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Design-based Methods of Estimation for Domains
and Small Areas

Risto Lehtonen and Ari Veijanen

1. Introduction

This chapter is devoted to the estimation for population subgroups or domains. Regional
areas constructed by administrative criteria, such as county or municipality, are typical
domains of study (Yates, 1949), also called domains of interest. Estimation for domains,
or domain estimation for short, refers to the estimation of population quantities, such
as totals or means, for the desired population subgroups. Domain estimation will be
examined in the context of design-based estimation. Design-based methods for domain
estimation are frequently used in many areas of empirical research and official statistics
production.

Design-based estimation for a finite population quantity refers to an estimation
approach where the randomness is introduced by the sampling design. Thus, the
approach also is called randomization approach. In design-based estimation, it is empha-
sized that estimators should be design consistent and, preferably, essentially (or nearly)
design unbiased at least in medium-sized samples.

Some early milestones of design-based estimation for domains are Yates (1953, 1960)
and Durbin (1958). Hartley (1959) introduced the so-called domain-specific variables
for domain estimation with standard design-based estimators of population quantities.
This technique has appeared fruitful for example in software development for domain
estimation.

We focus on the estimation of population totals for domains. Totals are chosen
because of their fundamental role in survey sampling and because more complex param-
eters can often be expressed as functions of totals. The estimation of ratios and quantiles,
such as median, is also discussed. The availability of high-quality auxiliary information
is crucial for reliable estimation for domains. The reason for incorporating auxiliary data
in a domain estimation procedure is obvious: improved accuracy is attained if strong
auxiliary data are available for domain estimation.

Different types of auxiliary data can be used in design-based estimation for domains.
The available auxiliary data can be aggregated at the population level, at the domain
level, or at an intermediate level. Aggregates are often taken from reliable auxiliary
sources such as population census or other official statistics; this case is common, for
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example in North America. If the auxiliary data are included in a sampling frame, as is
the case in many European countries, notably in Scandinavia, the necessary auxiliary
totals can be aggregated at the desired level from unit-level data sources.

Calibration techniques and model-assisted methods using aggregated auxiliary data
offer efficient tools for design-based domain estimation. Calibration is discussed, for
example, in Deville and Särndal (1992) and Kott (2003). Särndal (2007) provides a
comprehensive treatment of the calibration approach in survey theory and practice. An
overview on calibration weighting is given in Chapter 25. Calibration methods were
developed for domain estimation in Estevao and Särndal (1999, 2006). The proposed
approach to calibration is sometimes called linear or model-free calibration. Model-
assisted methods using generalized regression (GREG) estimators were extensively
discussed in Särndal et al. (1992). GREG estimation was introduced for domain estima-
tion in Särndal (1981, 1984), Hidiroglou and Särndal (1985), and Särndal and Hidiroglou
(1989) and were developed further (including computational tools) in Estevao et al.
(1995). We elaborate to some extent these developments; it will appear that the level at
which the auxiliary data are used is crucial: efficiency tends to improve when the aggre-
gation level comes close to the domain level when compared to the use of higher-level
aggregates.

A statistician also can be in a favorable position to use unit-level auxiliary data for
domain estimation. These data are incorporated in the estimation procedure by unit-level
statistical models. We illustrate various members of the family of GREG estimators for
these cases. For this purpose, we assume that register data (such as population census
register, business register, different administrative registers) are available as frame popu-
lations and sources of auxiliary data, and the registers contain unique identification keys
that can be used in merging at microlevel data from registers and sample surveys. Known
domain membership for all population elements is often assumed. Many countries, both
in Europe and elsewhere, are progressing in the development of reliable population and
business registers that can be accessed for statistical purposes. Obviously, access to
micromerged register and survey data provides great flexibility for domain estimation.
In GREG estimation, this view has been adopted, for example, in Lehtonen and Veijanen
(1998), Särndal (2001), Lehtonen et al. (2003, 2005), and Hidiroglou and Patak (2004).
Wu and Sitter (2001a) use unit-level auxiliary information in their model calibration
method.

Design-consistent estimation for domains contrasts with model-dependent estima-
tors, which can have desirable properties under the model but whose design bias does not
necessarily tend to zero with increasing sample size (Hansen et al., 1978, 1983; Lehto-
nen et al., 2003; Särndal, 1984). Design-consistent domain estimators also have been
proposed in the context of model-based estimation. Model-based and model-dependent
methods falling under the headline of small-area estimation may be required for the
smallest domains (with a small sample size in a domain), where design-based esti-
mators often fail. The methods include a variety of model-based techniques such as
synthetic and composite estimators, empirical best linear unbiased predictor (EBLUP)
type estimators and various Bayesian techniques. The monograph by Rao (2003a) pro-
vides a comprehensive treatment of model-based small-area estimation. Model-based
small-area estimation is discussed in Chapter 32.

In design-based estimation, the existence of a model is not necessarily recognized.
For example in model-free calibration, an explicit model is not present but exists in
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the model calibration method. An assisting or “working” model is postulated in model-
assisted estimation. In GREG estimation, the main goal is to obtain favorable design-
based properties, such as small design bias. These design-based properties should hold
even when the model is misspecified. If our model fits well, decreased design variance is
expected for a GREG estimator. Thus, a model is used as an assisting tool in constructing
the estimator, which is then modified to meet the desired design-based properties. For
example, a GREG estimator for a domain total is often constructed by adding a bias
correction term to the sum of fitted values calculated over the population domain. The
bias correction term is obtained as a weighted sum of the sample residuals over the
domain.

In this chapter, we do not address design-based techniques for nonresponse adjust-
ment (see Chapter 8). Calibration approach to nonresponse treatment is discussed in
Särndal and Lundström (2005). Additional topics that are not covered include informa-
tive sampling in the context of domain estimation (e.g., Pfeffermann and Sverchkov,
2007) and estimation for domains in the presence of outliers (see Chapter 11).

This chapter is organized as follows. Theoretical framework, terminology, and nota-
tion are introduced in Section 2. Section 3 discusses direct estimation for domains by the
Horvitz–Thompson (HT) estimator, calibration and GREG estimators. In these cases,
domains are often considered as strata in the sampling design. We extend in Section 4
our discussion to more general estimator types and domain structures that are often
encountered in practice. GREG estimators for domains are discussed extensively; we
also address composite estimation from a design-based perspective. In all these cases,
auxiliary information is needed at an aggregated level. Extensions are discussed in
Section 5, where a number of empirical examples based on simulation experiments are
presented. In these cases, access to unit-level auxiliary data is assumed. Section 6 sum-
marizes some properties of selected software products that can be used for design-based
domain estimation.

2. Theoretical framework, terminology, and notation

2.1. Design-based inference at the population level

Let us consider a collection of random variables (Y1, Y2, . . . , Yk, . . . , YN) with unknown
values (y1, y2, . . . , yk, . . . , yN) of a variable of interest y in a fixed and finite population
U = {1, 2, . . . , k, . . . , N}, where k refers to the label of population element. The fixed
population is said to be generated from a superpopulation. For practical purposes, we are
interested in one particular realized population U with (y1, y2, . . . , yN), not in the more
general properties of the model explaining how the population evolved. This is important
especially in national statistical agencies, which attempt to describe the current state of
the population of a country.

In the design-based approach, the values of the variable of interest are regarded as
fixed but unknown quantities. The only source of randomness is the sampling design,
and our conclusions should apply to hypothetical repeated sampling from the fixed
population.

In estimation for the whole population, we are mainly interested in the total
t = ∑

k∈U yk or mean ȳ = ∑
k∈U yk/N of the variable y. Notation

∑
k∈U refers to

summation over all population units k ∈ U. In practice, the values yk of y are observed
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in an n element sample s ⊂ U, which is drawn at random by a sampling design giv-
ing probability p(s) to each sample s. The sampling design can be complex involving
stratification and clustering and several sampling stages.

The design expectation of an estimator t̂ of population total t is determined by the
probabilities p(s): let t̂(s) denote the value of estimator that depends on y observed in s.
Then the expectation is E(t̂) = ∑

s p(s)t̂(s). A design unbiased estimator has E(t̂) = t.

Design variance is defined as Var(t̂) = ∑
s p(s)

(
t̂(s) − E(t̂)

)2
. An estimator of design

variance is denoted by V̂ (t̂).
An estimator is design consistent if its design bias and variance tend to zero as the

sample size increases.An estimator is nearly design unbiased if its bias ratio (bias divided
by standard deviation) approaches zero with order O(n−1/2) when the total sample size
n tends to infinity (Estevao and Särndal, 2004). For a nearly design unbiased estimator,
the design bias is, under mild conditions, an asymptotically insignificant contribution
to the estimator’s mean squared error (MSE) (Särndal, 2007, p. 99).

Variance estimators are derived in two steps. First, the theoretical design-based vari-
ance Var(t̂) (or its approximation if the theoretical design variance is intractable) is
derived. Second, the derived quantity is estimated by a design unbiased or design-
consistent estimator V̂ (t̂).

When the estimator is a weighted sum of observations over sample, it is practical
to derive expectation and variance using inclusion probabilities. An observation k is
included in the sample with probability πk = P{k ∈ s}. The inverse probabilities are
called design weights ak = 1/πk. A useful tool is a sample membership indicator
Ik = I{k ∈ s} with value 1 if k is in the sample and 0 otherwise, E(Ik) = πk. In
variances, we have to consider inclusion of pairs of observations: the probability of
including both k and l(k �= l) is πkl = E(IkIl) with inverse akl = 1/πkl, and akl = ak

when k = l. The covariance of Ik and Il is Cov(Ik, Il) = πkl − πkπl; this quantity is
needed in constructing design variances and their estimators, especially for without-
replacement type designs.

2.2. Basic features of design-based inference for domains

2.2.1. Planned and unplanned domain structures
In domain estimation, we are mainly interested in totals or averages of a variable of
interest y over D nonoverlapping domains Ud ⊂ U, d = 1, 2, . . . , D, with possibly
known domain sizes Nd . As an example, consider the population of a country divided
into D domains by regional classification, with Nd households in domain Ud , and the
aim is to estimate statistics on household poverty for the regional areas. A domain total
is td = tdy = ∑

k∈Ud
yk, where yk refers to measurement for household k, and domain

mean is ȳd = td/Nd , d = 1, . . . , D.
Corresponding to population domains, the sample s is divided into subsamples sd , d =

1, . . . , D. Sampling design may be based on knowledge of domain membership of units
in population. If the sampling design is stratified, domains being the strata, the domains
are called planned (Singh et al., 1994) or primary domains (Hidiroglou and Patak,
2004); sometimes also design domains (Kish, 1980) or identified domains (Särndal,
2007). For planned domain structures, the population domains Ud can be regarded as
separate subpopulations. Therefore, standard population estimators are applicable as
such. The domain size Nd in every domain Ud is often assumed known and the sample
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size nd in domain sample sd ⊂ Ud is fixed in advance. Stratified sampling in connection
to a suitable allocation scheme such as optimal (Neyman) or power (Bankier) allocation
is advisable in practical applications to obtain control over domain sample sizes (e.g.,
Lehtonen and Pahkinen, 2004). Singh et al. (1994) describe allocation strategies to attain
reasonable accuracy for small domains, still retaining good accuracy for large domains.
Falorsi et al. (2006) propose sample balancing and coordination techniques for cases with
a large number of different stratification structures to be addressed in domain estimation.
If the domain membership is not incorporated into the sampling design, the sizes nsd

of
domain samples sd = s ∩ Ud will be random. The domains are then called unplanned
or secondary domains. Unplanned domain structures typically cut across design strata.
The property of random domain sample sizes introduces an increase in the variance of
domain estimators. In addition, extremely small number (even zero) of sample elements
in a domain can be realized if the domain size in the population is small. Unplanned
domain structures are commonly encountered in practice because it is impossible to
include all relevant domain structures into the sampling design of a given survey.

