin) Panel surveys 67 / 225



Statistical models for panel data

Plot of a survival functions

The estimation of the survivor function

Product-Limit Survival Estimate

Survival Probability

+ Censored

=1

10
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Statistical models for panel data The estimation of the survivor function

Local confidence limits

@ An estimate of the variance of §(t) is given by the Greenwood

formula: Ei
Var(3(0) =8 3 pn

thst

@ The local confidence interval at time t is given by:

S(t) £ 2102+ 1/ Var($(t))

@ SAS code:
0ODS GRAPHICS ON;
PROC LIFETEST DATA=mysas.hmohiv plots=survival(cl);
TIME time*censor(0);
STRATA drug; RUN;
0DS GRAPHICS OFF;
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Statistical models for panel data

Comparison of the survival functions

The estimation of the survivor function

Product-Limit Survival Estimates
With 95% Confidence Limits

0.8

0.6

0.4

Survival Probability

024

0.0+

+ Censored
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Statistical models for panel data Estimation of the hazard function

Different Hazard models

@ Parametric model, for example Exponential or Weibull, estimate
model parameters, compute h(t) from estimated parameters.
Handling of censored observations necessary!

@ Nonparametric model: the semi-parametric of Cox
h(t,x) = ho(t)exp(x'5)

where hg(t) is an unrestricted baseline hazard function
(nonparametric part). exp(8pxp) displays the effect of covariate x, on
the hazard function (parametric part).
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Statistical models for panel data Estimation of the hazard function

Proportionality of Hazard rates

Proportionality of the Hazard rates h(t, x1), h(t, x2) for 2 individuals with

covariates x1, Xo:
h(t,X]_) — hO(t)exlﬂ _ e(xl—XQ)ﬂ
h(t,X2) ho(t)ex2ﬁ

Therefore the resulting Hazard curves are proportional (not necessary

parallel!)

— Mtxq)
- At x2)

AL, x)
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Statistical models for panel data Estimation of the hazard function

The SAS code for the Proprotional Hazard model

Have drug use and age an effect on the hazard rate of the HIV survival
time?

proc phreg data=mysas.hmohiv;
model time*censor(0)=age drug;
run;

Note, the values after variable censor indicate Right-censored spells.
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Statistical models for panel data Estimation of the hazard function

Testing the proportionality of the model

@ Check of the proportionality assumption by an extra interaction term
of the covariate with log(t). The interaction is computed for every
time of event.

This is automatically done by the PROC PHREG.

o Example:

proc phreg data=mysas.hmohiv;

model time*censor(0)=age drug drugtime;
drugtime=drug*time;

run;
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Statistical models for panel data Estimation of the hazard function

Output of the survival function

@ SAS code:
BASELINE OUT=SAS-data-set COVARIATES=SAS-data-set
SURVIVAL=s;
Calculates for each covariate pattern listed in data set after the
COVARIATES statement the survival function. Values in the data set
after the OUT statement. The values of the survival function are

written under a variable named by "s
@ Example:

proc phreg data=mysas.hmohiv;

model time*censor(0)=age drug ;

baseline out=test covariates=mysas.hmohiv survival=s;
run;
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Statistical models for panel data Estimation of the hazard function

Literature & References

o Lawless. J.F. (2003): Statistical models and Methods for Lifetime
Data, Second Edition, Wiley, New York.

e Allison, P. (1995): Survival Analysis using SAS, SAS Institute, Cary,
NC. USA
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Design-based estimation of population totals and proportions

Design-based estimation of population totals and proportions
Elements of design-based reasoning
Model assisted estimation
Calibration
Design-based estimation in panel surveys
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning (1/3)

@ A sample s is taken from a finite universe U

@ The sampling follows a probability distribution over the set of possible
samples. Thus S is a random set with realisation s and
Pr(S =s) = p(s).

@ For each unit k € U the selection is indicated by a variable /j:

I 1, ifkes;
K71 0, else.

@ Inclusion probabilities Pr(ly = 1) = Pr(k € s) = my

@ Twofold inclusion probabilities
Pr(lk = 1,/J' = 1) = Pr(k,j S S) = Tk
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning(2/3)

@ Characteristic of interest of unit k y, is not a random variable!

@ Population totals t, = Zuyk are to be estimated by sample s.

. - /
@ The m-estimator of t,: t, = ZU ?kk)’k = Zs Wikyk
Note: m, > 0 for all k € U must hold.
The m-estimator is often called Horvitz-Thompson (HT) estimator.

@ The design weights dy = 1/m.
Design-weighted sample results: £, = Zs diyi
In official statistics " Weighting" is mostly associated with the use of a
linear estimator with weights for the observations.

e Under random sampling £, is unbiased: E.(t,) = t,

@ Notice: No statistical model for y is assumed! The only randomness is
the randomness of S!
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The basics of design-based reasoning (3/3)

@ The variance of the w-estimator:

with Cov(lx, ) = k) — mym; and ZZU as a shorthand for
ZkeU ZIeU

@ The general task in the design-based approach is to find sampling
designs to keep the variance of the population estimates small.

o Often the coefficient of variation |/ V/(%,)/t, is used as quality
criterion.

@ The variance of f, has to be estimated on the basis of the sample:

o) - Yy, ol

Tkl — Tk T
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (1/3)

@ Simple (SI) random sampling with or without replacement: the
classical urn experiment.

o Fixed sample size n
_on _ n(n—1)
Tk =N Tkl = N(N-1)
o t, = ZS %yk = Nys where y; is the mean of the y-values in s.
o Variance of 7-estimator V/(f,) = (N?/n)(1 — n/N)o? ,
where a}z,’u is the population variance of the y-values in U.
Mind the difference to the model-based calculation of the variance of
Ny!
@ There are other sampling strategies than Sl-sampling: sampling
proportional to size (PPS), Bernoulli sampling (BE) with unequal
sampling probabilities for the units.
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (2/3)

e Stratified (ST) sampling: S| sampling within non-overlapping strata
Up (h=1,...,H), for example cross-classification of regions with
age-sex groups. Sampling is independent, strata sizes Ny are known.

e The strata sample sizes n, can be used to minimize the variance of the
population estimate (Neyman allocation): n;, o Nyoy y,
where o, y, is the standard deviation of the y-values in stratum h.
The result is intuitively appealing as it proposes to allocate sample size
in those strata where the variation of the y-values is large. It marks the
end of 'representative sampling’!

o Population estimate: {, st = >, t,.»
where £, ; is the m-estimate of the y-total in stratum h.

o Because of the independence of sampling between strata we have:

(yST) Zh 1 (y,h)

e Stratification can reduce the variance of population estimates

considerably in case of large between strata variance of y values!
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Some sampling strategies (3/3)

@ In cases where no register for the original units exists, for example
pupils, one switches to larger units, for example schools, with a
register. The schools form clusters of pupils.

o Cluster (CL) sampling: all units of the selected clusters are selected.
The German micro census uses area sampling: all households of a
selected area form a cluster of households. Increases variance!

o 2-Stage (2ST) sampling: the clusters form the primary sampling units
(PSU’s). From each PSU a sample of secondary sampling units (SSU’s)
is selected.

@ Second stage sampling is independent between PSU's.

@ Inclusion probabilities: mx = mimy; if SSU k lies in PSU i
where 7; is the inclusion probability of PPS i and j; is the conditional
probability to include SSU k if PSU i is selected.

o Often we have: m; oc N; and my|; = nssy/N; where N; is the number of
SSU’s in PSU .
This convenient for the field organisation (fixed sample size nssy in
every PSU). The result is an equal probability sample which is not SI.
This selection scheme was used for the first wave of the SOEP
(Subsample A).
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Selection of samples with Proc Surveyselect

proc surveyselect data=mysas.universe
out=mysas.sample
method=SRS
sampsize=1000
stats ; * stats generates weights;
run;
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Design-based estimation of population totals and proportions Elements of design-based reasoning

The HT-estimator with Proc Surveymeans

Proc surveymeans data=mysas.human_cap_sample(where=(svyyear=:

sum total=13119; * Total=number of elements
var earnings ;

weight samplingWeight;
run;
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Design-based estimation of population totals and proportions Elements of design-based reasoning

Literature & Software

About the Design-based Approach: Sarndal, C.-E., Swensson, B.,
Wretman, J. (1992): Model Assisted Suvey sampling,
Springer, New York.
A practical textbook: Lehtonen, R; Pahkinen, E. (2004): Practical
Methods for Design and Analysis of Complex Surveys,
Second Edition, Wiley, New York.
Sampling of the SOEP: Haisken-DeNew, J.; Frick, J. (Eds.) (2005)
Desktop Companion to the German Socio-Economic Panel
(SOEP), Download under:
http://www.diw.de/en/diw_02.c.222846.en /desktop_companion
SAS Procedures: @ Proc SURVEYSELECT: Sampling from a frame.
@ Proc SURVEYMEANS: Estimation with Survey weights.
@ Proc SURVEYFREQ, SURVEYREG,
SURVEYLOGISTIC: Frequency, Regression and Logistic
Regression with survey data.

Ulrich Rendtel (FU Berlin) Panel surveys 86 / 225



Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (1/4)

Idea:

@ Step 1: Take a good prediction y, of yx on the basis of a covariate
vector X.

B= (32, do) (32, donon)

Calculate yx = x,’(lAB and the sample residuals ex = yx — yx k€ s
@ Step 2: Calculate the prediction total for U! Estimate the residual

=
total by ZS -
@ Step 3: In order to calculate the prediction total one has to know the
total t, of the covariate vector

ZUS}k = t)/(]g
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (2/4)

The GREG estimator can be written as:

o A €k

ty GREG = ZU Vi + Zs oy
=t B+ dilyk— )
=t B+t 1B

=ty » + (t« — tx)'B

where {, - is the m-estimator of the y-total.
Thus waREG can be read as an correction of the m-estimator.
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (3/4)

Properties of the GREG

@ The GREG is asymptotically design unbiased!
Important: The unbiasedness holds whether or not the prediction
model is correct!
Therefore the Sarndal et al. (1992) call this approach "model
assisted” in contrast to "model based".

