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3.3 MODEL-ASSISTED ESTIMATION

Introduction

In the techniques discussed so far, auxiliary information of the population elements
is used in the sampling phase to attain an efficient sampling design. We now turn
to a different way of utilizing auxiliary information. Our aim is to introduce
estimators that can be used for the selected sample to obtain better estimates of the
parameters of interest, relative to the estimates calculated with estimators based
on the sampling design used.

Let us assume that appropriate auxiliary data are available from the population
as a set of auxiliary variables. Of these variables, some might be categorical
and some continuous. Some auxiliary data are perhaps used for the sampling
procedure. Others can be used for improving efficiency; a way to do this is, for
example, to use an auxiliary variable z, which is related to our study variable y,
for a reduction of the design variance of the original estimator of the population
total of y. In Särndal et al. (1992), these techniques are discussed in the context
of model-assisted design-based estimation. Model-assisted estimation refers to the
property of the estimators that models such as linear regression are used in
incorporating the auxiliary information in the estimation procedure for the
finite-population parameters of interest, such as totals. Model-assisted estimation
should be distinguished from the multivariate survey analysis methods to be
discussed in Chapter 8. There, models are also used but for multivariate survey
analysis purposes.

In the following text, a brief review is given on model-assisted estimation.
More specifically, poststratification, ratio estimation and regression estimation are
considered. The methods are special cases of so-called generalized regression
estimators. All these methods are aimed at improving the estimation from a
given sample by using available auxiliary information from the population. This
can result in estimates closer to the true population value and a reduction in the
design variance of an estimator calculated from the sampled data.
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In model-assisted estimation, an auxiliary variable z, which is related to the
study variable y, is required. If this variable is categorical, the target population
U can be partitioned into subpopulations U1, . . . , Ug, . . . , UG according to some
classification principle. In poststratification, these subpopulations are called post-
strata. If the poststrata are internally homogeneous, this partitioning can capture
a great deal of the total variance of the study variable y, resulting in a decrease
in the design-based variance of an estimator. Moreover, poststratification can
be used to obtain more accurate point estimates and reduce the bias of sample
estimates caused by nonresponse.

The auxiliary variable z is often continuous. If it correlates strongly with the
study variable y, a linear regression model can be assumed with y as the dependent
variable and z as the predictor. This regression can be estimated from the observed
sample and used in the estimation of the original target parameter. For this, ratio
estimation and regression estimation can be used. By these methods, substantial
gains in efficiency and increased accuracy are often achieved.

To construct a model-assisted estimator, two kinds of weights are considered.
The preliminary weights are the usual sampling design weights wk, which
generally are the inverses of the inclusion probabilities πk; these weights are
extensively used in this book. The other type of weights are called g weights and
their values gk depend both on the selected sample and on the chosen estimator. The
product w∗

k = gkwk gives new weights known as calibrated weights, which are used
in the model-assisted estimators. Thus, using calibrated weights, a model-assisted
estimator can be written as t̂cal = ∑n

k=1 w∗
k yk. A property of the calibrated weights

is that for example for ratio estimation, the estimator t̂z,cal = ∑n
k=1 w∗

k zk of the total
of the auxiliary z-variable reproduces exactly the known population total Tz. The g
weights and calibrated weights will be explicitly given for poststratification, ratio
estimation and regression estimation.

The basic principles of model-assisted estimation are most conveniently intro-
duced for SRSWOR, although natural applications in practical situations are often
under more complex designs. A further simplification is that only one auxiliary
variable is assumed. Also, this assumption can be relaxed if multiple auxiliary
variables are available as is assumed in discussing regression estimation. The
concept of estimation strategy will be used referring to a combination of the sam-
pling design and the appropriate estimator. The model-assisted strategies to be
discussed are shown in Table 3.12. In the design-based reference strategies, no
auxiliary information is used.

Poststratification

Poststratification can be used for improvement of efficiency of an estimator if
a discrete auxiliary variable is available. This variable is used to stratify the
sample data set after the sample has been selected. Recall from Section 3.1 that
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Table 3.12 Estimation strategies for population total.

Strategy
Auxiliary

information
Assisting

model

Design-based strategies
SRSWOR Not used None
SRSWR Not used None

Model-assisted strategies
Poststratification SRS*pos Discrete ANOVA
Ratio estimation SRS*rat Continuous Regression (no intercept)
Regression estimation SRS*reg Continuous Regression

stratification of the element population as part of the sampling design often gave a
gain in efficiency. This was achieved by an appropriate choice of the stratification
variables so that the variation in the study variable y within the strata would
be small. Poststratification has a similar aim. To avoid confusion with the usual
(pre)stratification, the population is partitioned into G groups that are called
poststrata.

To carry out poststratification, the sample data are first combined with the
appropriate auxiliary data obtained perhaps from administrative registers or
official statistics. Combining the sampled data with poststratum information and
the corresponding selection probabilities, we can proceed with the estimation in
basically the same way as if it were being done by ordinary (pre)stratification.
Certain differences exist, however. Because we are stratifying after the sample
selection or, more usually, after the data collection, we cannot assume any specific
allocation scheme. The sample size n is fixed but how it is allocated to the different
strata is not known until the sample is drawn. This property causes no harm to
the estimation of, for example, the total, but estimating of the variance of the total
estimator requires more attention.