2.2.2. Extended domain variables of interest
A general tool for domain estimation is the extended domain variable of interest yd

defined as ydk = yk for k ∈ Ud and ydk = 0 for k /∈ Ud (Hartley, 1959). In other words,
ydk = I{k ∈ Ud}yk. Because td = ∑

k∈Ud
yk = ∑

k∈U ydk, we can estimate the domain
total of y by estimating the population total of ydk (e.g., Estevao et al., 1995; Estevao and
Särndal, 1999; Hidiroglou and Patak, 2004). Consequently, any population total or mean
estimator applied to ydk is usable as a corresponding domain estimator. Extended domain
variables are useful for estimation for unplanned domains because the contribution of
extra variance caused by random domain sample sizes can be easily incorporated in
variance expressions. The technique of extended domain variables allows building of
generally applicable software for domain estimation and is implemented, for example,
in survey sampling oriented SAS procedures and the GES software of Statistics Canada
(Estevao et al., 1995).

Extended domain variables can be incorporated in a model-assisted estimation pro-
cedure. However, a model fitted to the whole sample is not always going to fit well
because most of the ydk are zeroes. But when using extended domain variables, the
main interest is not necessarily in the goodness of fit; the primary objective is to attain
a single set of weights for all domains. Moreover, the estimates are additive: their sum
over the domains equals the estimate for the whole population (Estevao et al., 1995).
This can be considered as a benefit of practical importance, especially for routine official
statistics production. On the other hand, possible efficiency gains might not be attained
and therefore, we usually attempt to derive estimators using the original yk values.

2.2.3. Direct and indirect estimators
It is advisable to separate direct and indirect estimators for domains. A direct estima-
tor uses values of the variable of interest only from the time period of interest and
only from units in the domain of interest (Federal Committee on Statistical Method-
ology, 1993). A HT type estimator t̂d = ∑

k∈sd
yk/πk provides a simple example of

direct estimator. In model-assisted estimation, direct estimators are constructed by using
models fitted separately in each domain; an example is a model Yk = x′

kβd + εk,
k ∈ Ud , with domain-specific auxiliary x-data and a vector of regression coefficients
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βd , d = 1, . . . , D. A direct domain estimator can still incorporate auxiliary data outside
the domain of interest. This is relevant if accurate population data about the auxiliary
x-variables are only available at a higher aggregate level.

An indirect domain estimator uses values of the variable of interest from a domain
and/or time period other than the domain and time period of interest (Federal Committee
on Statistical Methodology, 1993). For example, if a linear model Yk = x′

kβ+εk, k ∈ U,
with a common vector β is used as an assisting model, the resulting domain estimator
will be indirect. In general, indirect estimators are attempting to “borrow strength” from
other domains and/or in a temporal dimension. The concept of “borrowing strength”
is often used in model-based small-area estimation (e.g., Rao, 2003a). Indirect model-
assisted estimators for domains are discussed in the literature (e.g., Estevao and Särndal,
1999; Hidiroglou and Patak, 2004; Lehtonen et al., 2003, 2005). Estevao and Särndal
(2004) have argued in favor of direct estimators in the context of design-based estimation
for domains.

2.2.4. Conditional design-based inference for domains
For unplanned domain structures, observed domain sample sizes can be taken into
account in estimation and in theory. We are interested in the average properties of
estimators in samples with observed domain sample sizes n = (n1, n2, . . . , nd, . . . nD)′.
In conditional design-based inference for domains (Falorsi et al., 2000; Hidiroglou and
Patak, 2004; Särndal and Hidiroglou, 1989) given n, the hypothetical repeated sampling
yields only samples s with n(s) = n. This subset of samples, Sn = {s∗ ⊂ U : n(s∗) = n},
is based on observed information, so it has been considered more relevant than the set
of all possible samples. By using conditional probabilities pc(s) = p(s)/P{n(s∗) = n},
if n(s) = n, and pc(s) = 0 otherwise, the conditional expectation of an estimator is
defined as E(t̂d |n(s) = n) = ∑

s:n(s)=n pc(s)t̂d(s). The conditional MSE and variance
are defined in the same way.

We prefer conditionally unbiased estimators to conditionally biased ones. We do
not encounter estimators that are conditionally unbiased but unconditionally biased
because the unconditional expectation is an average over conditional expectations. The
conditional approach may also result in changes in a domain estimation procedure. For
example, Falorsi et al. (2000) introduced a HT type estimator and a ratio estimator
incorporating conditional inclusion probabilities. Park and Fuller (2005) used condi-
tional inclusion probabilities for a calibrated GREG estimator.

The estimator of the conditional variance is, in general, different from the estima-
tor of the unconditional variance. Conditional variance estimate yields a conditional
confidence interval. In repeated sampling from the subset Sn, the conventional t-based
conditional confidence interval covers the true value approximately at a given rate if
the estimator is approximately normally distributed. Because this holds for all values of
n, the conditional confidence interval is also an unconditional confidence interval with
the same coverage rate. If the model is only approximately correct, a model-assisted
method does not always yield conditionally valid inference. It can be argued (Rao, 1997)
that model-assisted approach should be restricted to methods with good conditional
properties. Conditional inference has been based on other properties besides domain
sizes; there are examples of conditioning on strata sample sizes (Holt and Smith, 1979)
and on HT estimates of the auxiliary variables (Montanari and Ranalli, 2002; Rao,
1985).
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2.2.5. Design-based properties of domain estimators
Known design-based properties related to bias and accuracy of model-assisted estimators
are summarized in Table 1. For comparison, design-based properties of corresponding
model-dependent estimators are also included in the table. Model-assisted estimators
such as GREG are design consistent or nearly design unbiased by definition, but their
variance can become large in domains where the sample size is small. Model-dependent
estimators such as synthetic and EBLUP estimators are design biased: the bias can
be large for domains where the model does not fit well. The variance of a model-
dependent estimator can be small even for small domains, but the accuracy can be
poor if the squared bias dominates the MSE, as shown, for example, by Lehtonen et al.
(2003, 2005). For a model-dependent estimator, the dominance of the bias component
together with a small variance can cause poor coverage rates and invalid design-based
confidence intervals. For design-based model-assisted estimators, on the other hand,
valid confidence intervals can be constructed. Typically, model-assisted estimators are
used for major or not-so-small domains, and model-dependent estimators are used for
small domains where model-assisted estimators can fail.

Table 1 indicates that small domains present problems in the design-based approach.
Purcell and Kish (1980) call domain a minidomain when Nd/N < 1%. In such small
domains, especially, direct estimators can have large variance. Small domains are the
main reason to prefer indirect model-based estimators to design-based estimators (Rao,
2005). By proper planning of the sampling strategy, it is possible to decrease the variance
of a design-based estimator in the small domains. Singh et al. (1994) and Marker (2001)
give examples of such strategies.

In practice, there are two main approaches to design-based estimation for domains:
direct estimators that are usually applied for planned domain structures and indirect
estimators whose natural applications are for unplanned domains. The two main
approaches are discussed in Sections 3 and 4, respectively.

Table 1
Design-based properties of model-assisted and model-dependent estimators for domains and small areas

Design-based model-assisted methods Model-dependent methods

GREG and calibration estimators Synthetic and EBLUP estimators

Bias Design unbiased (approximately) by the
construction principle

Design biased
Bias does not necessarily
approach zero with increasing
domain sample size

Precision (Variance) Variance may be large for small domains
Variance tends to decrease with
increasing domain sample size

Variance can be small even for
small domains
Variance tends to decrease with
increasing domain sample size

Accuracy (MSE) MSE = Variance (or nearly so) MSE = Variance + squared bias
Accuracy can be poor if the bias
is substantial

Confidence intervals Valid design-based intervals can be
constructed

Valid design-based intervals not
necessarily obtained
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3. Direct estimators for domain estimation

The HT type estimator does not incorporate auxiliary information. GREG estimation is
assisted by a model fitted at the domain level and uses auxiliary data from the domain.
Calibration incorporates auxiliary data from the domain of interest or from a higher-
level aggregate. All these estimators are direct because the y-values are taken from the
domain of interest. When domain membership is known for all population elements,
domain sizes Nd are also known.

3.1. Horvitz–Thompson estimator

The basic design-based direct estimator of the domain total td is the HT estimator, also
known as the Narain-Horvitz-Thompson (NHT) and the expansion estimator:

t̂dHT =
∑

k∈Ud

Ikyk/πk =
∑

k∈sd

yk/πk =
∑

k∈sd

akyk (1)

(Horvitz and Thompson, 1952; Narain, 1951; notation as in Section 2.1). HT estimates
of domain totals are additive: they sum up to the HT estimator t̂HT = ∑

k∈s akyk of
the population total. As E(Ik) = πk, the HT estimator is design unbiased for td . Under
mild conditions on the πk, the corresponding mean estimator t̂dHT/Nd is also design
consistent (Isaki and Fuller, 1982). The estimator t̂dHT has design variance

Var
(
t̂dHT

) = E

⎛

⎝
∑

k∈Ud

Ik − πk

πk

yk

⎞

⎠

2

=
∑

k∈Ud

∑

l∈Ud

E(Ik − πk)(Il − πl)
yk

πk

yl

πl

=
∑

k∈Ud

∑

l∈Ud

(πkl − πkπl)
yk

πk

yl

πl

=
∑

k∈Ud

∑

l∈Ud

(akal/akl − 1)ykyl. (2)

From aklE(IkIl) = 1, we see that an unbiased estimator for the design variance is

V̂
(
t̂dHT

) =
∑

k∈Ud

∑

l∈Ud

aklIkIl(akal/akl − 1)ykyl =
∑

k∈sd

∑

l∈sd

(akal − akl)ykyl.

(3)

An alternative Sen–Yates–Grundy formula for fixed sample size designs is (Sen,
1953; Yates, 1953):

V̂
(
t̂dHT

) = −
∑

k∈sd

∑

l<k;l∈sd

akl(πkl − πkπl)(akyk − alyl)
2

=
∑

k∈sd

∑

l<k;l∈sd

(akl/akal − 1)(akyk − alyl)
2.