@ The GREG weights wy may be written as corrections of the design
weights dj:

wk = dkgk = di(1 4+ X A)

where:

1

A= (Zs dkxkx,’()_ (te — ter)
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Design-based estimation of population totals and proportions Model assisted estimation

The generalized regression (GREG) estimator (4/4)

@ The variance of the GREG may be approximated by:
~n Cov(li, I) grex gie
VI(t = E E R AL A AR AN =
(t.6rec) s Tk Tk Ty

Notice: This is very similar to the variance formula of the m-estimate,
however the y's are replaced by the residuals.

o If the y's are a linear combination of the covariate vectors x the
variance of the GREG is 0!
@ The GREG fulfills the calibration property:

L« GREG = tx
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Design-based estimation of population totals and proportions Model assisted estimation

The GREG estimator with Proc Surveyreg (1/2)

ods output estimates=mysas.total_predicted;

proc surveyreg data=mysas.human_cap_sample (where=(svyyear=200(

class marital_status gender_cohort;

model earnings=gender_cohort marital_status /noint;

weight samplingweight;

output out=mysas.from_reg r=residual_reg;

estimate ’total of predicted values in 2000 population’
gender_cohort 331 1320 1892 2318 1208 77 156 1033 1689 182:
marital_status 8591 3123 214 1191 /e;

run;

ods output close;
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Design-based estimation of population totals and proportions Model assisted estimation

The GREG estimator with Proc Surveyreg (2/2)

ods output statistics=mysas.HT_residuals;

Proc surveymeans data=mysas.from_reg sum total=13119;
var residual_reg ;

weight samplingWeight;

run;

ods output close;

data greg;
merge mysas.Total_predicted mysas.ht_residuals ;
T_GREG=estimate+sum ;
std_Greg=stddev ; std_REG=stdErr;
keep T_Greg std_greg std_Reg;
run; proc print; run;
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Design-based estimation of population totals and proportions Model assisted estimation

Extensions of the GREG

@ Ignore the residual term: ~» 'synthetic’ estimators (model dependent);
small variances but possible bias.

@ Model inhomogeneity on subgroups: ~» Small Area estimators, Fixed
and Random Effects Models for Areas (see Lehtonen/Pahkinen
textbook)

@ Departure from the linear model, for example use of the Logit model
(see Lehtonen/Pahkinen textbook)
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (1/3)

@ Modify the design-based weights in such a way, that with the modified
weights for some variables the known population totals are met:

digix :Z X
ZkES KBk Xk keu K

where dj is the design weight, gi is the correction factor and Xj is a
vector with known population totals.

@ The calibration estimator for variable y is then given by:

Ty caL = Zkes Ak Yk

@ The correction factors are not well-defined unless:

e we have specified a distance function to the design-weights that is to
be minimized .
e we have restricted the functional form of the correction factors gx
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (2/3)

General approach of Deville/Sarndal (1992): Select wy = dkgk such that:

Zs de(Z—:> = minimum

and G fulfills:
© G(x) > 0 is strictly convex
@ G(1) =0, = 1 is the absolute minimum of G.
© G'(1) =0, = 1 is the only absolute minimum of G.

Q G”"(1) =1, = G behaves until the second derivative like a parabola
1/2(x —1)?
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Design-based estimation of population totals and proportions Calibration

The general idea of calibration (3/3)

The Lagrange multiplier gives:

32, 46(g) X (3, wos = )

Derivative for wy:

1
A G (ZE) = — N =0
k (dk> de
With F = (G’)~! one obtains:
8k = F()\,Xk)
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Design-based estimation of population totals and proportions Calibration

Calibration with quadratic distances

G(x) = %(X —1)?
G'(x)=x—-1
Fluy=u+1

Wy = dk(l +X,,()\)

This results in the GREG!
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Design-based estimation of population totals and proportions Calibration

Logarithmic distances

G(x)=xIn(x) —x+1 xeR
G'(x) = In(x)
F(u) = exp(u) ueR

wi = di exp(xp\)

This results in the lterative Proportional Fitting (IPF) solution!
(Fitting-to-Margins, Raking, ...)
Here xx is a vector consisting of groups of dummy variables like:

x" = (Agegroup-Dummyy, ..., Agegroup-Dummy,,

Edu.group-Dummyy, .. ., Edu.group-Dummy,,
= ...)
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Design-based estimation of population totals and proportions Calibration

The racking procedure (1/5)

2 discrete variables: A (r values) B (c values)
Joint distribution of A x B unknown,

Marginal distr. of A known: Niy (i=1,...,r)
Marginal distr. of B known: N,; (j =1,...,¢)

m-estimator of Nj;:

~ 1
Njj = ZSU . where sj; = subsample withA =/,B = j
B
1 c
1 N+
A N;; :
r Nr+
Nyp ... Ny
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Design-based estimation of population totals and proportions Calibration

The racking procedure (2/5)

1. Step (Fit to A-margins):

Compute: N, = Z N; (Estimated total of A)
j=1
Total N;

Compare: ——— = — i=1,...,r
P Estimate Niy ( )

Proportional correction factor for A:

~ Total « Nit

= .= — N.:
Y Estimate ' N "7
Cc
guarantees Z Nj=Ni (i=1,...,r)
=1

Replace I\AI,-J- by N
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Design-based estimation of population totals and proportions Calibration

The racking procedure (3/5)

2. Step (Fit to B-margins):
Proportional correction factor for factor B:

~ Total Nyj o

I - Ni: = N
Y Estimate “ N, Y
r
guarantees Z I\NI,-j =Ny (=1,...,¢c)
i=1

Replace NU by Nij
3. Step: Fit to A margins!

4. Step: Fit to B margins!

until =12t~ 1 holds for A and B.

Estimate

Ulrich Rendtel (FU Berlin) Panel surveys
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Design-based estimation of population totals and proportions Calibration

The racking procedure (4/5)

- For the solution N,-j- it holds:

where

Oz,'ﬂj ifA:i,B:j
8k =
0 else

- X;( = (51./(7 .. -,6,‘.[{75.1’(7 v )6.Ck)

where
1 A= forunit k
diek =
0 else
1 B = for unit k
5ojk =
0 else

Ulrich Rendtel (FU Berlin) Panel surveys 102 / 225



Design-based estimation of population totals and proportions Calibration

The racking procedure (5/5)

The calibration constraint is fulfilled:

S = (N N N, N

ZS 7r1kgka =

(o
(> N5, ZN,J,ZN,I,.. ZN
j=1

= (Nl-‘r?"'aNr-i-vN-i-l?H N+c) = Z Xk
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Design-based estimation of population totals and proportions Calibration

Model assisted estimation vs Calibration

@ Statisticians are quite experienced in statistical modeling.

@ Statistical agencies are more familiar with the calibration idea. There
are some non-statistical benefits from calibration:

o Calibration increases comparability across countries in European
surveys.
o Calibration increases comparability across panel waves in a panel survey.

@ Negative weights may result from the GREG.

@ Extensive Fitting-to-Margins may result in large variations of the
sample weights.
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Design-based estimation of population totals and proportions Calibration

Literature

Review Article Sarndal, C.-E. (2007): The calibration approach in survey
theory and practice, Survey Methodology, Vol. 33, 99-119
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Calibration in panels

Initial calibration: Initial wave.

Final calibration: Last wave.

Sequential calibration: First initial wave, then last wave. (Example:
ECHP)

Simultaneous calibration: First and last wave.

Longitudinal calibration: Simultaneous calibration + calibration on
known population changes (births, deceased persons, divorces)
(Example: German MC Panel)
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Use of linear panel models for prediction

@ Random and Fixed Effects models may be estimated from the panel
sample

@ However, the predictions for the whole population are in general not

feasible:
ZU}A/k = ZU(XW + ak)
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

A simple example

Vit =0+ Xk e + o+ ey t=1,2
and ax ~ N(0,02) and ex ¢ ~ N(0, 0?)
@ Take ML estimator of ag, 3, obtain 0“40,3
° &y = Jk — Go — Xf3
@ For k € s calculate y) 1 — yi 1:
Ye1i—Pk1 = Yk1— Gk — &g — xk1f
= Yk1— Pk — (%1 — X)B
D IENET) RIS PN
I i Ny =
However by model assumption Zuak 0

@ = Gain in precision over the cross-sectional estimator!
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (1/7)

@ Household context is important for many analyses (poverty defined
via household equivalence income) despite persons are the natural
units of longitudinal analysis

@ A simple example: persons i and j live in different households at wave
1 and move together in wave 2.

Inclusion probabilities in wave 1 for person i: 7; and for person j: 7;
Inclusion probability for persons i and j in wave 2:

P(i selected in wave 1 or j selected in wave 1 ) = 7 + 7j — 7}

If i selected in wave 1 and j not selected in wave 1: 7; known, 7; and
mjj often unknown!
= unknown design inclusion probabilities in wave 2!
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (2/7)

@ A stupid rule: do not use information from the so-called " non-sample”
persons, loss in efficiency!

@ A better alternative: /;, /; inclusion indicators wave 1 for / and j;
0 <\ <land )\ =1-); fixed (!) numbers.
Compute: w;j = w(l;, ;) = )\,-7'?"’_ + )\j%
Then: E(w) = 1 = Use of weight w produces unbiased population
total estimates in wave 2 without knowledge of inclusion probability!

@ Selection of A\ 7
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (3/7)

o A famous rule ("Fair share”): w = average of all individual weights of
adult sample persons. number=ny, g/t

1/m, if i =1 (i.e. i is a sample person);

individual weight; = { 0, if i =0 (i.e. i is not a sample person).

What is the corresponding \—representation?

