The Numerical Reliability of GAUSS 8.0

A. Talha Yarra

A number of studies have investigated the numerical reliability
of the GAUSS Mathematical and Statistical System by Aptech
Inc. Those studies identified several critical accuracy errors for
different computational methods. We conducted comprehensive
tests of this widely used package on estimation, statistical distri-

butions, and random number generation and found that GAUSS

8.0 still has serious problems. especially with statistical distri-
butions and random number generation.
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cal reference datasets (StRD).

I. INTRODUCTION

The numerical accuracy of statistical and econometric soft-
ware cannot be taken for granted, and serious discrepancies can

be found in many widely used programs. A number of stud-
ies have addressed these problems, for example, McCullough
(1999a,b), Vinod (2000), Kniisel (2002), McCullough and Wil-
son (2002, 2003), and Keeling and Pavur (2007). Many of these
studies also report that vendors, in general, can be slow to cor-
rect well-documented accuracy errors in their software. Accu-
racy testing is important for reflecting the profession’s ongoing
concern about the numerical reliability of its software, resulting
in the production of better and more accurate programs.

Here, we review the numerical accuracy of GAUSS Mathe-
matical and Statistical System (GAUSS) version 8.0 to investi-
gate the steps taken by Aptech Systems Inc. to fix the inaccu-
racies identified in earhier studies by Kniisel (1995) and Vinod
(2000). Our results indicate that GAUSS still has unacceptable

problems, especially with statistical distributions and random
“humber generation. We also discover that the numerical accuracy
of the results produced by the GNU/Linux version of the soft-
ware 1s higher—slightly but statistically significant—compared
to the MS Windo
The following section discusses previous studies regarding the
numerical reliability of GAUSS. provides details on the testing
and presents our findings after s comprehensive as

version.

method used,

2. THE NUMERICAL ACCURACY OF GAUSS

The numerical reliability of GAUSS has been the subject of
a number of studies. First, using the SAS program (version
6.10) and his own ELV utility, Kniisel (1995) reported “unac-
ceptable” inaccuracies in the statistical distribution functions in
GAUSS. Vinod (2000) performed a more comprehensive anal-
ysis of accuracy on multiple fronts and found critical accuracy

errors especially in linear and nonlinear regressions as well as
serious nonrandomness problems. Blaming both the language
itself and the programs offered as a part of the standard pack-
age, Vinod concluded by warning: “This should be a wake-up
call, since the inaccuracies appear in bread-and-butter econo-
metrics computations.” In a recent replication study, Zeileis and
Kleiber (2005) discussed a numerical problem “with no easy
workaround,” which affects GAUSS versions including but not
limited to 3.2.32 through 6.08.

We adopt the same method employed by Vinod (2000). Ini-
tially proposed by McCullough (1998}, this procedure is com-
monly used to assess the reliability of statistical software on three
fronts: estimation, statistical distributions, and random number
generation. In particular, we first evaluate the accuracy of esti-
mation using the “Statistical Reference Datasets” (StRD) by the
National Institute of Standards and Technology (NIST). After-
wards, we make an assessment of the random number generator
and employ the ELV program by Kniisel (2003) to verify accu-
racy of the values computed by GAUSS for various statistical
distributions.

The StRD is composed of five main categories, namely: anal-
ysis of variance, linear regression, Markov chain Monte Carlo,
nonlinear regression, and univariate summary statistics. The ref-
erence datasets are further organized by level of difficulty {lower,
average, and higher) according to the complexity of the model
used and the stiffness of the data. For all the models, NIST pro-
vides certified values computed with multiple precision in 500
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Table 2

Numerical tests of linear least squares.