These variance estimators are impractical because they contain second-order inclu-
sion probabilities πkl whose computation is often laborious for practical purposes.
Hájek (1964) and Berger (2004, 2005b) proposed approximations to πkl. Särndal (1996)
developed efficient strategies with simple variance estimators under fixed sample size
probability proportional-to-size (πPS) schemes, including a combination of Poisson
sampling or stratified simple random sampling without replacement (SRSWOR) with
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GREG estimation. Berger and Skinner (2005) proposed a jackknife variance estima-
tor and Kott (2006a) introduced a delete-a-group jackknife variance estimator for πPS
designs. The SAS procedure SURVEYSELECT is able to compute πkl under certain
unequal probability without-replacement sampling designs. Some software products can
incorporate the πkl into variance estimation procedures; an example is the SUDAAN
software. The SAS macro CLAN includes the Sen–Yates–Grundy formula. Such esti-
mators are discussed in Chapter 2.

Many πPS designs allow using of Hájek approximation (Berger, 2004, 2005b; Hájek,
1964) of second-order inclusion probabilities by πkl ≈ πkπl

[
1 − (1 − πk)(1 − πl)m

−1
d

]

for k �= l, where md = ∑
i∈Ud

πi(1 − πi). The approximation is used in a simple

variance estimator V̂
(
t̂dHT

) = ∑
k∈sd

cke
2
k , where ci = nd(nd − 1)−1(1 − πi) and

ek = akyk − (∑
i∈sd

ci

)−1∑
i∈sd

ciaiyi.
For unequal probability sampling designs, the variance of the ordinary HT estimator

has been approximated under a with-replacement (WR) assumption, leading to Hansen–
Hurwitz (1943) type variance estimator (Lehtonen and Pahkinen, 2004, p. 228, and SAS
procedure SURVEYMEANS) given by

V̂A(t̂dHT) = 1

nd(nd − 1)

∑

k∈sd

(ndakyk − t̂dHT)2. (4)

For unplanned domains, the variance estimator for HT should account for random
domain sizes. An approximate variance estimator applied, for example, in SAS proce-
dure SURVEYMEANS contains extended domain variables ydk:

V̂U(t̂dHT) = n

n − 1

∑

k∈s

(akydk − t̂d/n)2, (5)

where n is the total sample size. Under SRSWOR, an alternative to (5) is

V̂srswor(t̂dHT) = N2
(

1 − n

N

)(1

n

)

pdŝ
2
dy

(

1 + qd

c.v2
dy

)

,

where pd = nsd
/n, qd = 1 − pd , variance estimator is, ŝ2

dy = ∑
k∈sd

(yk − ȳd)
2/(nsd

−1), and estimated coefficient of variation is c.vdy = ŝdy/ȳd for ȳd = ∑
k∈sd

yk/nsd
.

The HT estimator can be regarded as a model-dependent estimator under a model
Yk = βπk + πkεk (Zheng and Little, 2003). HT is nearly optimal estimator among
weighted sums of Y values when Y depends on scalar x as E(Yk) = βxk, the variance of
errors is proportional to x2

k , and the sampling design assigns πk proportional to xk. On
the other hand, HT is very inefficient when the intercept of the model is far from zero.
Disastrous results are possible in HT estimation, as the famous example of Basu (1971)
shows (e.g., citation in Little, 2004).

If the domain size Nd is known, we expect better results with a “Hájek” type direct
estimator t̂dH(N ) = Nd

ˆ̄yd (e.g., Hidiroglou and Patak, 2004; Särndal et al., 1992, p. 391)
derived from the domain mean ˆ̄yd = ∑

k∈sd
akyk/N̂d with N̂d = ∑

k∈sd
ak. This is a

special case of ratio estimation (Section 4.3.1). The variance of t̂dH(N ) is estimated by

V̂ (t̂dH(N )) =
(

Nd

N̂d

)2∑

k∈sd

∑

l∈sd

(akal − akl)(yk − ˆ̄yd)(yl − ˆ̄yd). (6)
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3.2. Population fit regression estimator

The population fit regression estimator is a theoretical tool used in approximating real-
world estimators. We first consider difference estimators (Särndal, 1980; Särndal et al.,
1992, p. 221). If known values y0

k are close to yk, we write the estimable population
total as

t =
∑

k∈U

yk =
∑

k∈U

y0
k +

∑

k∈U

(yk − y0
k).

A difference estimator is defined by estimating the second sum using HT:

t̂DIFF =
∑

k∈U

y0
k +

∑

k∈s

ak(yk − y0
k).

As the y0
k are constants, t̂DIFF is unbiased for t.

Consider a regression superpopulation model Yk = x′
kβ + εk, where xk = (1, x1k,

. . . , xJk)
′ is the vector of auxiliary x-variables, β = (β0, β1, . . . , βJ )′ is the vector of

regression coefficients, and εk are the residuals with variances σ2
k = Var(εk). Hypothet-

ically, we can fit the model to the population by calculating generalized least squares
(GLS) estimator B = β̂ as

B =
(
∑

k∈U

xkx′
k

σ2
k

)−1(
∑

k∈U

xkyk

σ2
k

)

.

In practice, the error variance Var(εk) = σ2
k can often be assumed constant, σ2

k = σ2,
and then it cancels out. When the variance varies between observations, the σ2

k should
be included in the estimators. Straightforward cases are known σ2

k or an assumption that
the variances differ by known constants ck such that σ2

k = ckσ
2. A special case is when

ck = 1 for all k ∈ U. For more details on the treatment of σ2
k , see, for example, Särndal

et al. (1992, p. 229 and Chapter 7).
A difference estimator with fitted values ŷ0

k = x′
kB defines the population fit regres-

sion estimator,

t̂REG =
∑

k∈U

ŷ0
k +

∑

k∈s

ak(yk − ŷ0
k).

If an estimator t̂ can be well approximated by t̂REG, then Var(t̂) can be estimated by
a sample-based estimator of

Var(t̂REG) = Var

(
∑

k∈s

akEk

)

=
∑

k∈U

∑

l∈U

(akal/akl − 1)EkEl,

where Ek = yk − ŷ0
k are the population fit residuals. To estimate Var(t̂REG) from sample,

we replace the Ek by corresponding sample residuals ek = yk − x′
kB̂. If B̂ is nearly

unbiased for B, we can verify using E(aklIkIl) = 1 that a nearly unbiased estimator for
Var(t̂REG) is

V̂ (t̂REG) =
∑

k∈s

∑

l∈s

(akal − akl)ekel. (7)
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One approach to estimate B is to plug in HT estimators of both of its sum components.
When σ2

k is constant, we use a weighted least squares (WLS) estimator

B̂ =
(
∑

k∈s

akxkx′
k

)−1 (
∑

k∈s

akxkyk

)

.

This estimator is only approximately unbiased due to its nonlinearity. Another
approach is to consider the population maximum likelihood (ML) estimator maximizing
f(β) = −∑k∈U

(
yk − x′

kβ
)2

/σ2. As only the sample is available, we use an estimated
log-likelihood, the so-called pseudolikelihood, instead (Binder, 1983; Godambe and
Thompson, 1986a; Nordberg, 1989). The function f(β) is estimated by an unbiased HT
type estimator f̂ (β) = −∑k∈s ak

(
yk − x′

kβ
)2

/σ2. This function is maximized by B̂.
Robust alternatives are presented in Beaumont and Alavi (2004).

Särndal et al. (1992) and Estevao and Särndal (2006) have approximated GREG
and calibration estimators (Sections 3.3 and 3.4) by Taylor linearization yielding a
population fit regression estimator. Because many approximations are involved, the
resulting variance estimators are at least slightly biased.

3.3. GREG estimators

The GREG estimator is a sample-based substitute for the population fit regression esti-
mator (Section 3.2). A direct type GREG estimator of domain total td is assisted by a
regression model Yk = x′

kβd + εk, Var(εk) = σ2
k . Assuming constant error variance σ2

k ,
the domain-specific parameter Bd of the population fit defined for Ud is estimated as in
Section 3.2 by

B̂d =
⎛

⎝
∑

k∈sd

akxkx′
k

⎞

⎠

−1⎛

⎝
∑

k∈sd

akxkyk

⎞

⎠,

and the fitted values ŷk = x′
kB̂d and residuals ek = yk − ŷk are incorporated into the

GREG estimator

t̂dGREG =
∑

k∈Ud

ŷk +
∑

k∈sd

ak(yk − ŷk) =
∑

k∈Ud

ŷk +
∑

k∈sd

akek (8)

(Särndal, 1980; Särndal et al., 1992). The first part in t̂dGREG, the population sum of
fitted values over the domain, is sometimes called a synthetic estimator (Särndal, 1984).
When compared with direct GREG, it may have smaller variance but possibly large
design bias. The weighted sum of residuals tends to correct for the design bias. In some
cases, however, the weighted sum of the residual terms is zero. This happens when the
model contains an intercept.

Rearranging the terms of GREG we obtain the traditional regression estimator

t̂dGREG = t̂dHT + (tdx − t̂dx)
′B̂d,

where tdx = ∑
k∈Ud

xk = (
Nd,

∑
k∈Ud

x1k, . . . ,
∑

k∈Ud
xJk

)′
and t̂dx = ∑

k∈sd
akxk. By

Taylor linearization, t̂dGREG is approximated by a population fit regression estimator
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t̂dREG = t̂dHT + (tdx − t̂dx)
′Bd applied in Ud . The estimator t̂dREG is unbiased for td , and

so the GREG estimator is nearly unbiased. Although GREG incorporates a model, it is
model-assisted, not model-dependent, because the model only yields a fixed population
quantity Bd , and GREG is nearly design unbiased even when the model is not valid. By
(7), the variance of t̂dGREG can be estimated using sample residuals ek = yk − x′

kB̂d :

V̂1(t̂dGREG) =
∑

k∈sd

∑

l∈sd

(akal − akl)ekel. (9)

The GREG estimator can be written as a weighted sum of observations incorporating
so-called g-weights:

t̂dGREG =
∑

k∈sd

akgdkyk; gdk = Idk + Idk(tdx − t̂dx)
′M̂−1

d xk,

where M̂d = ∑
i∈sd

aixix′
i and Idk = I{k ∈ Ud} is the domain membership indicator.

The g-weights are used in a variance estimator

V̂2(t̂dGREG) =
∑

k∈sd

∑

l∈sd

(akal − akl)gdkekgdlel (10)

(Hidiroglou and Patak, 2004; Särndal et al., 1989 and 1992, p. 235). In practice, V̂1 and
V̂2 often yield similar results but V̂2 in (10) is preferable (Fuller, 2002; Särndal et al.,
1989).

3.4. Calibration estimators

Calibration is based on information about known totals of auxiliary variables xk, also
called benchmark variables, at an aggregate level. In model-free calibration (Särndal,
2007) discussed here, it is not necessary to impose a model on the data. Suppose the
population is divided into calibration groups Uc (c = 1, 2, . . . , C) so that every domain
Ud is contained within one of the groups and the population totals tcx = ∑

k∈Uc
xk of

auxiliary variables are known. The domain totals tdx are not required. Direct calibration
estimator of the domain total td is a weighted sum of observations:

t̂dCAL =
∑

k∈sd

wkyk,

where the calibration weights wk have to satisfy the calibration equations
∑

k∈sc

wkxk =
∑

k∈Uc

xk = tcx

for every calibration group. It follows immediately that calibration estimator applied to
the auxiliary data yields the known totals. We therefore expect that the weighted sum
of y over sd is close to td .