D S

Np,adult Uy
ichousehold h

S > id;

Nh adult
AU chousehold h

Ulrich Rendtel (FU Berlin) Panel surveys 111 / 225



Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (4/7)

A more formal approach:

U°, UL, U?, ..., Ut = Universe of persons at wave 0,1,2,...,t
s® ¢ U° sample of persons with /; =1

yf = variable of interest for person k € U*

Total of interest: Tye =", e Vi

Design weights: d; = 1/m;

Link function /; x: mapping U® x Ut — R reflects tracing from person j

in wave 0 to person k in wave k.

Ulrich Rendtel (FU Berlin) Panel surveys
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Design-based estimation of population totals and proportions Design-based estim: in panel surveys

Link Functions

Redistribute initial weights d; of i € s® onto k € st.
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Example: Link Functions

Typically defined from wave to wave:

NO WEIGHT SHARE EQUAL WEIGHT SHARE
[ 1 i identical to k [ 1/Np i in household h
* 7)1 0 otherwise L otherwise

k lives in household h, size N,.
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Example: Link Functions

NO WEIGHT SHARE EQUAL WEIGHT SHARE
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (5/7)

@ Usually link functions are constructed between persons j and k from
the populations Ut~! and Ut

@ Connecting link functions:

S ey e
ik Lajeye—r K ieyo i
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (6/7)

The estimator of Tye:
A .
Tyt_zkest kak_zke tykz lixd

@ [y is to be known only for i € s and k € st
o Convexity condition for the link : for all k € Ut: ZieUO Iy =1

E(T,) = Zkeuf ZI,GUO lied: E(I)y}
_ t ,
- ZkeUf Yk ZiEUO lik
_ t
- Zkeut yk
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Inclusion probabilities for household panels (7/7)

@ Variance:

L y e .
Ty = ZieUO dil Zkeut lievie = Zieso dii

where yf = %", _ ¢ liyi can be seen as the “future” contribution y*
of person i € U° to the estimation of the total of Tye.

V(T,) = ZieUO Z,‘/er Cov(l;, l;)didv 77

@ Variance estimation

e Cov(lis ) ¢ ot
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Design-based estimation of population totals and proportions Design-based estimation in panel surveys

Literature on weighting in household panels

o Lavallée, P. (1995): Cross-sectional Weighting of Longitudinal Surveys
of Individual Households Using the Weight Share Method. Survey
Methodology, 21, 25-32.

e Kalton, G., Brick, J. (1995): Weighting Schemes for Household Panel
Surveys. Survey Methodology, 21, 33-44.

o Lavallée, P., Deville, J.-C. (2002): Theoretical Foundations of the
Generalised Weight Share Method. Proceedings of the International
Conference on Recent Advances in Survey Sampling 2002. Carleton
University, Ottawa.

@ Rendtel, U., Harms,T. (2009): Weighting and Calibration for
Household Panels, In: Lynn (ed.), Methodology of Longitudinal
Surveys, Wiley, New York, 265—286.
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Nonresponse in panel surveys

Nonresponse in panel surveys
Overview and some empirical results
The fade-away hypothesis of initial nonresponse in panel surveys
Empirical results for SILC
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Nonresponse in panel surveys Overview and some empirical results

Causes for nonresponse in surveys

o Latest Compilation Book: Groves et al. (eds) (2002): Survey
Nonresponse, Wiley.

@ Groves, R. (1998): Nonresponse in Household Interview Surveys.
Wiley
o Causes for nonresponse:

o Invalid address (if selection via register)

No contact

Unable to respond

Unwilling to cooperate (last stage of sequential model)
Nonresponse on sensitive items

Nonresponse by design (Rotating out respondents, no tracing of
residential movers)
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition

Definition:
@ Successive nonresponse of
o eligible persons/households
o after start of the panel

This is not panel attrition:
@ Demographic losses

o lIdentification of deceased persons
o lIdentification of emigrants

@ Restricted statistical /software ability to analyze unbalanced panels
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the SOEP

Figure 9: All first wave persons (sub ple A+B). Develop t until wave 22.

Whereabout of the 16252 Persons

100% .
° Records without
survey related aftrition
EMoved abroad
75% 1 mDeceased
EUnder the age of 16
l - O With interview
50% | Lt
90 B4 = = W Temporary drop-out
-
00 I i~ ODeclined to reply
! (I
25% 4 bt | OMNe contact
- Records with
™ survey related attrition
o
0% =

64 86 88 90 92 94 9 98 00 02 04
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the ECHP

—e—Response Rate in year t = Respones Rate (latest wave / first wave)
%
100
o5 12 [ iad r » = ']
a0 1 — ", Ao 5 \‘ r"\
f, S g Z\" L Y
- . f—
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e o
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Figure 2 Respanse rates across countries for wave 2 to wave 5 and the overall response rate
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the FIN ECHP (1/2)

,',‘;1,, Statistics Finland ———

Outcome of households

1996 1997 1998 1999 2000 2001

Old households - 4441 4 254 4213 4159 3238
New households 5732 244 320 295 169 144
Overcoverage 81 26 40 32 48 63
Net sample 5651 4 659 4 534 4 476 4280 3319
Interviewed 4139 4104 3920 3822 3104 3115
Nonrespaonse 1512 555 614 654 1176 204
non-contact 199 135 103 95 81 64
refusal 1288 402 353 315 969 134
language 13 3 2 1 1 -
technical loss 12 15 156 243 125 6
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Nonresponse in panel surveys Overview and some empirical results

Panel attrition in the FIN ECHP (2/2)

Attrition in FI ECHP

Attrition rate of respondents in wave 1
100 %

80 % 1 O nonresponse

or 4
60 % W exit from survey
A0 % 4 population

O interviewed
20 %
0 % T T T T
1996 1997 1998 1999 2000 2001
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Nonresponse in panel surveys Overview and some empirical results

Specific causes for panel attrition

e Tracing failure of residential movers (but follow-up via telephone!)

@ Unwillingness to cooperate
e Late unit nonresponse after previous item nonresponse
o Change of the interviewer
e "No time" at new residence / household (perception of household as
unit of survey)
e Changes in the household composition may exhibit private details (for
example change of partner)

@ Changes in field work conditions

e Change of interview mode (switch to telephone/CAPI/postal)
o Changes in the questionnaire (SOEP wave 5: balance of assets)
e Cumulative response burden
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Nonresponse in panel surveys Overview and some empirical results

Impact of some variables of ECHP attrition

RR.Dh Highest Level of Education
(1)'9 % <o (1:9 e °°b o0 o ooo
08 ‘z % Cl% \
07 L .\ ~
Y / J

0.4

Highest level of education: 1 Recognised third level education (ISCED 5-7); 2 Second stage of secondary level
education (ISCED 3); 3 Less than second stage of secondary education (ISCED 0-2).

RR.h Household Moves
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Figure 5 Response rates for subsamples
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Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition:

Some theoretical results:

@ "Toward a theory of nonresponse in panel surveys” see Lepkowski,
J.;Couper, M. (2002): Nonresponse in the Second wave of
Longitudinal Household Surveys. In: Groves et al. (eds): Survey
Nonresponse, Wiley, 259-272.

@ Rendtel, U. (2002): Attrition in Household Panels: A Survey.
CHINTEX Working Paper No. 4, URL:
www.destatis.de/chintex/download /paper4.pdf

@ An econometric view: Verbeek, M.; Nijman, Th. (1996): Incomplete
Panels and Selection Bias. In: Matyas, L; Sevestre, P. (eds), The

Econometrics of Panel Data (Second edition), Kluwer, Dordrecht,
449-490.
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Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition

Some empirical results:

@ Unit Nonresponse in the ECHP: Behr, A., et al. (2005):Extent and
Determinants of Panel Attrition in the European Community
Household Panel. European Sociological Review, 21,489-512.

@ Unit Nonresponse in the Finnish subsample of the ECHP: Rendtel et
al. (2004): Report on Panel effects, CHINTEX Working paper 22,
URL: www.destatis.de/chintex/download/paper22.pdf

o Item Nonresponse in the ECHP: Buck, N. (2004): Item Nonresponse
in the ECHP, In: Ehling/Rendtel (eds): Harmonisation of Panel
Surveys and Data Quality, Statistisches Bundesamt, Wiesbaden,
188-209.
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Nonresponse in panel surveys Overview and some empirical results

Literature on panel attrition

Some empirical results:

@ PSID: Fitzgerald et al.(1998): An Analysis of Sample Attrition in
Panel Data - The Michigan Panel Study of Income Dynamics. Journal
of Human Resources, 33, 251-299.
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (1/4)

Nonresponse is thought to:
@ Reduce case numbers: poor significance results
@ Distort sample distributions: Normal to Non-normal
@ Lead to invalid statistical inference: Bias and/or Variance

@ Initial nonresponse and panel attrition may cumulate in their
distorting effects

The last hypothesis can be checked for variables that are known from a
population register for all eligible persons, like in Finland!

Ulrich Rendtel (FU Berlin) Panel surveys 133 / 225



Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (2/4)

The direct approach in the Finnish subsample of the ECHP linked at
person level with records from the Finnish population register.
@ Merge the wave 1 gross—sample with information from the population
register files
o In later waves ( 2-6) : Add information on dwelling units to calculate
household based figures
@ Compare results for 3 samples:

e Full: gross—sample wave 1
o RESP: net-sample wave 1
o OBS: net—sample wave t
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Initial bias fade-away (3/4)

o Difference FULL — RESP : Effect of initial nonresponse
o Difference RESP — OBS : Effect of panel attrition
o Difference FULL — OBS : Total effect of nonresponse
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Initial bias fade-away (4/4)

@ Column "Full": Income Quintiles (Household equivalence Income)
defined for the gross-sample FIN-ECHP Wave 1 (=1996) with 14616
persons; Bounds in FIM: 57924, 73136, 88899, 114579

@ Column "RESP”: Respondents of the first wave grouped according
above bounds

@ = High incomes are under-represented in first wave.

t=1996

Sample Full | Resp
size 14616 | 7809
Distr. on

states (1) (2)
m(l) 200 | 21.8
m(2) 20.0 | 20.7
m(3) 2000 | 21.8
m(4) 20,0 | 20.1
w(5) 20.0 15.6




t=1996 t=2000

Sample Full | Resp Full Resp Obs

size 14616 | 7809 14616 7809 5192

Distr. on Markov | emp. | Markov | emp. | Markov | emp.
states | () | @ | @ | @] &5 | 6] @ |
(1) 20.0 | 21.8 23.3 23.9 23.9 22.2 23.9 224
w(2) 20.0 | 20.7 17.8 16.9 18.2 16.6 18.2 17.4
m(3) 200 | 21 18.4 18.3 18.6 17.9 18.6 17.6
m(4) 20.0 | 20. 21.3 20.6 21.0 214 21.0 21.8
w(5) 20.0 | 15. 19.3 204 18.1 22.0 18.1 20.9

Initial nonresponse has almost vanished! Is this a singular result?