The poststratified estimator for the total T of y is given by

t̂pos =
G∑

g=1

t̂g =
G∑

g=1

ng∑
k=1

w∗
gkygk, (3.20)

where t̂g = Ngyg is an estimator of the poststratum total Tg and Ng is the size of
the poststratum g. The poststratum weights are w∗

gk = ggkwgk, where the g weights

are ggk = Ng/N̂g with the estimated poststratum sizes in the denominator, and wgk

are the original sampling weights. The calculation of w∗
gk will be illustrated in

Example 3.9. The variance of t̂pos can be determined in various ways, depending
on how one uses the configuration of the observed sample. The configuration



90 Further Use of Auxiliary Information

refers to how the actual poststratum sample sizes ng are distributed, and if this is
taken as given, the conditional variance is simply the same as the usual variance
for stratified samples:

Vsrs,con(t̂pos|n1, . . . , ng, . . . , nG) =
G∑

g=1

N2
g

(
1 − ng

Ng

)
S2

g

ng
, (3.21)

where the poststratum variances are given by S2
g = ∑Ng

k=1(Ygk − Yg)
2/(Ng − 1).

By averaging (3.21) over all possible configurations of n, the unconditional variance
is obtained. This gives an alternative variance formula,

Vsrs,unc(t̂pos) =
G∑

g=1

N2
g

(
1 − E(ng)

Ng

)
S2

g

E(ng)
, (3.22)

where E(ng) is the expected poststratum sample size. This variance can be
approximated in various ways. One of the approximations is

Vsrs,unc(t̂pos)
.= N2

(
1 − n

N

)(
1
n

) 
 G∑

g=1

(
Ng

N

)
S2

g +
(

1
n

) G∑
g=1

(
1 − Ng

N

)
S2

g


 .

(3.23)

The difference between the conditional and unconditional variances could be
considerable if the sample size is small. The corresponding variance estimators
v̂srs,con(t̂pos) and v̂srs,unc(t̂pos) are obtained by inserting ŝ2

g for S2
g , where ŝ2

g =∑ng

k=1(ygk − yg)
2/(ng − 1). For illustrative purposes, both variances Vsrs,con and

Vsrs,unc are estimated in the next example.

Example 3.10

Estimation with poststratification. The sample used is drawn with SRSWOR
from the Province’91 population in Section 2.3 (see Example 2.1). The sample
is poststratified according to administrative division of the municipalities into
urban and rural municipalities. The target population contains N1 = 7 urban and
N2 = 25 rural municipalities. The two poststrata have the value 1 for urban and 2
for rural municipalities.

In Table 3.13, the sample information used for the estimation with poststratifi-
cation is displayed.

Let us consider more closely the estimation of the total T. The poststratum
totals of UE91 estimated from the table are t̂1 = N1y1 = 7 × 1868 = 13 076 and
t̂2 = N2y2 = 25 × 201.2 = 5030. Using these estimates, the poststratified estimate
for T is t̂pos = t̂1 + t̂2 = 18 106.
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Alternatively, the total estimate t̂pos can be calculated using the poststratum
weights w∗

k . To calculate w∗
k , the original sampling weights wk should be adjusted

by the sample dependent gk weights. For this, first the estimate of the poststratum
size is determined. Denoting by wgk the original element weight of a sample element
that belongs to the poststratum g, an estimate for poststratum size N̂g is given
by summing up these original weights. Then, the corresponding g weight for an
element k in poststratum g is simply ggk = Ng/N̂g, where Ng is the exact size of the
poststratum g. For example, in Table 3.13, the original sampling weight under SRS
is wk = 4, or a constant for each population element. In the first poststratum, the
poststratum size is N1 = 7 and its estimated size is N̂1 = 4 + 4 + 4 = 12, because
there are three sampled elements in the first poststratum. Thus, the corresponding
g weight is g1k = N1/N̂1 = 7/12 = 0.5833. Finally, the poststratum weights are
given for the first poststratum by w∗

1k = g1k × w1k = 0.5833 × 4 = 2.3333. This
value turns out to be the same for all the sampled elements for the first poststratum
(urban municipalities). Using the poststratum weights, the estimate t̂pos will be
equal to that previously calculated.

Estimation results for all the estimators are displayed in Table 3.14. The original
setting of sample identifiers remains, say STR = 1 and CLU = ID, but the element
weights are to be replaced by the poststratum weights, and the sampling rate is 0.43
for the first poststratum and 0.20 for the second poststratum. Original sampling
weights are used and the sampling rate is 0.25 for both poststrata for estimation
of unconditional variance. Note that this procedure roughly approximates the
formula given in (3.23). For comparison, the design-based estimates t̂, r̂ and m̂
obtained under SRSWOR are included.

Table 3.13 A simple random sample drawn without replacement from the Province’91
population with poststratum weights.