There are two main approaches to calibration, one based on a distance measure and
the other based on instrument vectors (Chapter 25). In the distance measure approach,
the weights wk minimize a distance to the design weights ak, subject to the calibra-
tion equations (Deville and Särndal, 1992; Singh and Mohl, 1996). An example of a
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calibration estimator incorporating an instrument vector zk is

t̂dCAL =
∑

k∈sd

ak(1 + λ′zk)yk,

where λ′ = (tcx− t̂cx)′
(∑

k∈sc
akzkx′

k

)−1
. It should be noted that the values of instrument

z-variables need to be known only for the sample (or need to be estimated); they are not
necessarily treated as proper auxiliary information in the same manner as the auxiliary
x-variables. For practical purposes, a natural choice is zk = xk; an optimal choice is
discussed in Estevao and Särndal (2004).

As in (7), the variance of t̂dCAL is estimated by

V̂ (t̂dCAL) =
∑

k∈sc

∑

l∈sc

(akal − akl)(ydk − x′
ckB̂cd)(ydl − x′

clB̂cd),

where xck = I{k ∈ Uc}xk (Estevao and Särndal, 2006), and

B̂cd =
⎛

⎝
∑

k∈sc

akzkx′
ck

⎞

⎠

−1⎛

⎝
∑

k∈sc

akzkydk

⎞

⎠.

When Uc is much larger than Ud , the variance can become large. Therefore, we should
attempt to find a calibration group that agrees closely with the domain of interest.

Our GREG estimator of Section 3.3 is actually a special case of calibration, some-
times called linear calibration estimator, as the weights akgdk minimize a certain chi-
square distance to design weights ak, subject to domain-level calibration equations∑

k∈sd
akgdkxk = tdx.

Calibration is contrasted with GREG estimation in Särndal (2007). Särndal and
Lundström (2005) discuss calibration in the context of adjustment for unit nonresponse
in sample surveys.

3.5. Computational example with direct estimation under a planned domain structure

In this section, we demonstrate with real data the direct Horvitz–Thompson, Hájek,
and GREG estimation of totals for domains. The data set contains disposable income
of households in D = 12 regions of Western Finland. The population consists of N =
431,000 households. In addition to the income data, the record of a household shows
the number of household members who had higher education (variable EDUC) and
the number of months in total the household members were employed (EMP) during
last year. All three variables were determined using administrative registers. For this
computational exercise, we had access to population level information on all variables.
This gives a possibility to compare sample estimates to the known population values.

We were interested in the yearly total disposable income td = ∑
k∈Ud

yk in the regions
Ud(d = 1, . . . , D). A sample of 1000 households was drawn from the population by
using stratified πPS (without-replacement type probability proportional to size sam-
pling) with household size as the size variable. To demonstrate estimation for planned
domains, we interpret here the sample as a stratified sample where the regions constitute
the strata. Thus, the domain structure is of planned type, where the regional sample sizes
are considered fixed by the sampling design. In Section 4.2, we use the same sample
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in estimation for unplanned domains, where the regional sample sizes are considered
random.

In Table 2, we grouped the domains by sample size into minor (8 ≤ nd ≤ 33),
medium-sized (34 ≤ nd ≤ 45) and major (46 ≤ nd ≤ 277) domains, where nd is the
observed domain sample size in domain Ud . There were four domains in each domain
size class.

Results are shown in Table 2. The absolute relative error of an estimator in domain
d is calculated as |t̂d − td |/td and domain group’s MARE is the mean of absolute rel-
ative errors over domains in the group. Correspondingly, MCV is the mean coefficient
of variation of the estimate over domain group. The coefficient of variation is calcu-
lated as s.e(t̂d)/t̂d , where s.e refers to the estimated standard error of an estimator. For
variance estimation, we approximated the design by with-replacement type probability-
proportional-to-size sampling (PPS). The variance estimators for ordinary HT (column
1) and the Hájek type estimator (column 2) were defined by (4) and (6), respectively.
The Hájek estimator, which contains the known domain sizes Nd , yielded better results
than ordinary HT.

A calibration estimator, the direct GREG estimator with linear assisting model,

Yk = β0d + β1dEMPk + εk(column 3) or

Yk = β0d + β1dEMPk + β2dEDUCk + εk(column 4),

and variance estimator (10) incorporated the known domain sizes and domain totals
of EMP (column 3) and EDUC (column 4). The model parameters were estimated by
WLS with weights ak = 1/πk. By GREG, we obtained clearly smaller MARE and MCV
figures than by HT.

Adding information in the estimation procedure improved the results until the assist-
ing model contained both EMP and EDUC: inclusion of EDUC in GREG decreased
MCV but average errors did not always decrease. In large domains, the average error
and MCV were usually smaller than in small domains.

Table 2
Mean absolute relative error (MARE) and mean coefficient of variation (MCV) of direct HT, Hájek, and
calibration (GREG) estimators of totals for minor, medium-sized, and major domains by using various amounts
of auxiliary information in a planned domains case

HT Hájek Calibration (GREG)

1 2 3 4
Auxiliary
Information

None Domain Sizes Domain Sizes and
Domain Totals of

EMP

Domain Sizes and
Domain Totals of
EMP and EDUC

Domain sample
size class

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

Minor
8 ≤ nd ≤ 33

11.5 11.9 5.3 10.9 5.8 7.7 6.4 6.8

Medium
34 ≤ nd ≤ 45

7.6 9.0 6.4 9.0 3.7 8.0 3.6 8.1

Major
46 ≤ nd ≤ 277

12.5 5.2 4.7 5.6 4.3 4.7 5.2 3.7

Author's personal copy



Design-based Methods of Estimation for Domains and Small Areas 233

4. Indirect estimators in domain estimation

4.1. Generalized regression estimators

4.1.1. Linear GREG
Indirect estimators use y-values also from other domains than the domain of interest.
While direct estimators can be derived from corresponding estimators for population,
indirect estimators require new results. This holds for unplanned domain structures in
particular, but the methodology below applies also to planned domains when indirect
estimators are used, for example, when the GREG estimator is assisted by a model fitted
to the whole sample. Thus, direct estimators can be treated as a special case of indirect
estimators. If the auxiliary information is not available at the domain level but at a higher
aggregate level, or if the population frame does not include domain membership data,
the calibration approach might be preferred to GREG.

We first assume a common linear fixed-effects regression model Yk = x′
kβ + εk for

all domains. The corresponding population fit parameter B (Section 3.2) is estimated as
in Section 3.2. The linear GREG estimator of domain total td incorporates fitted values
ŷk of the common model:

t̂dGREG =
∑

k∈Ud

ŷk +
∑

k∈sd

ak(yk − ŷk), (11)

where ŷk = x′
kB̂. In general, this is an indirect estimator, since all y-values in the sample

contribute.
There is a whole spectrum of model types describing various assumptions about

differences between domains (e.g., Lehtonen et al., 2003). If the domains are assumed
similar enough, the model may contain only intercept and slopes common to all domains.
At the other end of the spectrum, the model is equivalent to a set of separate models for
each domain, and all estimators are of direct type. A more parsimonious model might
have separate parameters for the largest domains and common parameters for the small
domains. It is also possible to use a model formulation with domain-specific intercepts
and common slopes or nonlinear model formulations (e.g., Lehtonen et al., 2005). These
extensions are discussed in Section 5.

In (11), unit-level auxiliary information about xk, also including known domain
membership, for all population units is assumed. Actually, since the assisting model
for (11) is linear, GREG estimation does not require unit-level information on xk. It is
enough to have access to the vector tdx of domain totals of auxiliary variables in the
population and the corresponding HT estimates t̂dx in the sample. This can be seen by
writing the GREG estimator in the standard textbook form,

t̂dGREG = t̂dHT + (tdx − t̂dx)
′B̂.

An alternative calibration form incorporates g-weights:

t̂dGREG =
∑

k∈s

akgdkyk,

where gdk = Idk + (tdx − t̂dx)
′M̂−1xk , Idk = I{k ∈ Ud}, and M̂ = ∑

i∈s aixix′
i. The

g-weights are often small outside domain sample sd .
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The variance of t̂dGREG is estimated by a double sum over the whole sample s:

V̂ (t̂dGREG) =
∑

k∈s

∑

l∈s

(akal − akl)gdkekgdlel (12)

(Särndal et al., 1992, p. 401). Alternatively, the sum extends only over the domain
sample sd (Hidiroglou and Patak, 2004). For the direct estimator, these two forms are
identical. These variance estimators do not take into account that the sample size nsd

for
an unplanned domain is random. To account for the randomness, we might apply GREG
assisted by a model fitted to the extended domain variables ydk = I{k ∈ Ud}yk (Estevao
et al., 1995). It has also been proposed to fit the model to the original yk and replace the
residuals ek in the variance estimator by “extended residuals” edk = I{k ∈ Ud}yk − ŷk

(Lehtonen and Pahkinen, 2004, p. 202; Särndal, 2001, p. 39).
The basic direct and indirect GREG estimators and their variance estimators for the

case of planned domains, discussed this far, are presented in Table 3 below. In both GREG
estimators, access to domain-level auxiliary totals of x-variables is assumed. A key
difference is in the model formulation: the direct GREG estimator employs domain-
specific assisting models, whereas a model common for all domains is postulated for
the indirect GREG estimator. Direct GREG estimation uses domain sample data in
variance estimation; the data use extends to the whole sample in indirect GREG.

The GREG estimator (11) has been modified to take into account the domain size Nd

when known:

t̂dGREG(N ) =
∑

k∈Ud

ŷk + (Nd/N̂d)
∑

k∈sd

ak(yk − ŷk) =
∑

k∈s

akgdk(N)yk, (13)

where gdk(N) = (Nd/N̂d)Idk + (tdx − (Nd/N̂d)t̂dx)
′M̂

−1
xk and N̂d = ∑

k∈sd
ak. This

estimator has smaller variance than the estimator (11) because the weighted mean of the
residuals is more stable. The variance estimator of t̂dGREG(N ) contains the weights gdk(N)

instead of gdk. If inference is conditional on observed sample domain sizes, t̂dGREG(N )

is conditionally nearly unbiased, whereas the ordinary GREG is conditionally biased
(Hidiroglou and Patak, 2004; Särndal and Hidiroglou, 1989). Therefore, t̂dGREG(N ) yields
better conditional confidence intervals. On the other hand, domain estimators (13) are
not additive; their sum is not usually equal to the GREG estimator of the population
total.

