

SAE course Spring 2015 Risto Lehtonen, University of Helsinki

SUMMARY

Estimation for domains (small OR large)

Key points and aspects

- A. Domain structure
 - A.1 Planned (stratified sampling, domains=strata)
 - A.2 Unplanned (typical case in SAE)

B. Model

- **B.1** Specification and parametrization
 - B.1.1 Fixed-effects model
 - B.1.2 Mixed model
- **B.2** Functional form
 - B.2.1 Linear model
 - B.2.2 GLMM

C. Estimator of domain parameters (totals, means)

- C.1 Type of estimator
 - C.1.1 Design-based
 - C.1.2 Model-based
- C.2 Borrowing strength

C.2.1 Direct estimators: NO borrowing strength from other domains

C.2.2 Indirect estimators: YES

MORE DETAILS

C.1 Type of estimator

C.1.1 Design-based

a) Direct estimatorsHT (no aux. information)Hájek (aux. informatio: domain sizes)

b) Model-assisted estimatorsCan be direct or indirectModel: B1.1, B.1.2, B.2.1, B2.2

GREG estimators Model calibration estimators Model-free calibration estimators

C.1.2 Model-based estimators

a) Synthetic estimators SYNCan be direct or indirectAssisting model: B1.1 & B2.1Not recommended

b) EBLUP estimators
Empirical best linear unbiased predictor
Always of indirect type
Assisting model: B1.2 & B2.2
Recommended

Table 1. Properties of estimators - REVISITED(Lehtonen and Veijanen 2009)

	DESIGN-BASED	MODEL-BASED
	HT, Hájek , GREG	SYN and EBLUP
Design	Nearly design unbiased	Design biased
bias		
		Bias does not necessarily
		approach zero with
		increasing domain sample
		size
Precision	Variance can be large	Variance can be small also
(Variance)	for domains with small	for small domains
	sample size	
		Variance declines with
	Variance declines with	increasing sample size
	increasing sample size	
Accuracy	MSE = Variance	MSE = Variance +
(MSE)	(approximately)	squared Bias
		Accuracy can be poor if
		design bias dominates the
		MSE
Confidence	Valid design-based	Valid design-based
intervals	confidence intervals can	confidence intervals not
	be constructed	necessarily obtained (if
		bias dominates the MSE)