GAUSS for WINDOWS 3.2

GAUSS SYSTEM 8.0

Dataset Diff. Coeff. SE R-square Coeff. SE R-square
Norris i 12.2-129 105 1515 12.1-129 111 15-1s
Pontius i 1o-126 7.9 14.6-15 11.3-123 7.9 14515
Nolnt] 4 147147 134 013 1515 134 -15
Noln2 a 5-1 14.3 013 1515 14.3 0.4-15
Filip h 0 8] 1.2-2.9 n.s n.s.-3
Longley h 10 13.4-14.8 > . 103 12.6-15
Wumpl erl h 0 11.4-15 46-93 0 10.5-15
Wampler2 h 4.4 11.4-15 94-134 ¢l 10815
Wampler3 h 6.3 11415 4.6-9.6 55 10.5-15
Wamplerd h 10.1 11.4-15 4.6-8.3 9.5 10.5-15
Wampler$ h 105 11.4-135 4.6-6.3 116 103-132

Note: Numbers on the right show the NADs obtained with the "olsqr2 (17 function.

digits of accuracy, which were later rounded to 15 significant
digits (11 for nonlinear least squares). We evaluated GAUSS in
all departments except for Markov chain Monte Carlo and anal-
ysis of variance, for which there is no function available as a part
of the standard package. We compared the output with the certi-
fied values from the SIRD by calculating the number of accurate
digits (NADs) based on the log relative errors defined as:

).

where g is the value computed by GAUSS and ¢ is the NIST-
certified correct value. In the case that ¢ equals zero, NAD is
given by the log-10 logarithm of the absolute error: LAE =
—logy Il g 1. For problems with multiple parameters, we chose
the least accurate of cach vector based on the principle that the
strength of the weakest link measures the ultimate strength of
a chain. All tests were conducted using a 2.00 GHz Intel Cen-
trino computer configured for dual booting both the GNU/Linux
{Debian) and the MS Windows XP operating systems.

LRE = max (0. —log;g [l g —c |/ |c (I

2.1 Numerical Tests of Univariate Summary Statistics

In the SIRD univariate summary statistics test suite, NIST pro-
vides certified values for the mean, standard deviation, and the
first-order autocorrelation coefficient for five “real-world” and
four artificial datasets with the number of observations ranging
from 3 1o 5,000. NIST acknowledges that the first-order autocor-
refation coefficient “may have several éeﬁnizions ” We used the
definition azzeg}iows; in the SIRD (cov( var(y, } fo; the

were calculate

1 . The o

and the “olsqgy ()7 functions compute only the regression co-
efficients. McCullough (1998) argued that when there are mul-
tiple options, “the simplest or most obvious method should be
used for calculating each statistic.” We used the “ols ()7 and
the “olsqr2 () 7 commands, which were also chosen by Vinod
(2000) for testing.

The “olsgr2 ()7 command employs the QR decomposition,
which is known to be more accurate in comparison to other tech-
niques such as the LU factorization or Cholesky factorization.
The “ols ()" command uses neither of those methods because
it is designed to compute regressions where the data is processed
in small pieces. This feature is useful when the data are too large
to fit into memory; however, it also results in further losses in
numerical accuracy.

Table 2 compares the NADs for the coeflicients, standard
errors, and R? obtained with the “ols {)” and “olsqgrz (}”
commands for both GAUSS 3.2 for Windows and GAUSS Sys-
tem 8.0. There is a methodological disagreement among statis-
ticians in computing the R* for models without an intercept
as discussed by Ramanathan (2002, p. I51) . Apparently, the
“ols ()7 function does not use the same definition employed
by NIST, hence the zero NADs for R< for the “nointl” and
“noint2” datasets. Also, “Filip” is a tenth-order polynomial
and many software packages are known to fail this test by provid-
ing zero NADs without giving any warnings. Unlike the earlier
version, the “ols {17 function in GAUSS 8.0 correctly detected
the near singularity in the covariance matrix of independent vari-
ables and gave an appropriate error message. This response is
af‘upmbk because the user is not misled. On the other hand. the

Solsgr2 ()7 command still returns zero or very low NADs for
this test without any notification and needs to be fixed.
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Table 3. Numerical tests of nonlinear least squares