Table 3
The basic direct and indirect GREG estimators and their variance estimators for the planned domains case

GREG Estimator Type

Direct Indirect

Model
formulation

Yk = x′
kβd + εk Yk = x′

kβ + εk

GREG
estimator

t̂dGREG = t̂dHT + (
tdx − t̂dx

)′B̂d t̂dGREG = t̂dHT + (
tdx − t̂dx

)′B̂

Variance
estimator

V̂ (t̂dGREG) = ∑

k∈sd

∑

l∈sd

(akal − akl)gdkekgdlel V̂ (t̂dGREG) = ∑

k∈s

∑

l∈s

(akal − akl)gdkekgdlel
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4.1.2. Composite estimation for domains
As noted in Section 2.2.5, domains with small sample size can present problems in
design-based estimation. This also holds for the GREG estimator (11). For example,
the GREG estimate for a small domain is not necessarily bounded within an acceptable
range. Even when only positive y-values are valid, the GREG estimate may be negative
for a small domain when a negative residual is associated with a large weight ak. In
addition, although the GREG estimator (11) is nearly design unbiased, its design vari-
ance becomes large for a small domain. Composite or combined estimators have been
proposed to overcome these kinds of problems.

Consider a composite estimator t̂dCOMB = λd t̂dGREG + (1 − λd)t̂dSYN, which is con-
structed as a weighted sum of the design-based GREG estimator (11) and a model-
based synthetic estimator t̂dSYN = ∑

k∈Ud
ŷk = ∑

k∈Ud
x′

kB̂. The domain-specific weight
λd(0 ≤ λd ≤ 1) is chosen such that λd is close to one for large domains and approaches
zero with decreasing domain sample size nsd

. Thus, for small domains, the estimator
t̂dCOMB will be close to the synthetic estimator t̂dSYN; the GREG estimator (11) will be
obtained when the domain sample size is large. Different strategies in choosing λd are
possible, leading to composite estimators of optimal type or sample size dependent type
(see Rao, 2003a, Section 4.3).

The rationale behind composite estimation is obvious. The composite estimator can
be written as t̂dCOMB = t̂dSYN +λd

∑
k∈sd

ak(yk − ŷk), reproducing the GREG estimator
(11) with λd = 1. The design variance is of order O(n−1) for the synthetic term t̂dSYN and
of order O

(
n−1

sd

)
for the bias correction term

∑
k∈sd

ak(yk − ŷk). If the domain sample
size nsd

is large, the weight λd should be close to one and a sufficiently small variance
will be obtained for t̂dCOMB. For a small domain, the variance of the correction factor
of the GREG will be large and it is beneficial to decrease the value of λd because the
variance of the component t̂dSYN tends to be small. This is an example of “trading bias
against variance”: by suitable choice of λd , a balance between the potential design bias
of the synthetic estimator and the instability of the GREG estimator is achieved. The
price to be paid for the variance reduction is increased design bias because the synthetic
estimator t̂dSYN is generally design biased. The MSE of the composite estimator will be
smaller than the MSE of the GREG estimator if the underlying model is not too bad for
the given domain. However, with a poor-fitting model, the bias component of the MSE
can dominate, leading to increased MSE.

An example of a sample size dependent composite estimator is provided by the
GREG estimator (13), with λd = Nd/N̂d . We noted in Section 4.1.1 that the GREG
estimate (13) is not necessarily bounded within an acceptable range. The likelihood
of this occurrence is reduced when Nd/N̂d is replaced by N̂d/Nd in a domain where
nsd

<
∑

k∈Ud
πk (Hidiroglou and Särndal, 1985). Further, Särndal and Hidiroglou (1989)

proposed an estimator called dampened regression estimator given by

t̂dDRE =
∑

k∈Ud

ŷk + (N̂d/Nd)
c−1

∑

k∈sd

ak(yk − ŷk),

where c = 0 if N̂d ≥ Nd and c = 2 if N̂d < Nd .
Variants of composite estimators have often been used in practice. Examples of early

references are Schaible et al. (1977), and Kumar and Lee (1983). A method called
regression composite estimation is discussed in the context of repeated surveys, such
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as a Labour Force Survey, in Singh et al. (1994), Bell (2001), Fuller and Rao (2001),
Gambino et al. (2001), and Singh et al. (2001). Design-based composite estimation,
including MSE estimation, is discussed more extensively in Rao (2003a). Model-based
composite estimation is treated in Chapter 32.

4.1.3. Model groups approach
Instead of using a common model fitted to the whole sample, it is sometimes more
convenient to consider a set of regression models defined for nonoverlapping subsets
Up(p = 1, 2, . . . , P) of the population called model groups (Estevao et al., 1995). In
regional classification, there is often a hierarchy of regions, and model groups are larger
regions composed of domains. More generally, the boundaries of the sets Up do not have
to agree with domain boundaries, and interleaving is allowed. In model group Up, we
define a model Yk = x′

kpβp + εk; k ∈ Up. Here, the vectors xkp may contain different
variables in different groups Up. Naturally, this ensemble of models is equivalent with
a single regression model Y = Xβ + ε, where X = diag(X1, X2, . . . , XP) and β =
(β′

1, β
′
2, . . . ,β

′
P)′. The general theory of the GREG estimator applies, but the X matrix

is perhaps impractically large. It is easier to consider the separate models. For that
purpose, the sample is divided into subsets sp = Up ∩s and further into sets spd = sp ∩sd .
If we know the auxiliary totals tdpx = ∑

k∈Up∩Ud
xkp, estimated by t̂dpx = ∑

k∈spd
akxkp,

the domain total GREG estimator (11) can be written as

t̂dGREG =
∑

p

∑

k∈spd

ŷk +
∑

p

∑

k∈spd

ak(yk − ŷk) = t̂dHT +
∑

p

(tdpx − t̂dpx)
′B̂p,

where B̂p is obtained by fitting the regression model in model group Up:

B̂p = M̂
−1
p

∑

i∈sp

aixipyi (14)

and M̂p = ∑
i∈sp

aixipx′
ip.

The model groups approach can be generalized by the use of overlapping sets Up(d)

that are defined for each domain Ud so that Ud ⊂ Up(d). In regional statistics, an example
of Up(d) is the neighborhood of a region Ud , the union of Ud and all neighboring regions
sharing a common border with the region. This makes sense if the neighboring regions
are similar due to spatial correlations (e.g., D’Alo et al., 2006; Petrucci et al., 2005).
Since there is no single regression model that is equivalent to the ensemble of separate
regression models, the estimators are not necessarily additive.

When the models are defined separately for each domain (Up = Ud), the resulting
estimator is direct. In small domains, the direct estimator typically has large variance.
Therefore, it has been common to use indirect estimator assisted by a model fitted in
a larger subset of the sample. Design-based estimation with an indirect estimator is
challenged by Estevao and Särndal (2004) but indirect estimation might be useful at
least for the small domains. Hidiroglou and Patak (2004) note that an indirect estimator
(13) incorporating N̂d may be preferred to a corresponding direct estimator when the
domain sample size is very small.
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The auxiliary totals are not always known in every domain but only in the model
groups Up. This situation can be addressed by calibration. An alternative is the
calibration-type GREG estimator discussed in Estevao et al. (1995). It is necessary
to fit the regression models to the extended domain variables ydk = I{k ∈ Ud}yk:

t̂dGREG(G) =
∑

k∈s

akydk+
∑

p

(tpx − t̂px)
′B̂p(d), (15)

where the auxiliary total over Up is denoted by tpx, its HT estimate by t̂px, and B̂p(d) =
M̂−1

p

∑
i∈sp

aixipydi. Only model groups Up that intersect the domain are included in
(15). An alternative expression for unit-level auxiliary data is

t̂dGREG(G) =
∑

k∈U

ŷdk+
∑

k∈s

ak

(
ydk − ŷdk

)
,

where ŷdk = x′
kpB̂p(d) for k ∈ Up. The calibration equations hold at the model group

level, that is, the total estimates of auxiliary variables agree with the known totals over
Up. This approach is adopted, for example, in GES and CLAN software packages.

The variance estimator for (15) is calculated using all residuals edk = ydk −x′
kpB̂p(d):

V̂ (t̂dGREG(G)) =
∑

k∈s

∑

l∈s

(akal − akl)gp(k)kedkgp(l)ledl, (16)

with gpk = 1 + (tpx − t̂px)
′M̂−1

p xkp and k ∈ Up(k) (Estevao et al., 1995; Hidiroglou and
Patak, 2004). Obviously, the regression models fitted to ydk will not fit the data well
in a large model group and the residuals are often large. This inflates the variance; the
problem is often met if a model group contains several domains.

4.1.4. A general class of domain estimators
Estevao and Särndal (2004) define a general class of estimators including both GREG
estimators and calibration estimators based on an instrument vector: suppose the aux-
iliary totals are known over sets Up, called calibration groups or model groups. For
practical purposes, we again assume that the error variance σ2

k is constant. The regres-
sion parameter is estimated using subpopulations Um and Ul:

B̂ml =
(
∑

k∈s

akzkImkx′
k

)−1 (
∑

k∈s

akzkIlkyk

)

,

where Imk = I{k ∈ Um} and Ilk = I{k ∈ Ul}, and zk is an instrument vector, in GREG
chosen as zk = xk. The domain estimator for Ud ⊂ Up is t̂d = t̂dHT + (tpx − t̂px)

′B̂ml,
where the estimators t̂dHT and t̂px are HT estimators of the population totals of ydk and
xkp = I{k ∈ Up}xk, respectively. As special cases, the calibration estimator based on
the instrument vectors zk has Um = Up and Ul = Ud , as well as the GREG estimator
incorporating model groups Up. The ordinary GREG (11) has Um = Ul. In GREG, the
regression model is fitted to the whole sample (when Ul = U), to each domain (when
Ul = Ud) or to calibration groups (when Ul = Up). All these estimators are design
consistent, and their relative bias tends to zero as O(n−1/2).
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Estevao and Särndal (2004) show that the design variance of the estimator is mini-
mized by choosing Um = Up, Ul = Ud , and zk = ∑

l∈U (akal/akl − 1)Iplxl. These
instrument variables are estimated by zk = a−1

k

∑
l∈s (akal − akl) Iplxl. The resulting

estimator is then essentially identical with the so-called optimal estimator (Montanari,
1987; Montanari and Ranalli, 2002; Rao, 1994), which minimizes the design variance
(Estevao and Särndal, 2004, p. 656)

Var(t̂d) = Var(t̂dHT + (tpx − t̂px)
′B)

= Var(t̂dHT) + B′Var(t̂px)B − 2B′Cov(t̂dHT, t̂px)

with respect to B. Unfortunately, the optimal estimator is often unstable, especially for
designs more complex than SRS (Estevao and Särndal, 2004, p. 657). In practice, we
should probably use zk = Ipkxk instead. Then the estimator is the GREG estimator
based on model groups. Note that the optimal estimator is a direct estimator using the
y-values only from the given domain (Ul = Ud). The ordinary GREG estimator has
approximately the same asymptotic variance as the optimal calibration estimator only if
Up = Ud . Andersson and Thorburn (2005) discuss optimality of a calibration estimator
in relation to GREG estimation.