FULL OBS
Sample
ALL RESP

Year | (1) @ ©®
1996 | 0.253 0.228 | 0.228
1997 | 0.236 0.232 | 0.231
1998 | 0.255 0.243 | 0.243
1999 | 0.252 0.246 | 0.246
2000 | 0.273 0.255 | 0.256

Table 6: Comparison of Gini-coefficients of the OECD equivalence income
for different vears.



FULL OBS
Sample
ALL RESP
Year (1) 2) (3)
Less than 50 percent of median
1996 | 4.9 4, 4.4
1997 5.6 52 5.0
1998 | 6.0 5.7 53
1999 | 6.0 5.7 5.4
2000 | 6.5 6.4 6.0
Less than 50 percent of mean
1996 7.3 5.8 5.8
1997 7.1 6.9 6.7
1998 8.1 7.7 7.2
1999 8.1 7.8 7.5
2000 | 9.7 0.2 8.9

Table 8: Comparison of percentages of poor defined by having 50 percent or
less than the median or the mean of OECD equivalence income.



Year
1997 1998 1999 2000
Transition 1 — 1
ALL 658 G613 571 548
RESP 682 632 576 543
OBS 69.0 664 619 3557
Transition 2 — 2
ALL 512 465 423 379
RESP 552 504 422 381

OBS 548 513 428 3
Transition 3 — 3
ALL 438 396 351 336
RESP 504 458 381 353
OBS 49.6 463 392 364
Transition 4 — 4
ALL 447 407 372 355
RESP 544 466 389 358
OBS 552 482 421 370

Transition § — §
ALL 662 623 587 363
RESP 732 674 619 381
OBS 746 682 620 3564

Table 10: Transition rates between quintiles of the OECD equivalence in-
come. Starting period is 1996. Ending period varies between 1997 and 2000.



Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (1/3)

@ Variable of interest X; (t=1,2,...) follow a Markov chain with a
finite state space S = {1,2,..., k}

@ Transition matrix P between subsequent states time-homogeneous

@ There exists a steady state distribution 7* of P: m; = Ptmg — 7* for
t — o0

@ Initial nonresponse results in different starting distributions To,FULL

and 7, RESP
@ Transition matrix P is the same for both samples!

@ Then T.:RESP — T+ FULL for t — oo
In a non-formal saying: the effect of the initial nonrespose " fades”
away!
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (2/3)

The estimated transition matrix between income quintiles:

722 183 54 25 16
206 499 214 63 19
P= 6.9 16.7 49.1 232 4.1
45 51 163 57.1 17.0
40 26 40 16.0 734
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

A Markov Chain Approach (3/3)

t=1996 t=2000

Sample Full | Resp Full Resp Obs

size 14616 | 7809 14616 7809 5192

Distr. on Markov | emp. | Markov | emp. | Markov | emp.
states | (D) | @2 | 3 @] 6 |[©] @ | ®
(1) 200 | 21.8 23.3 23.9 23.9 222 23.9 224
w(2) 20,0 | 20.7 7.8 16.9 18.2 16.6 18.2 174
m(3) 200 | 21.8 18.4 18.3 18.6 17.9 18.6 17.6
w(4) 20.0 | 201 21.3 20.6 21.0 214 21.0 21.8
w(H) 20.0 | 15.6 19.3 20.4 18.1 22.0 18.1 20.9
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (1/3)

The fade away hypothesis assumes:

P(Y4’R1:1,R2:1,R3:1,R4:1%P(Y4) (1)

P(Ya=ilRi=1,Ro=1R3=1,R =1)

= Y P(Ya=ilYs=j3,Ri=1R=1,R=1R =1)
J3

X P(Y3:j3‘R1:1,R2:1,R3:1,R4:1)

= Y P(Ya=ilYs=j3,Ri=1R=1,Rs=1R =1)
J3
P(Ry=1|Y3=js, Ri=1,Ro =1,R3 =1)

P(Ry=1Ri=1,R, =1,R3 =1)
X P(Y3:j3‘R1:1,R2:1,R3:1)
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (2/3)

Transition behavior must not depend on the participation behavior:

P(Ya=ilYs=js, Ri=1Ro=1Rs=1Ry=1)=P(Y4 = i|Vs = j3)
(2)

Previous income state does not have an effect on the participation in the
present wave:

P(Ry=1|Ys=j3,Ri=1,Ro=1,R3=1)=P(Ry =1|Ri = 1,R = 1, Ry =
(3)

By these assumptions one gets:

P(Ya=ilRi=1,Ro=1,R3=1,Ry =1)
= > P(Ya=ilYs=j)P(Ys=js|Ri=1,Ry=1Rs =1)

53
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Nonresponse in panel surveys The fade-away hypothesis of initial nonresponse in panel surveys

Conditions for the panel attrition (3/3)

A similar analysis for P(Y3 = j3|R1 =1, Ry = 1, R3 = 1) gives:

P(Ya=ilRi=1,Ro=1,Rs=1,R, =1)
= Y P(Ya=ilYs=j3)P(Ys=js|Ya=j)P(Y2=jo|R1 =1,Ry = 1)
J3:2

Finally we arrive at:

P(Ya=ilRi=1,Ro=1,Rs=1,Ry =1)
= > P(Ya=ilYs=j3)P(Ys = js|Yo = p)P(Ya = jo| Y1 = j1)
J342:1
X P(Yl :jl‘Rl = 1)
where P(Y; = j1|R1 = 1) is the starting distribution at wave 1.
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Nonresponse in panel surveys Empirical results for SILC

Some results on the speed of the fade away process (1/4)

Simulated starting distributions on income brackets
Scenario 1 2 3 4 5
1 0.218 0.207 0.218 0.201 0.156
2 0.235 0.200 0.225 0.210 0.130
3 0.320 0.250 0.190 0.150 0.090
4 0.135 0.165 0.215 0.225 0.260
5 0.150 0225 0.240 0225 0.160
[ 0.300 0.160 0.100 0.150 0.290
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Absolute Bias
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Dargestellt B(2009)/B(2006), alle Samples

- § Scenario
No. Country 1 3 4 5 6
1 SK 0.15 0.15 0.23 0.23 0.1 0.09
2 BG 0.2 0.23 0.32 0.32 0.06 0.05
3 AT 0,2 0.2 0,35 0,34 0.08 0,07
4 UK 0.2 0.28 0.33 0.32 0.11 0.11
5 IS 0.31 0.3 0,35 0,34 0,06 0.06
6 HU 0.32 0.3 0.38 0.38 0.12 0.12
q LV 0,33 0.31 0.44 0.44 0,09 0,08
8 ES 0.36 0.34 0.4 0.4 0.08 0.08
9 MT 0.37 0.35 0.44 0.43 0,12 0.12
10 CZ 0.38 0.36 0.5 0.5 0.11 0.1
11 LT 0.4 037 0.5 0.49 0.08 0.08
2 BE 0.41 0,39 0,5 0,5 0,19 0,19
13 EE 0.43 0.41 0.54 0,54 0,12 0,12
14 FR 0.43 04 0.49 0.48 0.17 0.18
15 1T 0.43 0.4 0,54 0,54 0,19 0,18
16 GR 0.45 0.41 0.49 0.49 0.18 0.19
17 PL 0.45 0.42 0.56 0,56 0,12 0,12
18 DK 0.47 0.44 0.59 0.59 ;2 22
19 NO 0.47 0.44 0.54 0.53 0.21 0.21
20 CY 0.49 0.47 0.54 0.53 0.14 0.14
21 LU 0.49 0.46 0.61 0.6 0,25 0,25
22 SE 0.5 0.46 0,59 0,59 0,22 0,22
23 NL 0,57 0.53 0,63 0,63 0,28 0,29
24 SI 0.57 0.53 0.68 0.67 0.24 0.23
25 PT 0.59 0.57 0.6 0.59 0.29 0.3
26 FI 0.61 0.57 0.67 0,66 0,29 0.29




Fading-out in 2009 (Szenario 1)

E{2008) / B{2008}

=0.30

0.30-0.34

0.35-0038

0.43-042
0.45-0.49

i j =048




model based treatment of nonresponse

model based treatment of nonresponse
MAR: a typology for missing values

[10 C 1 ONLiNoeEl =10][S
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model based treatment of nonresponse MAR: a typology for missing values

Rubin’s likelihood approach

e Distribution of interest: f(Y|0) = f(Yops, Ymis|0)
e Joint distribution of Y and R: f(Y,R|0,¢) = f(Y|0)f(R|Y,v)

@ Likelihood of observed data:

f( Yobsa R\Hﬂﬁ) = / f( Yobs; Ymis|0)f(R’YObS7 Ymi57¢)dymis

e Missing at random (MAR): 1 (R|Yops; Ymis, ) = F(R| Yops, ¥)
o Under MAR:

F(Yobs, RI0, ) = f(R‘Yobsﬂb)/f(Yobs’ Yimis|0)dY s
= f(R‘Yobsa"zZ))f(YObSW)
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (1/4)

o Covariates X; always observed, Y; observed with missings indicated
by R,' =1.

@ Model of interest: Y; = B'X; + ¢;

e MAR holds if: P(R; = 1]Y;, Xi) = P(Ri = 1|X;)

@ The selection of units is a simple random sample within the strata
formed by the covariates of the model.

