
 1 

 
   SAE course Spring 2015 
    Risto Lehtonen, University of Helsinki 
 

EXTENDED FAMILY OF GREG ESTIMATORS 
 
GREG estimator   
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EXAMPLE: Continuous study variable y, sample data s  
Assisting model: P-model: 
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where 

1(1, ,..., )k k Jkx x x  and 
0 1( , ,..., )J   β  

 
WLS estimator of finite population counterpart B  of vector β  
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Fitted values: ˆˆ
k ky  x B  for all k U  

Residuals:   ˆ
k k ke y y   for all k s  

 
NOTE: The P-model (1) does not involve components that 
account for the possible population heterogeneity (differences 
between the domains) 
 

Alternative model formulations to account for the domain 
differences?  
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Assisting models 
 
GREG estimators with assisting models from the family of 
generalized linear mixed models (GLMM) 
 
(1) Generalized linear fixed-effects model 
 

( ) ( ; )m k kE y f x β  

 
where ( ; )f  β  describes the functional form  

 Continuous study variable y: linear model 
 Binary y-variable: binomial logistic model  
 Count variable y: Poisson regression model (log) 
 
β  is the vector of model parameters  

mE  refers to expectation with respect to model 

 

The model is fitted to sample data  ( , );  k ky k sx  by 

accounting for the sampling design properties (unequal 
probability sampling, stratification, weights)  
 

We obtain estimates B̂  of parameter vector B , where B  is again 
the finite population substitute to the superpopulation 
parameter β   

 

Fitted values ˆˆ ( ; )k ky f x B  are calculated for all k U  by using 

estimates B̂  and auxiliary data kx  
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(2) Generalized linear mixed model 
 

( | ) ( ( )) m k d k dE y fu x β u      (2) 

 
where ( ; )  df β u  describes the functional form 

du  denotes the vector of domain level random effects 

 

Fitted values ˆˆ ˆ( ( ))k k dy f  x B u  are calculated for all k U  by 

using estimates B̂  and ˆ du  and auxiliary data kx  

 
(a) Linear mixed model for continuous y-variable 
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where 0 1( , ,..., )d d d Jdu u u u  is vector of domain level random 

effects (random intercepts and slopes) 
 
EXAMPLE: Model with random intercept term 0du  and random 

slope term 1du  associated to variable 1kx  

 

0 0 1 1 1 2 2( | ) ( ) ( )      m k d d d k kE y u u x xu   
 

NOTE: The corresponding fixed-effects P-model: 
 

0 1 1 2 2( )     m k k kE y x x      

 
What is the main difference in these two models? 
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(b) Logistic mixed model for binary y-variable 

 
Binomial logistic mixed model 
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where the study variable y is binary 
EXAMPLE:  0: Unemployed 

1: Employed 
 
NOTE: The study variable y can be polytomous 
Multinomial logistic mixed model 
EXAMPLE:  1: Employed 

2: Unemployed 
3: Not in labour force 
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NOTE: Fixed-effects model corresponding to (4) 
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LGREG: GREG estimator assisted by the model (5)  
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