4.1.5. One-stage and two-stage designs
In addition to element-level sampling designs discussed so far, we can define GREG
estimators for clusters (Estevao et al., 1995). In single-stage cluster sampling, a sample
sC of clusters is first drawn with design weights aC

i and all elements in each sample
cluster are surveyed. Clusters are grouped into model groups Cp(p = 1, 2, . . . , P).
Consider a cluster i ∈ Cp with elements si and auxiliary data xi. A regression model is
defined for the sum yC

di of y-variables ydk = Idkyk over the cluster:

yC
di =

∑

k∈si

ydk = x′
iβp + εi,

where the error variance is Var(εi) = σ2
i . The regression parameter is estimated for

group Cp by

B̂p = M̂
−1
p

∑

i∈sC∩Cp

aC
i xiy

C
di/σ

2
i ,

where yC
di = ∑

k∈si
ydk and M̂p = ∑

i∈sC∩Cp
aC

i xix′
i/σ

2
i .

The error variance Var(εi) can hardly be assumed constant, but, for example, it can
often be assumed to be proportional to the size ni of the cluster: σ2

i = niσ
2. Then the

unknown σ2 cancels out from B̂p.

Using known auxiliary totals tC
px = ∑

i∈Cp
xi and their estimates t̂

C

px = ∑
i∈sC∩Cp

aC
i xi, we estimate td by

t̂dGREG(C) =
∑

p

∑

i∈sc∩Cp

aC
i gC

piy
C
di,

where gC
pi = 1 +

(
tC
px − t̂

C

px

)′
M̂

−1
p xi/σ

2
i .
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The variance of t̂dGREG(C) is estimated using residuals edi = yC
di − x′

iB̂p and the
inclusion probabilities of clusters:

V̂ (t̂dGREG(C)) =
∑

i∈sC

∑

j∈sC

(aC
i aC

j − aC
ij )g

C
p(i)iedig

C
p(j)jedj

with i ∈ Cp(i) and j ∈ Cp(j).
In two-stage sampling, the first-stage sample consists of primary sampling units

(PSU), such as clusters. Then in each sample PSU, a sample of elements is drawn. The
design weight of element k is a product ak = aC

i ak|i of the weight aC
i of PSU i and

the conditional design weight ak|i of element k within PSU i. This generalizes to more
stages. If the model groups are defined at the PSU level, the regression models define
how the PSU totals depend on auxiliary variables. However, the PSU totals are not
known, and we use their HT estimates t̂di = ∑

k∈si
ak|iydk instead. The GREG estimator

of the domain total is

t̂dGREG(2) =
∑

p

∑

i∈sc∩Cp

aC
i gC

pit̂di

but variance estimation requires more complex derivations (e.g., Estevao et al., 1995).
Falorsi et al. (2000) discuss some simple estimation methods under two-stage sampling
and Estevao and Särndal (2006) discuss calibration under two-stage and two-phase
sampling.

4.2. Computational example with direct and indirect estimation under
an unplanned domain structure

Domain totals are estimated here by direct Horvitz–Thompson and indirect GREG
estimators. We use the same sample as in Section 3.5. This allows a comparison of
results with the case of direct estimation for planned domains. There were D = 12
regions (domains) in our population. To demonstrate domain estimation for unplanned
domains, we recognize that the regional sample sizes nsd

are not fixed in the sampling
design but are random (in Section 3.5, we assumed a case of planned domains with
domain sample sizes fixed by stratification).

In addition to the income data for households, the sample data set includes the vari-
ables EDUC (number of household members who had higher education) and EMP (the
number of months in total the household members were employed during last year). We
again estimate the domain totals of disposable income of households in the 12 regions.
We use the same auxiliary data as in Section 3.5. In addition to direct HT, we computed
two indirect GREG estimates. Results are shown in Table 4. MARE is the mean absolute
relative error and MCV is the mean coefficient of variation of the estimate over domain
group.

The variance of ordinary HT (column 1 in Table 4) was estimated by V̂U(t̂dHT) (5). As
expected, in the present case of unplanned domains, the HT estimator had larger MCV
than in the case of planned domains (column 1 in Table 2). The random domain sample
size increased the variance of domain estimators.

In GREG, we first illustrate the model groups approach. We assumed that the popula-
tion size N and the population total of EMPonly were known. We thus had a single model
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Table 4
Mean absolute relative error (MARE) and mean coefficient of variation (MCV) of HT and indirect GREG
estimators of totals for minor, medium-sized, and major domains by using various amounts of auxiliary
information in an unplanned domains case

HT GREG

1 2 3
Auxiliary
Information

None Population Size
and EMP Total

Domain Sizes and
Domain Totals of

EMP

Domain
sample size
class

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

Minor
8 ≤ nsd ≤ 33

11.5 28.3 11.5 28.3 7.6 9.0

Medium
34 ≤ nsd ≤ 45

7.6 20.3 7.4 20.3 3.8 8.1

Major
46 ≤ nsd ≤ 277

12.5 9.6 12.5 9.4 4.1 5.0

group, that is, the whole population. The indirect GREG estimator (15) was assisted by
model

Ydk = β0 + β1EMPk + εk.

We thus did not use domain-level auxiliary information. For each domain, we fitted
the model to the extended domain variables ydk = I{k ∈ Ud}yk. The variables ydk were
also included in the variance estimator (16). This GREG estimator (column 2) did not
yield smaller errors or MCV than the HT estimator. The population level information was
not powerful for domain estimation in this case, confirming the argument of favoring the
use of lower level aggregates of auxiliary variables if available (Estevao and Särndal,
2004).

The second indirect GREG estimator (column 3) was assisted by a common model

Yk = β0 + β1EMPk + εk

fitted to the whole sample, and domain sizes and domain totals of EMP were assumed
known. The variance was estimated using (12). This estimator outperformed the other
three estimators. The MCV was larger than in the comparable direct GREG estimator for
planned domains (column 3 in Table 2), as expected. The use of extended domain resid-
uals edk = ydk − ŷk in the variance estimator would have affected the MCV only slightly.
Increasing the number of auxiliary variables in GREG did not yield further improve-
ment. The size correction with known domain size (13) resulted in small decrease in
average errors, but MCV increased slightly.

We did have access to several cross-sectional yearly data sets of the survey and the
corresponding auxiliary data. With two last year’s data, the domains were defined by
cross classification of year and region, yielding altogether 24 domains. We fitted models
containing the year and interactions of year with EMP and EDUC, but the results did not
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improve. A model fitting the whole sample better does not necessarily fit better for the
data in domains of interest, and even if it did, a better fitting model does not guarantee
better GREG estimates in one particular sample although improvement is expected on
an average.

The problem of model choice is discussed in Lehtonen and Veijanen (1998), Este-
vao and Särndal (1999), Hedlin et al. (2001), Lehtonen et al. (2003, 2005), and
Hidiroglou and Patak (2004). We address model choice in GREG estimation further
in Sections 5.1 and 5.2.

4.3. Ratios and percentiles for domains

4.3.1. Ratios and means
Consider estimating the ratio Rd = tdy/tdz of two unknown totals tdy = ∑

k∈Ud
yk and

tdz = ∑
k∈Ud

zk. An example is the unemployment rate, which is the ratio of the number
of unemployed and the size of the labor force in the domain. Another example is the
proportional area of fields allocated to, say, wheat in a region, estimated using data
obtained from each farm k; we only need to know (yk, zk) for units in the sample from
area d. A simple, nearly unbiased estimator of Rd is R̂d = t̂dy/t̂dz. We denote the ratio
of two HT estimators by R̂dHT and the ratio of two GREG estimators by R̂dGREG.

In a case of planned domains, the variance estimators for the ratios of direct HT and
GREG estimators are defined as follows (Särndal et al., 1992, p. 178, 296):

V̂ (R̂dHT) = 1

t̂2
dzHT

∑

k∈sd

∑

l∈sd

(akal − akl)(yk − R̂dHTzk)(yl − R̂dHTzl),

V̂ (R̂dGREG) = 1

t̂2
dzGREG

∑

k∈sd

∑

l∈sd

(akal − akl)gdk(eyk − R̂dGREGezk)

× gdl(eyl − R̂dGREGezl),

where the residuals eyk = yk−x′
kB̂dy and ezk = zk−x′

kB̂dz are obtained from regression
models fitted in the domain to yk and zk, respectively, and the g-weights are common to
both models. In the case of indirect GREG,

V̂ (R̂dGREG) = 1

t̂2
dzGREG

∑

k∈s

∑

l∈s

(akal − akl)gdk(eyk − R̂dGREGezk)

× gdl(eyl − R̂dGREGezl),

where eyk = yk − x′
kB̂y and ezk = zk − x′

kB̂z are residuals of models fitted in the whole
sample.

With unplanned domains, we can estimate the domain ratio by the ratio of two
population level estimators using extended domain variables ydk = I{k ∈ Ud}yk and
zdk = I{k ∈ Ud}zk. In the case of HT, this ratio is actually identical with R̂dHT defined
above:

R̂d(e) =
∑

k∈s akydk
∑

k∈s akzdk

.
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Moreover, V̂ (R̂d(e)) = V̂ (R̂dHT). In contrast, the variance estimator of a ratio of two
GREG estimators incorporating the extended domain variables is

V̂ (R̂dGREG) = 1

t̂2
dzGREG

∑

k∈s

∑

l∈s

(akal − akl)gdk(eydk − R̂dGREGezdk)

× gdl(eydl − R̂dGREGezdl),

where eydk = ydk − ŷdk and ezdk = zdk − ẑdk are from models fitted to the extended
domain variables.

Domain mean ȳd = td/Nd can be estimated by ˆ̄yd = t̂d/Nd when the domain size
Nd is known. The variance estimator is correspondingly V̂ (t̂d)/N

2
d . An alternative is

to interpret the domain mean as a ratio Rd = td/tdz, where tdz = ∑
k∈Ud

zk = Nd is
defined for zk = Idk = I{k ∈ Ud}. The estimator t̂dz is an estimator of the domain
size: t̂dz = N̂d = ∑

k∈sd
ak. This is applicable also when Nd is unknown. The mean

estimator is then R̂d = t̂d/t̂dz, and the variance is estimated by the formula for V̂ (R̂d)

with zk = Idk. Comparison of estimators of domain means is studied in Särndal et al.
(1992), p. 412.

The ratio estimator is an estimator of td based on R̂d and a known total tdz: t̂dR =
tdzR̂d . It is nearly unbiased for td and its variance is estimated by t2

dzV̂ (R̂d). If the domain
size Nd is known, a ratio estimator of td derived from an estimator of the domain mean
is t̂d(N) = Nd

ˆ̄yd . If ˆ̄yd is estimated by ˆ̄yd = t̂dHT/N̂d , then t̂d(N) is a special case of the
Hájek type estimator. The estimates t̂d(N) do not, in general, add up to the estimate of
the population total.

4.3.2. Percentile estimation for domains
Percentiles, such as median and quartiles, are important in certain surveys, notably
surveys of income statistics including median household income, income deciles, and
derived poverty measures. The percentiles can be estimated using an estimated dis-
tribution function (Chambers and Dunstan, 1986; Chambers and Tzavidis, 2006; Rao
et al., 1990; Tzavidis et al., 2007); recently, calibration has been used (Rueda et al.,
2007a; Särndal, 2007; Wu and Sitter, 2001a). Harms and Duschene (2006) use known
percentiles of auxiliary variables. These studies have not considered estimation of
domain percentiles, but most population estimators can be apparently generalized for
domain estimation. We also suggest straightforward application of the estimation equa-
tion approach of Binder and Patak (1994). Percentile estimation is discussed also in
Chapter 36.