@ Relationship to conditional independence: MAR < R ® Y|X

@ The MAR condition cannot be tested from the observed data!

@ OLS on the basis of the complete units is consistent.
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (2/4)

@ Covariates X; and Y;;—1 always observed, Y; ;—> observed with
missings indicated by R; = 1.

o Model of interest: Y =2 = B1_,Xi + €j ¢=2

@ R; depends on Y/ ;—1, for example by stochastic censoring model:
Rf =0+ Yie=1+6;
and R =1if RF >0

@ Note that Y;—; does not enter the likelihood for 8;—>, the model of
interest! In order to factorize the likelihood, one has to assume:

P(Ri = 1|Yi =2, Xi) = P(R; = 1|X;)

This does not hold unless ¢ ;—1 = 0:

Rf =0 + 71 (Bi=1 Xie=1) + 6i
@ "Missing on observables” (MO, Fitzgerald et al. 1998):
P(R; = 1|Yi =2, Yit=1, Xi) = P(R; = 1| Yi t=1)
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (3/4)

2—-wave panel (Continued)

@ Controversy: All observed variables should be included in the
likelihood (Rubin):

f(Yt:2|X) :/f(yt:2|Yt:]_,X)f(Yt:ﬂX)dYt:]_

Then MO=MAR.
Note that we need note formulate a model for the response!

@ However, the above model equation does not look like a simple
regression model.

@ One has to formulate two models one is not interested in!
This is the consequence of Rubin’s approach to formulate a likelihood
of all observed variables
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model based treatment of nonresponse MAR: a typology for missing values

MAR in regression analysis (4/4)

e Multiple Imputation (MI):

o Estimate the distribution f(Y;=2|Y:=1, X) from the observed wave 2
data.

e For each unit i with value of y;_> generate M imputations according
f(Yizo|Yi=1, X)

o Regress the y;—p-values (imputed and observed) on X. For each version
of the imputed values one obtains an estimate BE:% (m=1,...,M).

o The Ml-estimate of B;—» is the mean of the ng

o The multiple replication serves as a means the compute the correct
variance of the estimate. Let V/,, the variance of ﬁi:% and compute the
between variance B of the BE:; as:

L gy
B = M_1 Z( 1o — Be=2)
m=1

Then the variance of Btzz can be estimated by:
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A X B X R contingency

table (1/5)

Analysis of transitions between the labour force states: Employed (E),
Unemployed (U), Not in the labour force (N).

Empirical analysis for the German MC: does not cover residential mobility!
Hypothesis: getting into employment may cause residential mobility.

@ A labour force state at time 1, B labour force state at time 1,
e Quantity of interest: P(B|A)
@ A always observed, B observed for residential stayers R =1
P(R =1|A) MAR;
P(R=1|B,A)=< P(R=1|B) Restricted NMAR;
P(R =1|A,B,A* B) Unrestricted NMAR.
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP

Table 1: The cumulative extent of residential mobility in the MC and the SOEP.
Percentage and cases of individuals with residential mobility after 1996.

Sample Transition
1996-1997 1996-1998 1996-1999
e cases | % cases | % cases
MC 11.13 12594 | 19.30 21719 | 25.87 28968
SOEP 10.51 1520 | 20.23 2836 | 26.64 3524
SOEP* | 9.94 19.62 26.15

Data base: MC, SOEP = unweighted results, SOEP* = design-based results using the
design weights and the attrition correction factors
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model based treatment of nonresponse

Missing cells in contingency tables

Comparison MC panel and SOEP

Figure 1: Mobility rates from 1996 to 1997 calculated from the SOEP and the
MC. Rates computed from a scatter plot smoother (cubic spline interpolation)

according to SAS procedure LOESS.
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model based treatment of nonresponse

Missing cells in contingency tables

Comparison MC panel and SOEP

Table 4: Bias estimates for flows between labour force states (unweighted results).
A = estimate of absolute Bias. Boldface figures: Significant differences P.r; —

Prararo

Flows E u N

from 96 to | FULL IMMO A |FULL IMMO A |FULL IMMO A
97 91.02 91.16 -0.14|4.92 4.86  0.06]4.05 3.97  0.08

E 98 87.82  88.03 -0.21|6.32 6.04  0.28]5.86 593 -0.07
99 87.01 86.37 0.64|6.04 6.30  -0.26]6.96 7.33  -0.37
97 32,83 30.85 1984839 4983 -1.44 1878 19.32 -0.54

U 98 3492 31.79  3.13(40.13 41.20 -1.07|2495 27.01 -2.006
99 41.37 3746 3912891 29.10 -0.192971 3344 -3.73
97 1274 11.64 1.10|5.48 497 0518177 8339 -1.62

N 98 19.66 1607 3.59(500 440 0.69]7525 7954 -4.29
99 25890 21.13 4.76 (4.53 371 0.82|69.58 7515 -5.57

Source: Authors’ calculations, Data base: SOEP. Waves: 1996-1999
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP

Table 2: Probability of residential immobility over the period 1996-1997 (GEE
analysis with household clusters)

Variable MC SOET __ Diff.
Tniercept L6114 20190 -0.4076
(0.0596)  (0.1265)  (0.1399)

Age <30 -0.5132 -0.5354  0.022]
(0.0281)  (0.0657)  (0.0714)
Age > 45 0.719 ).5402  0.1788
(0.0338)  (0.0880)  (0.0943)
Houschold size 1 person -0.5452  -0.4675 -0.0776
(0.0388)  (0.1122)  (0.1187)
2 persons -0.1379 -0.0726 -0.0653

(0027_; 0.0945)  (0.1017)

Sex male 0,033 0024 0.0313
(0.0133)  (0.0308) (0.0335)

Region East-Germany | -0.0196 -0.0800 0.0684
(0.0350)  (0.0879)  (0.0946)

Education vocational 0.0251  0.1075 -0.0824
(0.0255)  (0.0561)  (0.0616)

tertiary level -0.1561 -0.1987  0.0427

(0.0290)  (0.0688)  (0.0746)

Nationality German 0.5114  0.1570  0.3543
) . (0.0415)  (0.0845)  (0.0941)
Marital Status Married 0.3265  0.3389 -0.0124
(0.0352)  (0.0796)  (0.0870)

Labour Force Status Employment -0.1621 -0.1251 -0.0371

Unemployment 0.2631 -0.0437 -0.2194
(0.0394)  (0.0870)  (0.0955)

Observations (Individuals) /683> 11953
Log Likelihood -24°876 -3'918
Pseudo R? 0.1166  0.2366

Dependent Variable: indicator of mobility
coefficients for logarithm of odds ratio P(R =1)/P(R=0)

JpCle il in Do =
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model based treatment of nonresponse Missing cells in contingency tables

Comparison MC panel and SOEP

in the SOEP. P
recent and cur

Table 7: Alternative models for residential immobi
1997. GEE analysis with household clusters. Model 2:

fos ates included (Main effects). Model 3+4: Model 2 + different indicators
for transitions

Variable Model 2 Model 3 Model 4
Intercept 2.1183  2.1674  2.1961
©.1310)  (0.1326)  (0.1325)

Age < 30 -0.4658  -0.4532  -0.4495
(0.0685)  (0.0685)  (0.0683)

Age > 45 0.4927  0.4918  0.4918
©.0741)  (0.0739)  (0.0740)

Household size 1 person -0.4211  -0.4334  -0.4311
01213)  (01213)  (0.1212)

2 persons. -0.0396  -0.0452  -0.0438

(0.1016)  (0.1016)  (0.1013)

Sex male -0.0051  -0.0045 -0.0034
(0.0302)  (0.0302)  (0.0301)

Region East-Germany -0.0944  -0.0990 -0.0978
©.0031)  (0.0934)  (0.0932)

Education vocational 0.1406  0.1419  0.1440
(0.0569)  (0.0570)  (0.0568)

tertiary level -0.1698  -0.1733  -0.1762

(0.0708)  (0.0703)  (0.0703)

Nationality German 0.1445  0.1540  0.1549

(0.0841)  (0.0842)  (0.0842)
Marital Status Married 0.3242 0.3197  0.3250
(0.0852)  (0.0853)  (0.0850)
Labour Force Status Employment (96) 0.0018 -0.0061  0.1638
(0.0862)  (0.1897)  (0.1963)
Unemployment (96)|  0.0152  0.0465  0.2527
(0.1074)  (0.1318)  (0.1410)
Employment (97) -0.1811  0.1154  0.1076
(0.0856)  (0.1145)  (0.0982)
Unemployment (97)| -0.1591  0.1063  0.1211
(0.1020)  (0.1488)  (0.1353)

Apiddte -0.2670  -0.5229
(02307)  (0.2355)
Anign -0.4856  -0.6008

(0.1578)




model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A X B X R contingency

table (2/5)

R=1 R=0
B
A E V) N
E | n(EE) n(EU) n(EN) | n(E.)
U | n(UE) n(UU) n(UN) | n(U.)
N | n(NE) n(NU) n(NN) | n(N.)

The likelihood:

L= ][] P(A B)P(R=1|A B)
i€ER=1

< I Y. P(AB)P(R=0]A B) (4)

iER=0 B
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A X B X R contingency

table (3/5)

@ A standard NMAR model: Mobility depends on the last wave labour
force state B

1 2
(P(RIA,BY=P(RIB))=| 1 2
1 2

w W w

@ Restrictions taken from the SOEP:
m m m
(P(R=1|A=a,B=0b)) = h m lorm
h h /

@ Observed cells: 3 x 34+ 3 = 12, Unrestricted model parameters:
9(R|A, B) +6(B|A) +2(A) = 17, Model restrictions 6 (+ 1 for size of
sample in Loglinear Model), DF=0.
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model based treatment of nonresponse Missing cells in contingency tables

Bias correction (relative bias)

B _ Pcor,saMpLE(BIA) — Pivivo,sampLE(BIA)
el =

PaLL,soEP(BIA) — Pivmo,soer (BIA)

(1 = perfect correction, < 0 = "correction” in the wrong direction, > 1 = correction beyond the correct value)

t Bias (Bias correction)/Bias

SOEP MC SOEP MC
Mod1 Mod2 NMAR Mod1 Mod2 NMAR Mod3 Mod3

Transition U — E
1997 1.98 0.62 0.20 -0.09 1.80 1.30 -0.37 0.49 0.46
1998 3.13 0.89 0.15 -0.07 1.78 1.09 -0.59 0.54 0.64
1999 3.91 1.03 0.07 -0.05 1.68 0.94 -0.61 0.87 0.69

Transition N — E
1997 1.10 0.82 0.52 0.32 2.26 1.78 0.21 0.55 0.52
1998 3.59 0.68 0.33 0.27 1.29 0.93 0.08 0.41 0.48
1999 4.56 0.85 0.35 0.28 1.26 0.89 0.01 0.67 0.69

@ Minor changes of NMAR nonresponse model can have dramatic
consequences for the bias reduction.