GAUSS for WINDOWS 32

GAUSS SYSTEM 8.0

Default Settings

cfault Settings  Pref. Numeric  Pref. Analytic

Dataset  Diff. Coeff. - SE Coeff. —  SE Coeff. - SE Coeff. - SE
Misrula I 74 - 71 ns o~ ons 98 - 95 88 - b6
Chwirm2 | S0 - 54 70 - 69 70 -~ 69 85 - 39
Chwiratl | 56 - 0 76 - 71 84 - 73 86 - 89
Lanczos3 | 32 - 32 0 - 0 55 - 47 65 -~ 64
Gauss ! 1 28 - 0 90 - 78 90 - 78 107 - 109
Gauss2 I 90 -~ 84 84 - 73 84 ~ 73 106 - 100
DanWood | 79 -~ O 65 - 6.7 9.1 - 78 113 - 112
Misralb 1 85 - 83 ns — s 91 - 64 10.3 - 103
Kirby2 a g - ¢ ns - 0y ns -~ ns 104 - 107
Hahnl a g - ¢ ns - 0 By o~ ons 10.7 - 103
Nelson @ 0 - 0 ns - ns ns - ns ns - ns
MGHI7  a 6 - 0 ns - ons T0% - 6.0% 9.7% - §02%
Lanczosl  a o - 0 o - 0 93 - 17 93 - 18
Lanczos? o - 1.0 0 - 0 66 - 5.1 710 - 71
Gauss3 a 82 - 79 77 - 69 9.1 - 6.9 10.5 - 104
Misralc a 72 -~ 70 ns - o0 92 - 6.2 99 - 97
Misrald 2 - 0 95 - 64 93 ~ 64 1.4 - 109
Roszman! a 71 - 14 54 -~ 6.0 6 - 72 71 - 76
EnsO a 58 - 638 350 - 61 58 ~ 66 74 - 8.6
MGHO9 h 53 - 0 24 - 26 68 - 68 76 ~ 17
Thurber  h 60 - L1 74 -~ 07 74 - 6.7 92 - 86
BoxBOD h 82 - 80 64 — 64 86 - 86 93 - 93
Rai42 h 0 - 13 88 -~ 7.6 88 ~ 76 112 - 106
MGHI0O h ns - ns ns o~ ns 7.5% — 5.3% 8.8% — 8.9%
Eckerled  h 91 - 93 76 - 7.6 102 - 79 105 - 103
Raid3 h 67 - 0 67 - 63 79 - 64 9.6 - 99
BennettS h ns ns 16 - 47 46 — 47 99 - 70

* For the MGH17 and MGH 10 datasets, convergence was achieved using the easier start2 values.

in GAUSS when this command was first written. Meanwhile, the
program’s performance in this fundamental area can be consid-

ered acceptable but unimpressive.

2.3 Numerical Tests of Nonlinear Least Squares

GAUSS does not have a native implementation of nonlinear
least squares. However, there are various add-on modules writ-
ten in GAUSS for this estimation method. Vinod (2000) reported
important accuracy errors for this test suite using Aptech’s offi-
“Constrained Optimization” (CO) module. However, CO is
designed primarily for solving constrained nonlinear program-
ming problems and the way convergence is determined by this
module differs from unconstrained optimization problems simi-
lar to those provided by the StRD nonlinear regression test suite.
Consequently, for our own testing, we decided to use the “Curve
ge, which is another premier application module by
slable at an extra cost and designed specifically for
solving this type of problem with gre acy. By defauly,
the Curve Fit module employs the Levenberg-Marquardt varia-
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tion of the Gauss-Newton method, however, it is also possible 1o
he conjugate gradient method {the Polak-Ribiere variation}
technigue. The primary methed for convergence
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sible using some other setting and it is the responsibility of the
user to improve the accuracy of output by learning how to use
the software effectively. Therefore, in Table 3, we provide the
regression coefficients and standard errors calculated in three
different ways: In the first method, the estimations were carried
out simply by using Curve Fit's default options. The second and
third methods involve using our preferred combination of set-
tings without and with the user-supplied analytical derivatives.
The analytical derivatives not only deliver more accuracy, but
also enable the solution of problems that could not be solved
by their numerical approximations. For each dataset, the pre-
ferred combination of settings was determined after running 96
separate estimations which involve

I. using either the Levenberg-Marquardt method or the con-
jugate gradient method;

Z. using either the analvtical derivatives or their numerical
counterparts;

3. using the two sets of start values ;* svided %3}; the SIRD
where the first set is further from the solution, hence con-
sidered more difficult compared to th second set;

4 convergence ol-

. repeating the above while increasing the
erance from 1.OE-3 to L.OE-14 gradua

achieve converg
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other datasets, the performance of the Curve Fit module with the
default settings is rather poor. Once again, the SIRD shows that
users should not trust results produced with default settings. On
the other hand, the results obtained with the preferred settings

can be judged acceptable. Although some of the nonconvergence
problems linger when numerical derivatives are employed, the
user is not misled and the performance further improves with

the use of analytical derivatives. Consequently, GAUSS’ per-

formance in the SIRD nonlinear regressions test suite using the

Curve Fit module, which is recommended by Aptech for this
estimation method, is judged acceptable.