The distribution function is defined for a finite population domain Ud of size Nd as

Fd(t) =
∑

k∈Ud

I(yk ≤ t)/Nd,

where the indicator function I(yk ≤ t) equals 1 when yk ≤ t and 0 otherwise. The
pth percentile is θ = θ(p) = inf {t : Fd(t) ≥ p}, that is, we find the smallest value
θ for which proportion p of the yk are smaller than or equal to θ. In the finite
population, we choose percentiles among the values yk. Then the percentile is θ =
min{yk : Fd(yk) > p; k ∈ Ud}. It is useful to restate the problem as follows: the solu-
tion of Fd(θ) = p satisfies an estimating equation defined for u(y, θ) = I(y ≤ θ) − p:
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Wd(θ) = ∫∞
−∞ u(y, θ)dFd(y) = 0. As Fd is a step function, the equation is

Wd(θ) =
∑

k∈Ud

u(yk, θ)/Nd =
∑

k∈Ud

(I(yk ≤ θ) − p)/Nd = 0.

When using a sample without auxiliary information, we estimate Wd(θ) by HT and
use equation

Ŵd(θ) =
∑

k∈sd

ak(I(yk ≤ θ) − p)/Nd = 0.

This has the same form as the optimal estimating function of Godambe and Thomp-
son (1986a), although their theory seems to require differentiable u(y, θ). The solution
satisfies

F̂dHT(θ) =
∑

k∈sd

akI (yk ≤ θ)/N̂d = p.

The function F̂dHT(θ) is interpreted as an HT estimator of the distribution function. It
is monotone, nondecreasing, and bounded in [0, 1]. This simplifies finding the percentile.
The smallest value yk for which F̂dHT(y) > p is found from sorted data in the same way
as in the binary search algorithm. Percentile searching can be more complicated if the
estimated distribution function is not monotone. Rao et al. (1990) have suggested that
a monotone distribution function estimate is derived by tracking maxima. Rueda et al.
(2007a) have presented a calibration-based monotone and nondecreasing estimator of
the distribution function.

Särndal et al. (1992, p. 203) give an approximate variance estimator of F̂dHT(θ):

V̂F̂ (θ) = V̂ (F̂dHT(θ)) = 1

N̂2
d

∑

k∈sd

∑

l∈sd

(akal − akl)(I(yk ≤ θ̂) − p)(I(yl ≤ θ̂) − p).

Under the assumption of normality of F̂dHT(θ) close to p, a 95% confidence interval
for Fd(θ) is [p−1.96V̂F̂ (θ)1/2, p+1.96V̂F̂ (θ)1/2].Aconfidence interval for θ is obtained
from the equivalent equality P

{
F̂−1

dHT(p − 1.96V̂F̂ (θ)) ≤ θ ≤ F̂−1
dHT(p + 1.96V̂F̂ (θ))

} =
0.95.

When auxiliary data are available, Binder and Patak (1994) have proposed a general-
ization of the estimating equation containing α(x, β, θ) = E (u(y, θ)|x) under a model
with parameter β:

∞∫

−∞
α (x, β, θ) d[FX;d(x) − F̂X;d(x)] +

∞∫

−∞
u(y, θ)dF̂d(y) = 0,

where FX;d is the distribution function of x in domain d. In the case of percentile
estimation, α(x, β, θ) = P{Y ≤ θ|x; β}−p. Let us denote the probability P{Y ≤ θ|x =
xk; β} by pk. The estimating equation is

∑

k∈Ud

1

Nd

(pk − p) −
∑

k∈sd

1

N̂d

ak (pk − p) +
∑

k∈sd

1

N̂d

ak (I(yk ≤ θ) − p) = 0.
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When we substitute estimated probabilities p̂k for pk (see below), we obtain an
equation

F̂dGREG(θ) = p with F̂dGREG(θ) = 1

Nd

∑

k∈Ud

p̂k + 1

N̂d

∑

k∈sd

ak(I(yk ≤ θ) − p̂k).

This is interpreted as a GREG estimator (13) of the distribution function; the indica-
tors I(yk ≤ θ) are the observations and p̂k are the fitted values. This estimator is similar
to a difference estimator defined in Rao et al. (1990). It is indirect if the probabilities p̂k

are estimated from the whole sample, and then the percentile should be searched using
all observations of the sample, but variance is still probably large in a small domain. We
can estimate the variance of F̂dGREG(θ) using the ordinary variance estimator V̂ of GREG
(13). This would yield a confidence interval with end points F̂−1

dGREG(p− 1.96V̂ 1/2) and
F̂−1

dGREG(p + 1.96V̂ 1/2), but its properties are not known yet.
The estimates p̂k are obtained from a logistic regression model fitted to the indicators

I(yk ≤ θ) in the sample, preferably by maximizing a pseudolikelihood that contains
design weights.Alternatively, one can obtain p̂k using the empirical distribution function
F̂ê of the standardized residuals êk = (yk−x′

kβ̂)/σ̂ in the sample; p̂k = F̂ê((θ−x′
kβ̂)/σ̂),

or by using the fitted values ŷk in the population; p̂k = I
(
ŷk ≤ θ

)
(Rao et al., 1990; Wu

and Sitter, 2001a). In domain estimation, it is an open question whether to use only the
data in the domain or a larger data set to obtain possibly better estimates p̂k.

5. Extended GREG family for domain estimation

5.1. Assisting models

A fixed-effects linear model is often chosen as an assisting model for a GREG estimator
of direct or indirect type; this was the case in Sections 3 and 4. When the model does
not fit well in a domain, the population fit residuals Ek = yk − ŷk in that domain can
be large, inflating the estimator’s variance. Nonlinear models may fit better, especially
if the variable of interest is binary or multinomial. Mixed models can offer an interest-
ing alternative for direct and indirect GREG estimators with fixed-effects type assisting
models. By introducing suitable random components in the model, flexible accounting
for the domain differences is allowed. The extended GREG family of domain estimators
refers to GREG type estimators where the assisting model is a member of the family of
generalized linear mixed models (GLMM; e.g., Breslow and Clayton, 1993; McCulloch
and Searle, 2001). Lehtonen and Veijanen (1998) and Lehtonen et al. (2003, 2005) have
introduced GREG estimators of the form (11) assisted by logistic, multinomial logistic,
and mixed models. This approach might be attractive at least from a modeller’s point of
view. Torabi and Rao (2008) compare the MSE behavior of an EBLUP estimator with
a GREG estimator assisted by a mixed model, introduced in Lehtonen and Veijanen
(1999).

Access to reliable auxiliary information is essential for accurate domain estima-
tion. In Sections 3 and 4, we worked with aggregate-level auxiliary data. Now, we
assume access at unit-level auxiliary data. Let us assume that the auxiliary vector value
xk = (1, x1k, . . . , xjk, . . . , xJk)

′ and domain membership is known and specified in the
frame for every unit k ∈ U. Consider first a generalized linear fixed-effects model,
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Em(Yk) = f(xk; β) for a given function f(· ;β), where β requires estimation, and Em

refers to the expectation under the model. Examples of f(· ;β) are a linear functional
form or a logistic function. The model fit to the sample data {(yk, xk); k ∈ s} yields the
estimate B̂ of B, a finite population counterpart of β. Using the estimated parameter
values, the vector value xk, and the domain membership of k, we compute the predicted
value ŷk = f(xk; B̂) for every k ∈ U, which is possible under our assumptions.

A similar reasoning applies for a generalized linear mixed model involving random
effects in addition to the fixed effects. The model specification is Em(Yk|ud) = f(x′

k(β+
ud)), where ud is a vector of random effects defined at the domain level. Using the
estimated parameters, predicted values ŷk = f(x′

k(B̂+ ûd)) are computed for all k ∈ U.
An example of a mixed model formulation is a multinomial logistic mixed model

for a binary or polytomous y-variable. In addition to domains Ud , a second subdivision
of U arises: for an m-class polytomous variable, the population is also subdivided into
classes denoted Ui, i = 1, . . . , m. For class Ui, denote the response variable as yi with
value yik = 1 if k ∈ Ui and yik = 0 otherwise. We want to estimate the class frequencies
or totals tid = ∑

k∈Ud
yik, i = 1, . . . , m, for all domains Ud . For a binary y-variable

(m = 2), the domain totals are td = ∑
k∈Ud

yk. The multinomial logistic mixed model
is of the form

Em(yik|ud) = P{yik = 1|ud} = exp(x′
k(βi + uid))

1 +∑m
r=2 exp(x′

k(βr + urd))

for k ∈ Ud , i = 1, . . . , m, d = 1, . . . , D, where xk is a known vector value for every k ∈
U, βi is a vector of fixed effects common for all domains, ud = (u′

1d, . . . , u′
id, . . . , u′

md)
′,

and uid is a vector of domain-specific random effects, defined for the classes of the
y-variable. To avoid identifiability problems, we set β1 = 0. Lehtonen et al. (2005) give
special cases of the model.

Obviously, the possible nonlinearity of the model complicates the method. For exam-
ple, we cannot express the sum of fitted values using the sum of auxiliary variables; in
general,

∑
k∈Ud

ŷk �= (∑
k∈Ud

xk

)′
B̂. As a consequence, the GREG estimator cannot be

written using the totals of auxiliary variables.The representation incorporatingg-weights
is also invalid, and the variance estimator with g-weights is not appropriate. For a given
model specification, the GREG estimator of domain total td = ∑

k∈Ud
yk remains the one

given by (11), that is, the form t̂dGREG = ∑
k∈Ud

ŷk +∑
k∈sd

ak(yk − ŷk), d = 1, . . . , D.
The latter component in GREG, an HT estimator of the residual total, aims at correcting
for the bias of the synthetic part.

We could use a simpler variance estimator (9), but it is probably negatively biased.
A resampling-based variance estimator might be preferred. Stukel et al. (1996) discuss
jackknife type variance estimation for calibration estimators.

For simplicity, we concentrate now on linear models (Lehtonen et al., 2003). The
model specification of a linear mixed model is Em(Yk|ud) = x′

k(β + ud) = (β0 +
u0d) + (β1 + u1d) x1k + · · · + (βJ + uJd) xJk, where ud = (u0d, u1d, . . . , uJd)

′ is a
vector of random effects defined at the domain level. The random effects are assumed
to have common distribution. In estimation, they are often shrunken towards zero. The
random components of ud represent deviations from the corresponding coefficients of
the fixed-effects part of the model. In practice, not all components are treated as random;
for some j, ujd = 0 for every d. A simple example is a model that includes domain-
specific random intercepts u0d as the only random term. If all components of ud are set
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to zero, a fixed-effects model is attained. The mixed model is usually estimated by using
ML and restricted or residual maximum likelihood (REML) methods (e.g., Goldstein,
2002; McCulloch and Searle, 2001). Using the estimated parameters, predicted values
ŷk = x′

k(B̂ + ûd) are computed for all k ∈ U. The predictions {ŷk; k ∈ U} differ from
one model specification to another.