@ The standard NMAR model may even " correct” into the wrong
direction or not even indicate a bias.

e A standard weighting approach (Mod3) performs reasonably well (see
later).
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model based treatment of nonresponse Missing cells in contingency tables

The variances of different NMAR estimates

96 U—E N— E

to | ALL IMMO alty alt alt; ALL IMMO alt, alt,
97 | 32.84 30.85 32.08 31.24 30.68 | 12.74 11.64 1254 1221
(1.49) (1.55) (1.83) (1.78) (1.60) | (0.68) (0.68) (0.93) (0.87)
98 | 34.92 3179 3455 3226 3157 | 19.66 16.07 18.48 17.26
(1.57) (1.72) (2.41) (2.16) (1.86) | (0.86) (0.87) (1.71) (1.39)
99 | 41.37 3746 4174 3774 3725 | 2589 21.13 2519 22.78
(1.66) (1.94) (2.46) (2.45) (2.24) | (1.00) (1.06) (2.54) (1.84)
alt; : transitions U — N attributed to the low mobility group

alt, : transitions U — N attributed to the mean mobility

alt; : Main effect model for B

Standard deviations in parenthesis.
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model based treatment of nonresponse Missing cells in contingency tables

NMAR missing data pattern in a A X B X R contingency

table (4/5)

@ Despite more data plus identifying restrictions twice as high standard
errors of estimates!

@ = Flat likelihood!
@ Often substantive over-corrections!
@ Easy estimation with LEM Package (Freeware)
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model based treatment of nonresponse The LEM package

LEM: A useful program

LEM stands for: Loglinear and event history analysis with missing data
using the EM algorithm.

Free download + documentation from:
http://www.uvt.nl/faculteiten /fsw/
organisatie/departementen /mto/software2.html
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model based treatment of nonresponse The LEM package

LEM: Example 1 with SOEP data

P(R|A, B) = P(R|B)

File Edit Tools ‘Window Examples

Input - Example_1.inp

res 1 * No. response wariables

man 2 * Nao. of manjfest wariables

dim 2 3 3 * Nao. of values of resp. + manifest wars
lah R 4 B * Lahels of resp. nanifest wvars.

sub AE 4 * Obserwved tahles
mod & B4 {AB!} RIAE {RE} * Models for tables. Here: R depends only on B
dat [422Z1 305 355 Z33 181 208 313 55 1113 * Table AB|

2275 294 558] * Table &
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model based treatment of nonresponse The LEM package

LEM: Example 2 with SOEP data

Medium mobility group: A= 1(e) and B =1,2,3(e, u, n) and
A=2(u),B=2(u)

High mobility group: A =2(u), B =1(e) and A= 3(n),B = 2( u)
Low mobility group: A= 2(u), B =3(n) and A=3(n),B =

res 1

mary 2

dim 2 3 3

lab R & B

sub AF &

mod & Blh

R|4B ffac(ABR,3)} % 3 Bestrictions for the ABR table

des [00D0ODO0O0O0D0O0D0 * No restrictions for the AF tahle

1112132 2 3] % Parameters with 1 set to be equal, 2 and 3 similar
dat [4221 308 358 233 181 2058 313 55 1113

2278 284 558]
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model based treatment of nonresponse Use of control variables

Control by age-groups

@ Age turned out to be the most important variable for regional mobility
@ Control for age by using a break down of tables with respect to
age-group
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model based treatment of nonresponse Use of control variables

Transition U—E N— E

ALL  IMMO A ALL IMMO A
Age<30

97 52.43 5212 0.31 | 2598 2416 1.82

98 55.09 56.02 0.93 |37.86 3333 4.53

99 65.69 64.05 1.64 | 50.07 46.28 3.79

Age>30

97 2402 22.04 1.98 | 6.36 6.13 0.23

98 25.90 2325 2.75|10.13 8.81 1.32%

99 30.28 28.78 150 | 12.72 11.28 1.44

Total

97 3284 308 1.99 | 1274 1164 1.10

98 3492 3179 3.13 | 1966 16.07 3.59

99 4137 3746 3.89 | 2589 2113 4.76

A = estimate of absolute Bias
Boldface figures: Significant differences Par — Piamo
* indicates: the Hausman test did not apply because of negative difference

of variances
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model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (1/3)

@ There are often more observable variables for the explanation of
nonresponse than in the model of interest.

e Y; outcome variable of interest, for example whether a change E = U
occurs or not.

o X; a set of covariates to explain P(Y; = 1|X;).

e Z; a set of covariates to explain P(R; = 1|Z;). Some covariates of X;

may also belong to Z;.
e Missing on observables is needed: P(R; = 1|Y;, Xi, Z;) = P(R; = 1|Z))

o Idea: Weight observations with R; with m; = 1/P(R; = 1) in the score
equation!

)
;aeln/,-(ﬁ)o

~R; 0

Ulrich Rendtel (FU Berlin) Panel surveys 173 / 225



model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (2/3)

@ Example Transition of labour states explained by a Logit model.
Missingness due to residential mobility (NMAR!). Evaluation data

from the SOEP.
P(Y; =1|X;)
1-P(Y:=1|X)

Score equation for the Logit model:

Us =D X (Y= P(Y; = 11X)) = 3 X (Yi — i)

In = ,BIXi

The weighted score equation is:

Ug(m) = Z ZXI' (Yi — i)
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model based treatment of nonresponse Weighting by inverse response probabilities

Weighting by inverse response probabilities (3/3)

R;
Ery|x,z [Z ?X; (Yi - Mi)]

R;
=Ey|x,z [ZERWXZ( (Z)X(Y Hl)‘YhZhXi)

Eryy x,z (RilYi, Zi, X;)

=Ey|x,z ZX (Vi — i) .( 3

P(R; = 1|Y;, Zi, X;
=Eyix .z ZX (Yi— i) ( 7r(‘Z) )

L 7

=Evy|x z ZX,- (Y;i— ,u,-)] (original score equation!)

L/
Ulrich Rendtel (FU Berlin) Panel surveys 175 / 225



model based treatment of nonresponse Weighting by inverse response probabilities

Bias reduction of Inverse Probability Weighting (IPW)

IR — Prow nmc(BIA) — Pruvio mc(B|A)
PrurL,soep(BJA) — Pnivo,soer(B|A)

Table 8: Bias reduction expressed by ratio (bias —correction)/bias (SOEP and MC
data)

L Bias | (Bias—correction)/Bias
SOEP MC MC*
U—FE
1997 | 1.98 | 049 0.46 0.59
1998 | 3.13 | 0.54  0.64 0.80
1999 | 3.91 | 0.87  0.69 (.80

N—-FE

1997 | 1.10 | 055  0.52 1.00
1998 | 3.59 | 0.41 0.48 0.70
1999 | 4.56 | 0.67  0.69 0.97
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (1/4)

© Different factorizations:

o P(R,Y,X) = P(R|Y,X) x P(Y|X) x P(X)
e P(R,Y,X)=P(Y|X,R) x P(X|R) x P(R)

@ Pattern mixture models assume that the relationship between Y and
X is different for responders and non-responders. The sample before
nonresponse is a mixture. Nonresponse acts like a segregation of the
two populations.

© However only one part of the mixture is observed! Therefore
identification restrictions are necessary.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (2/4)

The MAR condition and pattern mixture models:

f(y,x,r)
f(x,r)
rly, x)f(y, x)
f(x,r)
fF(rix)f(y, x)
f(x,r)
f(y:x)
f(x)
= f(ylx)

Flylx,r) =
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (3/4)

A useful routine in panel analysis: Subdivide the wave-1 respondents
according attrition in later waves:

Figure 12: The division of a panel according to future attrition.

_‘ | Overall Respondents O Respondents O Attriter |

1 2 3 4 5 6

Wave

Ulrich Rendtel (FU Berlin) Panel surveys 179 / 225



model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models (4/4)

@ The idea is that attrition acts like a segregation of the wave-one
respondents.

@ Compare the estimation results for the FULL first wave sample with
the results for the permanent responders.

@ Hj states that conditioning on R is irrelevant.