2.4 Randomness Tests of Random Number Generation

The quality of pseudo random numbers generated by com-
puter software is critical especially for Monte Carlo simulations
and bootstrap methods, which often require billions of calls to
the random number generator (RNG). A good RNG must cre-
ate reproducible output, have a very long period, and produce
numbers which are not only uniformly distributed but also in-
dependent in a moderate number of dimensions, as discussed
by Ripley (1990). Using the DIEHARD program by Marsaglia
(1996), Vinod (2000) uncovers critical nonrandomness problems
in GAUSS and advises researchers against using this software
for RNG intensive tasks.

After Vinod’s study and since version 3.6, GAUSS now of-
fers two RNGs, namely “rndi ()7 and “rndkmi ().” The
“rndi ()7 algorithm, which was tested previously, is of linear
congruential type with a short maximum period (2%2 — 1) and
vartous other deficiencies. For example, one important problem
with this class of RNGs is that the pseudo random numbers cre-
ated will have nonrandom lower order bits. Also, when the ran-
dom numbers are used as a source of points in an n-dimensional
cube, as the number of dimensions increases, the points tend to
cluster on plaim

The newer “rndkmi ()" function introduced in GAUSS
3.6 is an implementation of the “recur-with-carry” type
KISS+Monster algorithm by George Marsaglia of Florida State
University. According to a technical report by Ford and Ford
{2001) available for download from Aptech’s Web site, this
new generator claims to have an impressive period greater than
108388 provides more than 920 dimensions, and claims 10 pass

It of the 18 randomness tests in the DIEHARD suite.

Aptech does not allow these claims to be independently ver-
ified. so users should be wary. Aptech claims the code as pro-
and does not make the algorithm or code available for
sn. 1t 18 crucial to have open access to the RNG and the

¢ of this issue 15 best s e of Microsoft
ed by McCullough ¢ 05). As a re-
i f tably bad RNGs in Excel,
Microsoft modi " function claiming to imple-
the Wichmann-Hill (1982 RNG in Excel 2003, However,
Microsoft did not provide the source code, nor could the users
enter a seed (o verify Microsolt’s claims. It was later understood
that the new RNG was not the Wichmann-Hill {or its correct im-
;\% mentation) because {’% RAND” fﬂﬁwm \fwz,iﬁ occasion-

prietary
mspectio
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can still be found in popular commercial statistical and simula-
tion software and there is no reason to trust a “black box” RNG
especially when there are excellent free/libre and open-source
alternatives available.

Another issue with the new “rndkmi {)” function is regard-
ing Aptech’s claim that it passes all of the 18 randomness tests
in the DIEHARD suite. Although this marks an improvement
over the old “rndi ()7 function, the DIEHARD program itself
is passé. McCullough (2006) discussed a new program named
TESTUO! by L'Ecuyer and Simard (2006), which provides a
more comprehensive testing of uniform random number gener-
ators. Many RNGs that are known to pass the DIEHARD tests
fail the TESTUO! tests. However, using TESTUO! for testing
the “rndkmi {)” command requires the source code of the pro-
gram, which is not available. As a result, until Aptech imple-
ments an RNG that can be publicly verified to be capable of
passing the tests in TESTUO!, the performance of GAUSS in
random number generation is considered unacceptable.

2.5 Numerical Tests of Statistical Distributions

Kniisel (1995) documented serious flaws in the computation
of several elementary statistical distributions in the MS-DOS
version of GAUSS 3.2.6 and Kniisel (1996) later found that the
same errors were not fixed in version 3.2.13. Vinod (2000) also
reported that these accuracy problems have not been corrected
in GAUSS for Windows 3.2.37. More recently, while porting the
code for the multiple structural change model by Bai and Perron
(2003) to GNU-R, Zeileis and Kleiber (2005) discovered that, in
GAUSS version 3.2.32, algorithm errors in the “1ncdfn” func-
tion, which computes the natural log of Normal cdf, results in an
underflow in the computation of confidence intervals for a non-
standard distribution beyond the 90.7% quantile, rendering the
original results invalid. They also confirmed that this numerical
problem persisted in GAUSS versions including but not limited
t0 5.0.22, 5.0.25, and 6.08 and that it was finally fixed by Aptech
while the study was in review.