An additional possible direction for extension of the GREG concept is explored in
Breidt and Opsomer (2000). These authors use nonparametric regression techniques to
obtain the fitted values necessary for a GREG type estimator. Zheng and Little (2003,
2004) use penalized spline nonparametric mixed models for a similar purpose. Non-
parametric and semiparametric estimation is discussed in Chapter 27. By using suitable
mixed models, Jiang and Lahiri (2006) introduce a model-assisted empirical best
prediction approach for domain means.

5.2. Computational example for extended GREG family estimators

We compare empirically the design bias and accuracy of model-assisted GREG type esti-
mators of domain totals of a continuous y-variable for different linear assisting models
(fixed-effects, mixed). Results are based on Monte Carlo simulation experiments, where
repeated systematic probability proportional-to-size samples (πPS design) were drawn
from an artificially generated fixed and finite population. The inclusion probabilities
were πk = nx1k

/∑
k∈U x1k. The weights ak = 1/πk varied between 54.5 and 599.8. We

used unit-level auxiliary data.
In the Monte Carlo experiment, for an estimate t̂d(sv) obtained for sample sv; v =

1, 2, . . . , K, we computed for each domain Ud the absolute relative bias (ARB;
defined as the ratio of the absolute value of bias to the true value), given by∣
∣(1/K)

∑K
v=1 t̂d(sv) − td

∣
∣/td , and relative root mean squared error (RRMSE), defined

as the ratio of the root MSE to the true value, given by
√

(1/K)
∑K

v=1 (t̂d(sv) − td)2
/
td .

There were D = 100 domains in the population. The size of domain Ud was pro-
portional to exp(qd), where qd was simulated from U(0,2.9). We had 47 domains with
minor sample sizes, 19 domains with medium sample sizes, and 34 domains with major
sample sizes. These three size classes were defined on the basis of expected sample
size n(tdx1/tx1) in domain Ud , where x1 is the size variable used in πPS sampling. The
domain size classes were less than 70, 70–119, and 120 or more units. The smallest
domain of the generated population had 1721 units and the largest had 28,614.

The auxiliary variable x1 was simulated from uniform distribution U(1,11). Another
auxiliary variable x2, unrelated to the sampling design, was simulated from U(−5, 5).
The random effects ud and random slopes νid , i = 1, 2, were simulated for each domain
from multinormal distribution with variances Var(ud) = 1, Var(νid) = 0.125 and
correlations Corr(ud, νid) = −0.5; Corr(v1d, ν2d) = 0. The error term ε was generated
from N(0,100). Values of the y-variable were simulated as yk = 1 + (1 + ν1d)x1k +
(1 + ν2d)x2k + ud + εk. Correlations of the variables in the population were as follows:
corr(y, x1) = 0.44, corr(y, x2) = 0.45, and corr(x1, x2) ≈ 0. Domain means of the
y-variable were approximately equal but the totals differed considerably: The means
of domain totals were 50,977 for minor domains, 131,776 for medium domains, and
263,979 for major domains.
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Our population size was N = 1,000,000 and sample size n = 10,000.K = 1000
independent samples were selected. The following assisting models (groups A, B, C,
and D) were considered:

Model A1, Yk = β0d + εk, k ∈ Ud , producing a direct estimator GREG-A1.

ModelA2, Yk = β0 +ud +εk, k ∈ U, producing an indirect estimator MGREG-A2.

Model B1, Yk = β0d + β2x2k + εk, k ∈ U, producing an indirect estimator
GREG-B1.

Model B2, Yk = β0 + ud + β2x2k + εk, k ∈ U, producing an indirect estimator
MGREG-B2.

Model C1, Yk = β0d + β1x1k + εk, k ∈ U, producing an indirect estimator
GREG-C1.

Model C2, Yk = β0 + ud + β1x1k + εk, k ∈ U, producing an indirect estimator
MGREG-C2.

Model D1, Yk = β0d +β1x1k +β2x2k + εk, k ∈ U, producing an indirect estimator
GREG-D1.

Model D2, Yk = β0 + ud + β1x1k + β2x2k + εk, k ∈ U, producing an indirect
estimator MGREG-D2.

A-models did not contain auxiliary information. In B-models, the auxiliary variable
x2 was used, whereas the πPS size variable x1 was included in C-models. Both auxiliary
variables were included in D-models. Note that for the models A1, A2, B1, and B2, the
sampling is informative (see Chapter 39), because the values of the y-variable depend
on x1 but the predictor is not included in the model. In models A1, B1, C1, and D1,
the domain differences were accounted for by domain-specific fixed effects β0d , and in
A2, B2, C2, and D2 by domain-specific random intercepts β0 + ud . We incorporated
the design weights ak in the estimation procedures of model parameters, including the
mixed models. This facilitates the condition of “internal bias calibration” (a proper
combination of model formulation and estimation procedure under a given sampling
design) proposed, for example, by Firth and Bennett (1998). The design weights were
included in a REML method introduced in Saei and Chambers (2004) by modifying
matrix products of X, y, the Z matrix whose columns are domain indicators, and e, the
vector of residuals: for example, the sample-based X′

sXs in the original algorithm was
replaced by X′

sWXs, where W is the diagonal matrix of design weights. X′
sWXs is an

estimate of the corresponding product X′
UXU defined in the population.

The design bias of GREG estimators remained negligible for all model formulations
considered (Table 5). In model groups A, B, C, and D, a mixed model formulation
yielded slightly better results than fixed model formulation. Accuracy improved when
incorporating in B-type assisting models the auxiliary variable x2 (which was unrelated
to the sampling design). GREG-C1 and GREG-C2 outperformed the A-type and B-type
estimators. Best accuracy was obtained for the D-models. Thus, the inclusion of the πPS
size variable x1 in C-type and D-type assisting models appears powerful in this case.
This strategy facilitates “double use” (Särndal, 1996) of the auxiliary information (i.e.,
to use it both in the sampling design and in the estimation phase).
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Table 5
Average absolute relative bias (ARB) and average relative root mean squared error (RRMSE) of GREG
estimators of domain totals for minor, medium-sized, and major domains of the generated population

Model and
Estimator

Average ARB (%) Average RRMSE (%)

Domain Size Class Domain Size Class

Minor
(20 − 69)

Medium
(70 −119)

Major
(120+)

Minor
(20 − 69)

Medium
(70 −119)

Major
(120+)

Model A1 Yk = β0d + εk

GREG-A1 1.2 0.7 0.3 20.2 11.9 8.5

Model A2 Yk = β0 + ud + εk

MGREG-A2 0.5 0.5 0.3 19.9 11.8 8.5

Model B1 Yk = β0d + β2x2k + εk

GREG-B1 1.2 0.6 0.3 18.3 10.7 7.7

Model B2 Yk = β0 + ud + β2x2k + εk

MGREG-B2 0.5 0.4 0.2 18.0 10.6 7.7

Model C1 Yk = β0d + β1x1k + εk

GREG-C1 0.4 0.3 0.2 17.5 10.3 7.5

Model C2 Yk = β0 + ud + β1x1k + εk

MGREG-C2 0.3 0.3 0.2 17.3 10.2 7.5

Model D1 Yk = β0d + β1x1k + β2x2k + εk

GREG-D1 0.4 0.3 0.2 15.3 8.8 6.5

Model D2 Yk = β0 + ud + β1x1k + β2x2k + εk

MGREG-D2 0.3 0.3 0.2 15.1 8.7 6.5

5.3. Other extensions

A class of extended generalized regression estimators (EGRE) has been introduced
by Montanari and Ranalli (2002) but it has not been applied in domain estimation
yet. Calibration has been generalized in various ways. Wu and Sitter (2001a) discuss
model calibration approach by defining the calibration equations for the fitted values:∑

k∈s wksŷk = ∑
k∈U ŷk. This approach works well with nonlinear models but auxil-

iary information is needed at unit level. Nonparametric model calibration by neural
networks is studied in Montanari and Ranalli (2005), who assumed access to unit-level
auxiliary information. Lehtonen et al. (2008) compared model calibration and GREG
in the context of domain estimation.

6. Software

6.1. SAS applications and macros

SAS procedure SURVEYMEANS can be used in HT estimation for domains
(STRATA and DOMAIN statements) under unequal probability sampling. SAS pro-
cedure SURVEYFREQ is available for domain analysis of frequency tables. With some
additional programming, SAS procedure SURVEYREG yields GREG estimates for
domains. Extended domain variables yd with ydk = Idkyk = I{k ∈ Ud}yk can be used
for unplanned domain structures. Variance estimation is based on Taylor linearization.
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CALMAR (CALibration on MARgins) and CALMAR 2 are calibration-oriented
SAS macro programs of INSEE (Caron and Sautory, 2004; Le Guennec and Sautory,
2003). Methods of Deville and Särndal (1992) and Deville et al. (1993), for example,
are implemented.

CLAN is a freely available SAS macro developed at Statistics Sweden (Andersson
and Nordberg, 1998). CLAN contains GREG and different calibration methods. Variance
estimation is based on Taylor linearization.

GES, Statistics Canada’s Generalized Estimation System is a domain estimation
package including GREG and calibration estimation (Estevao et al., 1995). The same
g-weights can be applied to different y-variables and different domains. Variance is
estimated by Taylor linearization or jackknife.

Computer software for sample surveys is discussed further in Chapter 13.

6.2. Application Domest

Domest is an interactive Java application developed for the estimation of totals or means
for domains and small areas. It uses methods described in Lehtonen et al. (2003) and Saei
and Chambers (2004). Domest provides both model-based and design-based domain
estimators. Mixed models are incorporated into EBLUP, synthetic estimator, and pseudo
EBLUP (Rao, 2003a). Design-based methods include HT and most GREG methods
presented in this chapter. GREG estimation is assisted by fixed-effects regression models
or mixed models, fitted with or without design weights. Currently, GREG variance
estimation allows SRSWOR, Poisson sampling, and πPS with approximated second-
order inclusion probabilities (Berger, 2004, 2005b; Hájek, 1964).

A linear regression model is fitted by OLS or WLS, and a mixed model is fitted by ML
or REML (Saei and Chambers, 2004). When the fitting of a mixed model incorporates
design weights in the same way as in pseudolikelihood estimation, the design bias of
EBLUP seems to decrease.

The mixed model can include both area and time effects. The area effects are then
assumed independent and time effects have AR(1) correlations. In a mixed model with
spatially correlated random effects, the correlation of the random effects associated with
regions a and b distance dab apart is Corr(ua, ub) ∝ exp(−dab). Spatial correlations may
improve the predictive power of a synthetic domain estimator. In a domain missing from
the sample, the correlation structure yields a nonzero estimate of the associated random
effect.

SAS data or text files can be imported into Domest and output tables are saved as
text files or added incrementally to an HTML file.

Domest is developed at Statistics Finland by Ari Veijanen with Risto Lehtonen. It is
freely available from the authors.
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