@ Under Hy the restriction to the subsample of permanent responders
affects only the efficiency of the model estimate.
If the estimator on the basis of the full sample is efficient, one may
apply the Hausman test for the difference of the full and the
restricted sample.

o If Hy is rejected, one would conjecture that attrition is de-mixing also
in future waves.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: A simulation study

@ Sample size N = 1000 with two groups of n; (Proportion h;=2/3)
and np = N — ny persons (Proportion h, = 1/3)
@ No of waves: T =10
@ Nonresponse rate in group 1 r; = 0.05 and in group 2 r» = 0.25
e Lin. model for Yy with covariates X} = (1; X 1; Xk 2; Xk 3)
Ye = X Bitefork=1....m
Yo = XiBatexfork=n+1,...,N

@ Distribution of covariates and errors:
Xy ~ N(45,400) X ~ N(10,20) X3~ B(0.51) ¢4 ~ N(0,5)

e Parameter for group 1: 87 = (500, 1, 3, 50)
@ Parameter for group 2:
ﬁé = (500,f*«1,fx3,f«50) fe{0.8,0.9,1.01,1.05,1.5,2.0}
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Power of the Hausman test for

different values of f

Welle

Analyse

2 3 4 5 6 7 8 9 10
Basis (f =1.2)
Teststirke (in %) 17 97 100 100 100 100 100 100 100
f=08
Teststirke (in %) 21 100 100 100 100 100 100 100 100
f=09

Teststdrke (in %) 13 96 100 100 100 100 100 100 100

Teststirke (in %) 19 09 100 100 100 100 100 100 100
f=105

Teststirke (in %) 10 98 100 100 100 100 100 100 100
f=15

Teststirke (in %) 18 100 100 100 100 100 100 100 100
[=20

Teststirke (in %) 1

~1

99 100 100 100 100 100 100 100
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Power of the Hausman test for

different attrition rates (f = 1.2)

Analyse

Basis (r1 = 0,05;
Teststiirke (in %) 1797 100 100 100 100 100 100 100

r1=0,05;72=0]1

Teststéirke (in %) 0o 0 0 7 24 53 81 91 96

r1 =005 r2 =05

Teststérke (in %) 100 100 100 100 100 100 100 100 100

r1=0,01; r2=10,25
Teststiirke (in %) 47 100 100 100 100 100 100 100 100

1 =0,1; ro =025

Teststarke (in %) 3 86 100 100 100 100 100 100 100

=02y =025
Teststéirke (in %) o 0 0 6 17 16 22 35 36

r1=001; 12 =05

Teststérke (in %) 1000 100 100 100 100 100 100 100 100
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: A note about the Hausman Test

The Hausman test needs the Variance of BAFULL — BCOMPLETE. It uses the
asymptotic representation:

V(BruL — Beomprere) = V(Bcomprete) — V(BruLt)

In many cases this approximation is not positive definite and the Hausman
test statistic cannot be computed.

An obvious alternative may be to bootstrap the distribution of

BFULL — BCOMPLETE. Form the bootstrap replications the variance of
BFULL — BACOMPLETE is estimated. This bootstrap variance can be inverted
and used in the Hausman test.
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model based treatment of nonresponse Pattern Mixture models

Pattern Mixture models: Empirical Results

@ Some results for the ECHP User Data Base (UDB): Period 1994 —
1999 (6 waves)

@ Does panel attrition disturb comparative analysis, for example, the
ranking of the member states?

@ Details in: Behr et al. (2003): Comparing poverty, income inequality
and mobility under panel attrition. A cross country comparison based
on the European Community Household Panel. CHINTEX Working
Paper No.12, URL: www.destatis.de/chintex/download/paperl12.pdf
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model based treatment of nonresponse Pattern Mixture models

Testing the poverty line

Figure 13: Comparison of poverty lines in the ECHP.
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model based treatment of nonresponse Pattern Mixture models

Testing the poverty rate

Figure 14: Poverty rates and significance of the attrition bias
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model based treatment of nonresponse

Testing the Gini coefficient

Figure 15: Comparison of Gini-Coefficients
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model based treatment of nonresponse Pattern Mixture models

Testing the proportion of stayers in income position

Figure 17: The proportion of stayers in the same income quintile.
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model based treatment of nonresponse Pattern Mixture models

Stability of rank position

Measure Rank Correlation
Poverty Rate 0.99
Average Poverty Gap 0.95
Gini 0.98
SST-Index 0.98
Stayer 0.88
Average Rang Difference 0.96
Rank Correlation 0.98
Ratio Ups/Downs 0.93

Table 15: The correlation of the rank position of the 11 countries for different
measures of poverty and income stability
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model based treatment of nonresponse Imputation

The rule of imputation

@ Inverse Probability Approach: Find a good model for R;. Use only the
weighted complete cases.

@ Now: Find a good prediction for the missing values without
formulating a model for response (MAR)!

@ Analyse the full sample with the imputed values!
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model based treatment of nonresponse Imputation

Naive imputation in panels

In panel surveys there are some naive approaches for imputation:
@ Mean of observed values ( = biased level)
o Conditional mean of observed values ( = biased variance)
o Carry forward last observation (= biased serial correlation)
e Conditional mean plus error (Single imputation) (= biased inference)

Solution: Multiple Imputation!
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Multiple imputation is a statistical technique for analyzing incomplete data sets. that
is. data sets for which some entries are missing. Application of the technique requires
three steps: imputation, analysis and pooling. The figure illustrates these steps.

incomplete data

IMPUTATION

ANALYSIS

POOLING

Impute (=fill in) the missing entries of the
incomplete data sets. not once, but m
times (=3 in the figure). Imputed values
are drawn for a distribution (that can be
different for each missing entry). This
step results is in complete data sets.

Analyze each of the m completed data
sets. This step results in #7 analyses.

Integrate the m analysis results into a final
result. Simple rules exist for combining
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model based treatment of nonresponse Imputation

Multiple Imputation (General 1/3)

Likelihood + Prior: E(6|Yogs Expected posterior value

Complete data posterior:
P(9| Yob57 YMis) X P(Q)L(a‘ Yobs; YMis)
Link observed and complete data posterior:

p(9| YOBS) = / P(Q, YI\/IIS| YOBS)dYMIS
= /P(0| Ywmis, YOBS)P( Y/\///s] YOBS)dYM/s
E(0|Yoss) = E[E(0|Ymis, Yoss)| Yoss]

Var(0|Yoss) =
E[Var(8|Ymis, Yoss)| Yoss] + Var[E(8] Ymis, Yoss)|Yoss]
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model based treatment of nonresponse Imputation

Multiple Imputation (General 2/3)

Generate M independent draws:

Y™ p(Yas|Yoss) m=1,...,M
Estimate E(0|Y,$,,",75), Yoss) by HA(m)

Estimate E(0|Yogs) by § = 1/M 0 b(m)
Estimate Var(f|Yogs) by:

M
Var(0|Y035 N—Z Vi -l- Z Q(m)—é)zz \_/+B

m=1

where V), is the complete data posterior Variance of 6
calculated for the m" complete data set

An improved Variance estimation is:
Var(6|Yogs) =~ V + (1+ M)~1B
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model based treatment of nonresponse Imputation

Multiple Imputation (General 3/3)

@ Generation of Y,&TS) ~ p(Ymis|Yoss) may be difficult! Use Markov
Chain Monte Carlo -technique!

@ Selection of a "non-informative prior”!

@ Case of multidimensional normal data: Package NORM or SAS
routine PROC MI

@ SAS: Proc MIANAYSE computes the correct standard errors.
@ Problem: The imputer and the analyst use different models!

@ Recommendation: The imputer's model should the contain the model
of the analyst.

e Automatic sequential procedure MICE (Multiple Imputation
Conditional Expectation). See also Ragunathan’s IVEware Package
(Imputation and Variance estimation)

@ Up to now: No special approach or program for panels. Prediction of
level or change, serial correlation! MICE etc. use level models.
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model based treatment of nonresponse Imputation

Literature on Multiple Imputation

e Schafer, J. (1997). Analysis of Incomplete Multivariate Data. New
York: Chapman and Hall.

o Little/ Rubin (2002): Statistical Analysis with Missing Data, Second
Edition, Chapter 10, Wiley

e Allison, P. (2002): Missing Data, Sage
@ General information on MI: www.multiple-imputation.com

@ Meng (1994): Multiple imputation inferences with uncongenial
sources of input (with discussion) Stat. Science, 10, 538-573.
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Model: Stochastic censoring destroys the Normal distribution of the
variable of interest. By value of the model one can make conclusions about

the Normal distribution.

——~— = Underlying Distribution
——— = Observed Distribution

i

(a) Distribution of Y;

Pr(y, observed | ¥

(b) Nonresponse Mechanism

Figure 15.1. The normal stochastic censoring model for a single sample



model based treatment of nonresponse Sample Selection models

Sample selection models (1/3)

@ Regression analysis: X, V' always observed, dependent variable Y is
observed if R = 1:

Y = pB'X+e observed, if R* > 0 where
R* = yX+%BV+4

@ Normality assumption for residual terms

(5)=ne L )

@ Correction for the expected value:

(X +7,V)

E(Y|X,V,R=1)=8X + poc —1 ,
P(nX+1V)
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model based treatment of nonresponse Sample Selection models

Sample selection models

@ ¢/® (inverse Mill's ratio) is an almost linear function.
e Without V in R-eq. 3 is only identified from the non-linearity of ¢/®.

@ The instrument variable V must have no impact on distribution of
Y| X but must have an impact on the distribution R|X. The
assumption of an a-priori zero coefficient of V is crucial for the
model!

o MAR is equivalent to p,e =0

@ If the a-priori zero assumption is wrong, severe biases and wrong std.
errors may occur, Rendtel (1992). See also the critique of the
approach in Little/Rubin (2002, Chapter 15).
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model based treatment of nonresponse Sample Selection models

The Heckman 2-stage estimator

@ Response equation for wave 2 (or later), regression equation for wave
2 (or later), joint Normality for € and §. Covariates X and V from
wave 1 and always known.

@ Estimation by ML or Heckman's two step procedure:

@ Estimate response Probit on the basis of wave 1 and calculate from %
the estimated Mill's ratio H = H(9; X + 4% V)

@ Estimate the regression equation for all wave 2 respondents with A as
an augmented variable. Use OLS.

@ Use of the model for multi-period panels by collapsing attrition
intervals. X may become poor indicators for attrition.
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model based treatment of nonresponse Sample Selection models

Ridder's (1990) multi-period extension of the sample

selection model

Yi=8Xit+pi+vie 1<t<T
Ri*t:'Y:,lXi,t""YéVi,t‘i‘fi‘Fnit 1<t<T

e ML estimation in Verbeek/Nijman (1992): For each person evaluation
of a twofold integral!

@ No such simple procedure as the Heckman procedure

@ Missing covariates may occur in case of time-dependent covariates.
Model is not suited for such a case.
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Design based treatment of nonresponse
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Design based treatment of nonresponse The general design-based treatment of nonresponse

General concepts

@ Response set r C s; Response indicator Ry = 1 if unit k € r.