In order to see whether GAUSS 8.0 can finally be considered
reliable in the statistical distributions department, we employed
the second edition of Kniisel’s (2003) ELV program, which is
capable of calculating exact values of nine elementary statistical
distributions for probabilities as small as 10710 Tables 4
through 8 compare critical values computed by GAUSS 3.2.6,
GALUSS 8.0, and GNU-R 2.5.0 with their “exact” counterparts
computed by ELV for the F, beta, and noncentral chi-square,
noncentral 7, and noncentral 7-distributions, respectively. It i
quite noticeable that Aptech has attempted to fix some of the
problems in these functions and the program no longer hangs up
or gives over/underfiow errors. In addition, the documentation
is updated to include more details regarding GAUSS s statistical
fé%?ﬁﬁ"ﬁi The noncentral r-distribution also seems (o be
¢ i3 plenty of room
for iw;@mﬁnsm in this area as well Several entries showing
0.00e+000 under GAUSS 8.0 prove that the £ and Beta
distributions are still very unstable and therefore unsafe to use,

Also, the noncentrality parameters for the chi-square and the /-
distributions need to be revised in order {0 ¢o *1;:& w zin the Ei,\
program and most other st
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Table 4. F-disuibution with (1. 7y degrees of freedom.

X, Ny, ng ELV GAUSS 326  GAUSS 8.0 GNU-R25.0
352,100 3.00e — 012 3.0le ~012 Exact Exact
47.2. 100 4.07¢ — (115 4.82¢ — 015 0.00e + 000

48,2, 100 2.44e - 013 0.00e + 000 4.44e — 015

50,2, 100 888 — 016 0.00e 000 0.00e + 000

51.2.100 5.40e —~ 016 Exact Exact

1000, 2. 100 7.75e — 067 Exact Exact

Table 5. Beta distribution with parameters (a, b).

E ELY GAUSS 3.2.6  GAUSS 8.0 GNU-R25.0
0.8.100. 1 2.04e — 010 Exact Exact Exact
0.73.100. 1 2.15¢ - 014 2.50e — 014  9.77e — 015 Exact
0.72, 100, 1 541e~ (15 0.00e + 000  2.55e - 014 Exact
0.51.100.1 572~ 030 0.00e-+ 000  0.00e + 000 Exact
0.5, 100, 1 7.89¢ — 031 Exact Exact Exact
0.2.100. 1 1.27e -~ 070 Exact Exact Exact

Table 6. Noncentral chi-square distribution with parameters (n. ).

ok ELV GAUSS 3.2.6 GAUSS 8.0  GNU-R2.5.0
1300, 20, 37 1.00e + 000 9.30e - 001 9.30e — 001 Exact
1500, 20, 38 1.00e + 000 Overunderflow(!}  6.85e — 001 Exact
1500.20. 394 1.00e + 000 Underflow(!) 3.03e — 001 Exact

Table 7. Noncentral F-distribution with parameters (ny, 73, A).

RN T SN ELY GAUSS 326  GAUSS80 GNU-R250

100,10, 1. 37 8.30e — 001 2A4le — 001 241e — 001 Exact

100, 10,1, 38 : §.28¢ — (01 Hangs up(h 2.28e — 001 Exact

100, 16, 1. 39 8.26e — 001 Underflow(l)  2.16e ~ 001 Exact
Tub Soncentrsl F-distribution with parametens (1 8),




All in all, GAUSS’ performance on statistical distributions is
judged unaccepiable.

2.6  Windows Version Compared to the GNU/Linux Version

GAUSS was first introduced in 1984 as a terminal application
for MS-DOS and was initially written in the Assembler language.
MS-DOS is a 16-bit operating system, and when GAUSS was
later ported to the 32-bit MS Windows platform it was rewrit-
ten entirely in the C programming language. Consequently, the
current source code for the number-crunching parts of GAUSS
are identical for both the MS Windows and the GNU/Linux plat-
forms.

