

Spring 2015

CASE STUDY 2 Pseudo EBLUP estimation

Risto Lehtonen, University of Helsinki

Model-based estimation under unequal probability sampling

- How to account for unequal probability sampling in model-based EBLUP estimation?
 - Stratified sampling with non-proportional allocation
 - PPS type sampling designs
- The role of design weights?
- The role of design variables in the model?

- PPS-WOR sampling design
- Continuous study variable y
- Linear mixed model with random intercepts
- Model-based EBLUP
 - Inclusion of PPS size variable in the model
- Pseudo model-based EBLUPW
 - Incorporation of design weights in the estimation procedure of the model

Population N = 1 million elements

D = 100 domains

Size of domain U_d is proportional to $\exp(q_d)$ where q_d is simulated from Uniform(0,2.9)

47 minor domains (-69 elements)19 medium-sized domains (70-119)34 major domains (120-)

PPS size variable x_1 : Uniform(1,11) Variable x_2 (unrelated to the sampling design): Uniform(-5,5)

Random intercept u_{0d} and random slopes u_{1d} and u_{2d} : Multinormal distribution $Var(u_{0d}) = 1$, $Var(u_{1d}) = Var(u_{2d}) = 0.125$ $Corr(u_{0d}, u_{1d}) = Corr(u_{0d}, u_{2d}) = -0.5$, $Corr(u_{1d}, u_{2d}) = 0$ Residual ε followed N(0, 100)

Values of the *y*-variable were simulated as

$$y_{k} = (\beta_{0} + U_{0d}) + (\beta_{1} + U_{1d})X_{1k} + (\beta_{2} + U_{2d})X_{2k} + \varepsilon_{k}$$
$$\beta_{0} = \beta_{1} = \beta_{2} = 1$$

Correlations of the variables in the population

 $corr(y, x_1) = 0.441$ $corr(y, x_2) = 0.446$

Population N = 1,000,000Sample n = 10,000

Monte Carlo experiments

K = 1000 independent PPS-WOR samples

Inclusion probabilities: $\pi_k = nx_{1k} / \sum_{k \in U} x_{1k}$ Weights $a_k = 1 / \pi_k$ varied between 54.5 and 599.8

EBLUP estimator of domain totals - basic form

$$\hat{t}_{dEBLUP} = \sum_{k \in U_d} \hat{y}_k, \ d = 1, \dots, D$$

Fitted models:

Special cases of linear mixed models with random intercepts: $y_k = \beta_0 + u_{0d} + \beta_1 x_k + \varepsilon_k$ Models fitted by REML or pseudo REML (REML-W) Predicted values: $\hat{y}_k = \hat{\beta}_0 + \hat{u}_{0d} + \hat{\beta}_1 x_k$, $k \in U_d$, d = 1,...,D

Linear mixed model $y = X\beta + Zu + \varepsilon$

Pseudo EBLUP (EBLUPW) estimators are derived by incorporating design weights a_k in ML-W and REML-W estimation procedures of model parameters by using HT estimators for certain matrix products (Domest and RDomest programs of Ari Veijanen)

Modification of matrix products of **X**, **y**, **Z** matrix (whose columns are domain indicators), and **e** (the vector of residuals): Matrix product **A'B** ($\mathbf{A}, \mathbf{B} = \mathbf{X}, \mathbf{Z}, \mathbf{y}, \mathbf{e}$) was replaced by **A'WB**, where **W** is the diagonal matrix of design weights a_k

Absolute relative bias (ARB)

$$\mathsf{ARB}(\hat{t}_d) = \left| \frac{1}{K} \sum_{v=1}^{K} \hat{t}_d(s_v) - t_d \right| / t_d$$

Relative root mean squared error (RRMSE)

RRMSE
$$(\hat{t}_{d}) = \sqrt{\frac{1}{K} \sum_{v=1}^{K} (\hat{t}_{d}(s_{v}) - t_{d})^{2}} / t_{d}$$

where *K* is the number of simulated samples

Table 1. Average ARB (%) and average RRMSE (%) of EBLUP estimators.

07	Average ARB (%)			Average RRMSE (%)		
Model and	Domain size class			Domain size class		
estimator	Minor	Medium	Major	Minor	Medium	Major
Model 1 v	· /	(70-119)	(120+)	(20-69)	(70-119)	(120+)
Model 1 $y_k = \beta_0 + u_d + \varepsilon_k$						
EBLUP	19.7	19.5	20.3	19.9	19.8	20.6
EBLUPW	3.7	3.1	2.1	6.8	6.8	6.1
Model 2 $y_k = \beta_0 + u_d + \beta_1 x_{1k} + \varepsilon_k$						
EBLUP	4.0	3.6	2.3	5.4	5.2	4.5
EBLUPW	3.6	3.0	1.9	6.3	6.1	5.5
Model 3 $y_k = \beta_0 + u_d + \beta_2 x_{2k} + \varepsilon_k$						
EBLUP	19.6	19.6	20.2	19.9	19.9	20.5
EBLUPW	3.4	2.9	1.9	6.5	6.4	5.7
NOTE: Variable x_1 is the PPS size variable						

- Bias can be large for a misspecified model
- Unequal probability sampling can be successfully accounted for with two options
 - Inclusion of the size variable into the model for modelbased EBLUP
 - Use of pseudo EBLUP by incorporating design weights in the estimation procedure of the model
- Squared bias component can still dominate MSE
 - Can be difficult to obtain proper confidence intervals