@ Interpretation: r is sampled from s via Poisson sampling with
selection probabilities 8, for unit k.
Response is independent across units and response probabilities
between units.

@ Response Homogeneity Groups (RHG): Population is divided into G

response homogeneity groups Ui,..., Ug,..., Ug.
Within group g the response probability is estimated by 6, = mg/ng
for k € Ug

where ng; = number of s() U, and m, = number of r() U,

@ The corrected m—estimator is defined by:
. Ryl 1
t o« = - = -
s E U ekﬂ_kyk § , ekﬂ-kyk
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Design based treatment of nonresponse The general design-based treatment of nonresponse

General concepts

@ Properties of £« in the framework of 2-stage sampling.
o Realisation of random sample s according to design.
o Realisation of Poisson sampling r from s.

@ Bias estimation:
B(tr) = EplEr(Tyls)] — ZUYk

o If the correct response probabilities are used, B(t;+) =0
Important note: Under nonresponse the design-based approach has
lost its ability to produce unbiased estimates independent from a
statistical model!

@ Bethlehem (200x) has derived the following Bias approximation B,
see also Lundstrém/Sarndal (2005,pp 106-108) :

B = — ZU(I — Hk)yk

B can be interpreted as a population covariance of the response

probabilities 0. and v.
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Design based treatment of nonresponse Calibration under nonresponse

Calibration levels under Nonresponse (1/2)

So far calibration has been a tool for variance reduction. In the case of
nonresponse it can be also a tool for bias reduction. Form of corrected
weights wy = drgk

Al Calibration to sample: Zr gkXx = Zs Xk
A2 Calibration to population estimates:

Zr di8iXk = ZS dieXic
A3 Calibration to population totals: Z dkgikXk = Zuxk
r
. . . _ 71
B1 ML-estimation of 6: Zr Xi = ZS 8k Xk

g = exij‘/(l + exij‘) = 0, with score function of the Logit
model for the Ry explained by x: Z (Rk — ék)xk =0
S
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Design based treatment of nonresponse Calibration under nonresponse

Calibration levels under Nonresponse (2/2)

e Functional restriction of gx = HA;I = f(x,’(S\) with f known monotonic
real-valued function and A chosen to fill calibration constraints.

o Standard calibration: f(x,A) = 14 x|\ and (A3)
o f(xA) = x A and (A1) yields: A = (ZS xx) Y Zs Xk — Zr Xk)
o Raking weights: f(x} ) = e and (A3)
@ The post-stratification estimator is obtained by:
Population is divided into G response homogeneity groups
Ui,...,Uq, ..., Ug. xk = (h(k),...,lg(k)) indicates for each unit
k € U the membership to the response groups.
With f(x;A) = x; A and (A1) or (B1) one obtains: gx = ng/mg for
ke Ug
where ng = size of s Uy and m, = size of r(| Uy
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Design based treatment of nonresponse Calibration under nonresponse

A general calibration estimator

Lundstrém/S&rndal discuss a general calibration estimator
T = Wk Yk
GCAL Zr kYk

Wi = do k8k ge=1+Nz
where:

© d, « initial weights, often a general correction of nonresponse by
setting d, x = (n/m)dx
@ 2z, vector of instrument variables, often z, = xx

© Calibration to U and to population estimates:

X=(> % > do})
Q@ =X dawa) (D ze)™
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Design based treatment of nonresponse Calibration under nonresponse

A bias approximation

The bias of can then be approximated by B, see Lundstrém /Sarndal
(2005,pp 106-108) :

é = — ZU(I — Qk)egyk

where:

1
ek =Yk —xkBug  Bup= (ZU HkaXL) ZU Ok zicyx

@ B can be interpreted as a population covariance of the response
probabilities 6 and some regression residuals ey .

@ The approximation gets better with increasing size of r.
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Design based treatment of nonresponse Calibration under nonresponse

Conclusions from bias approximation

@ Bias is independent from sampling design!

@ Whether we calibrate by some vector x up to population or to
population estimates, does not affect the size of the bias
approximation.

e B= 0, if there is some vector \ with:

1
07:¢k:1+)\’zk forall k e U
K

because we then have: 1 — 6, = 6, \ z, for k € U. Therefore:
Do, =b0esk =N Okzi(ye —xiBug) =0

o B=0,if y, = §'x for all k € U. Because then ey, = 0 for all k € U
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Design based treatment of nonresponse Calibration under nonresponse

Selection of auxiliary information

See Chapter 10 of Lundstrom/Sarndal (2005) for an extended discussion!

Principle 1 The auxiliary vector should explain the inverse response
probability.
Keeps bias small for all study variables. May inflate the
variance of the weights and hence the variance of the
estimates. Often bias is regarded as more important in survey
sampling!

Principle 2 The auxiliary vector should explain the main study variables.
Specific weights might be a good idea, although unusual in
practice.

Principle 3 The auxiliary vector should identify the most important
domains.
Regional stratification often unknown to users.
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Design based treatment of nonresponse Calibration under nonresponse

Further remarks on calibration

@ More is better 7.
But avoid: Negative weights, extreme variation of weights.

@ Number of constraints may depend on the sample size of the survey.

@ Software: CLAN, CALMAR (SAS based macros, not very user
friendly!)

@ A variance estimator of the general calibration estimator is given
Lundstréom /S&rndal (2005, p.136)
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Design based treatment of nonresponse Calibration for attrition in a panel

Calibration for nonresponse in a panel

@ Initial wave: similar to every cross-sectional survey, but calibrations
are transferred to later waves.

o Later waves: the number of possible control variables ( at the level of
the previous sample) is very large!

@ Variables like " Change of the interviewer” are probably unrelated to
many variables of interest, but a powerful for the prediction of
attrition.

o Lagged metric variables are powerful predictors for the current value.

@ The process of participation in a panel survey is sequential, wave by
wave. Variance formulas for such multi-phase surveys are intractable.
Need to variance estimation by other means!

@ Lump together different waves: = reduces number of stages. For
example, in PSID: attrition after 5 years.
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Design based treatment of nonresponse (oF:]]

Initial Calibration:

Up to now:

To
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Further
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Design based treatment of nonrespon: Calibration for attri a panel

Initial Calibration:

Up to now:

t.u = Z.-‘ 0 d; J'(.-!j
= Z e ot V)
- zh sra“?f Z 0 s cls

Further variables x” with T.o known.

|

e
£
=r

Madification: df ~ d; g/’

g =argminy,_o(dig — di)?/di CH—1 {1
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Design based treatment of nonresponse Calibration for attrition in a panel

Initial Calibration

Properties:

*IC _ 50,0
o Tis =2 jcco digiYj
regular calibration ~» variance estimator known

O TE = cat Vi icso ldig?

— variance sources: s, g% =1+x"),
Ao via C()\o) = TXo - ZfESO d,'ngXio =0

— separation via Taylor: 'IA'}ftC(Xo) R~ f'}ftc()\o) + Hi(Jo — o)
0 ~ C()\o) + HQ(S\O — )\0)

— linearised version : T’C T’C()\o) — HiHy 1 C (M)

depends only on s°
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Future contributions towards y! and x* that comes from person i € U°:

~t oyt ot ot
L E and X' = g [y x
Yi kest Yk ! kest ik

Redistribution of weights d,-g,-0 for i € s° onto the persons k € st according
to the follow-up rule: WkC = ZiESo /,-kd,-g,-o:

-i\-IC:Z tWC
y kEstyk k



Taylor linearisation leads to
~IC _ 1+ 1BIC &IC
Ty =T B+ E esd dié;

with
SIC gt 0BIC

IN_1 0~

YA did5)

B = (O dix|
i€s? !

Interpretation: regression of the future contributions y' versus the values

x? at wave 0.
Variance estimator:
-1 0xIC I
— T HgfglalCalc

V(T =D e 2o
icso /Gso i



Design based treatment of nonresponse Calibration for attrition in a panel

Final Calibration

Final Calibration

g;? Zkesf Wkg/f)//f = Ty

TFC _ t,t
Tyt =D kest Wk«

1 1

Ulrich Rendtel (FU Berlin) Panel surveys 220 / 225



Taylor linearisation leads to:

*FC _ T 1AFC zFC
TpC=Ta'BC 4+ dif

with
8¢ = (Yﬁ—iit/éFC)(ZkESt/ikg/f)

1 1

AFC 1
B™ = (ZkEst Wiexxg') (Zkesr WX Vi)

Interpretation: regression of the future contributions y* on x* for the

persons i € s9.

Variance estimator:
-1 ~FC ~xFC

(T FC -1 -1
V(Ty° )= Zieso Z,-/eso(ﬂ'i T — )& &



Design based treatment of nonresponse Calibration for attrition in a panel

Other sorts of Calibration:

Initial and Final Calibration

T
— A Lok
vi = Zk- st Wi Bk

E
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Two adjustment factors g,-o for i € U° and gi for k € Ut. With

C

_ 0 ]
Wi = iceo likdigi we have:

Taylor linearisation leads to:

‘i\'}{ft‘:cz T /Bt+T /BO+Z IFC

1650

Variance estimator:

with

_ —-1_— IFC IFC
- 2 :iESO 2 :,-/Eso(ﬂi 7Ti’ u’ )g, g,,e

N /A
—x'B% + Zkeuf lixgk(Yi — xk BY)
-1
(Zke . Wi XXk ) (ZkESt Wk Xk V)
0 0/ O . t _ JtPHt
(ZIESO di i ) (ZIESO dIXi ZkESt /Ik('yk XkB ))



Design based treatment of nonresponse Calibration for attrition in a panel

Further reading (1/2)

@ Estevao,V.M., Sirndal, C.-E. (2000): A Functional Form Approach to
Calibration. Journal of Official Statistics, 16, 379-399.

e Estevao,V.M., Sérndal, C.-E. (2002): The Ten cases of auxiliary
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