During our testing of GAUSS, we discovered that, for the
StRD nonlinear least squares test suite, the GNU/Linux version
of the program fails to converge with analytical derivatives in
the “MGH10” and the “MGH17” models and it also requires the
easier set of start values to converge with the default settings in
the “Gauss!” model. It is likely that Aptech’s Curve Fit module
was primarily developed and tested on the MS Windows platform
and we suspect this is the reason why the GNU/Linux version
has more difficulty in converging (11 datasets instead of 8 out of
27) in comparison with the Windows version.

For StIRD’s univariate summary statistics and the linear
regression test suites—which involve more straightforward
computations—it has not escaped our notice that the GNU/Linux
version of GAUSS produces considerably higher NADs in 24
cases, while the NADs are lower in 8 cases. The differences can
be quite large especially for the linear least squares procedure.
For example, using the “olsqr2 () function, the lowest NAD
for the coefficients of the Longley model under Windows was
11.2 witha GNU/Linux counterpart of 12.5. The mean difference
in NADs was only 0.23, however, running a paired sample 7 test,
we failed to reject the hypothesis that differences are significant
at the 5% level when there are platform-dependent disparities
in results. These small discrepancies in NADs are likely to be
caused by the different C libraries and compilers used on the
two platforms. Yalta and Yalta (2007) also mention similar dif-
ferences between the GNU/Linux and MS Windows versions of
GRETL, the free/libre and open-source econometrics package.

Research replication is the cornerstone of science and it is
quickly becoming an important concern with today’s trend to-
ward openness in econometric analysis. McCullough and Vinod
(2003} argued that a replicator needs not only access to the data
and to the program code, but also knowledge of the software ver-
sion and the operating system. As a result, our findings can be
interpreted as additional proof that knowledge of the operating
system is imperative.

3. CONCLUSION

wave been significant enhancernents in the ac

shows that software develop-

ers do respond 1o benchmarking as argued by Keeling and Pavur
(20 of

“stdc2 (}” procedures, posted online at the GAUSS Source
Code Archive (hip:// www.american.edu/ ucademic.depts/ cas/
econ/ gaussres/ GAUSSIDX. HTM), perform the computation of
column means and standard deviations more accurately than
GAUSS’s own “meanc {)” and “stdc ()7 commands. Also,
the “ols ()7 and the “clsqgr2 ()7 commands, several statis-
tical functions as well as the CurveFit add-on need further im-
provements. Moreover, having open access to the random num-
ber generator is crucial and GAUSS should follow the example
of other software such as GNU-R, LIMDEP, and TSP in using
a publicly vetted RNG. Finally, the number of commands and
functions available in GAUSS looks impressive until one real-
izes that, added at different intervals, some of these programs
perform similar operations with different levels of numerical ac-
curacy. We believe that Aptech’s attempts to keep syntax simple
this way is a poor design choice, which can lead to the creation
of less than optimal code by many users.

In conclusion, it seems that the primary feature that sets
GAUSS apart from its alternatives is its speed and this is Aptech’s
main concern before making any modifications to the language.
It is true that choosing a fast algorithm over a slower, albeit
slightly more accurate, algorithm can facilitate estimation of a
large and complex model by reducing a run that takes days into
one that completes in only several hours. On the other hand,
small accuracy sacrifices accumulate over time so that it be-
comes difficult for the researcher to be confident in the output
after several million iterations. In a world that increasingly de-
mands reproducible research results, and with computing costs
plummeting, speed in execution of programs is slowly becom-
ing a trivial issue. Morcover, many scientific departments today
are also discovering parallel computing possibilities offered by
various cluster management systems such as Beowulf and open-
Mosix. These free/libre programs (available gratis and also libre
as they liberate computer users from proprietary software un-
der restrictive licensing terms) make it easier than ever to cre-
ate super computers running on commodity hardware under the
GNU/Linux platform. As a result, it is our opinion that GAUSS
is currently suitable for rapid deployment of complex models

and checking preliminary findings, however, researchers need

to consider using a more accurate alternative for the final analy-

sis. Also, journal editors should be judicious about results based

on GAUSS versions 8.0 and earlier.
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