Sample design identifiers Study variables
Poststratification

Element g Post.
STR CLU WGHT LABEL UE91 LAB91 POSTSTR WGHT WGHT

1 1 4 Jyväskylä 4123 33 786 1 0.5833 2.3333
1 4 4 Keuruu 760 5919 1 0.5833 2.3333
1 5 4 Saarijärvi 721 4930 1 0.5833 2.3333
1 15 4 Konginkangas 142 675 2 1.2500 5.0000
1 18 4 Kuhmoinen 187 1448 2 1.2500 5.0000
1 26 4 Pihtipudas 331 2543 2 1.2500 5.0000
1 30 4 Toivakka 127 1084 2 1.2500 5.0000
1 31 4 Uurainen 219 1330 2 1.2500 5.0000

Sampling rate for calculation of unconditional variance: 8/32 = 0.25
Sampling rates for calculation of conditional variance:

Stratum 1 (Urban) = 3/7 = 0.43
Stratum 2 (Rural) = 5/25 = 0.20
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Table 3.14 Poststratified estimates from a simple random sample drawn
without replacement from the Province’91 population.

(1) Poststratified estimates (conditional)

Statistic Variables Estimate s.e c.v deff

Total UE91 18 106 6014 0.33 0.33
Ratio UE91, LAB91 12.97% 0.45% 0.03 0.59
Median UE91 194 36 m.a. 1.09

(2) Poststratified estimates (unconditional)

Statistic Variables Estimate s.e c.v deff

Total UE91 18 106 7364 0.41 0.50
Ratio UE91, LAB91 12.97% 0.49% 0.03 0.70
Median UE91 194 50 m.a 1.12

(3) Design-based estimates

Statistic Variables Estimate s.e c.v deff

Total UE91 26 440 13 282 0.50 1.00
Ratio UE91, LAB91 12.78% 0.41% 0.03 1.00
Median UE91 226 149 m.a. 1.00

The comparison shows how poststratification affects point estimates. The
biggest gain is obtained when estimating the population total. The estimate of the
number of unemployed is t̂pos = 18 106, which is closer to the true value T = 15 098
than the design-based estimate t̂ = 26 440. The ratio estimate changes only
slightly. The median behaves somewhat peculiarly, as has been seen previously.

The reason for a more accurate estimate for the total is obvious. Under
SRSWOR, one should have drawn urban and rural municipalities approximately
by their respective proportions: (8/32) × (7) ≈ 2 towns and (8/32) × (25) ≈ 6
rural municipalities. The urban municipalities have larger populations and
unemployment figures. If by chance they are over-represented in the sample,
then the design-based estimator will overestimate the population total. But
poststratification can correct (at least partially) skewnesses. Therefore, we could
also get a point estimate closer to its true value.

Poststratification can also improve efficiency. Again, this is true especially
for the total. The estimated variance of t̂pos under the conditional assumption is
reduced to one-third when compared with the pure design-based estimate t̂, which
is indicated by deff = 0.33. If the unconditional variance is used as a basis, then
deff = 0.50. The unconditional variance estimate is greater than the conditional
variance estimate, because the poststratum sample sizes ng are by definition
random variables whose variance contribution increases the total variance.
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Ratio Estimation of Population Total

The estimation of the population total T of a study variable y was considered
previously under poststratification using the sample data and a discrete auxiliary
variable. Ratio estimation can also be used to improve the efficiency of the estimation
of T, if a continuous auxiliary variable z is available. The population total Tz and
the n sample values zk of z are required for this method. Such information
can often be obtained from administrative registers or official statistics. This
information can be used to improve the estimation of T by first calculating
the sample estimator r̂ = t̂/t̂z of the ratio R = T/Tz and multiplying r̂ by the
known total Tz. Ratio estimation of the total can be very efficient if the ratio
Yk/Zk of the values of the study and auxiliary variables is nearly constant across
the population.

Ratio estimators are usually effective but slightly biased. Because of bias, the
mean squared error (MSE) could be used instead of the variance when examining
the sampling error. It has been shown that the proportional bias of a ratio
estimator is 1/n and so becomes small when the sample size increases. Thus, the
variance serves as an approximation to the MSE in large samples. The properties
of ratio estimators have been studied widely in classical sampling theory.

Let us consider ratio estimation of the total T of y under simple random sampling
without replacement. We are interested in a ratio-estimated total given by

t̂rat = r̂ × Tz =
n∑

k=1

w∗
k yk, (3.24)

where r̂ = t̂/t̂z = Ny/Nz = ∑n
k=1 yk/

∑n
k=1 zk and Tz is the population total of the

auxiliary variable z. The calibrated weights are w∗
k = gkwk = (Tz/t̂z)wk.

In the estimator (3.24), r̂ is a random variable and the total Tz is a constant.
Thus, the variance of t̂rat can be written simply as Vsrs(t̂rat) = T2

z × Vsrs(r̂). If the
SRSWOR design variance of the estimator r̂ of a ratio (equation (2.9)) is introduced
here, an approximative variance of the ratio-estimated total is given by

Vsrs(t̂rat)
.= N2

(
1 − n

N

) (
1
n

) N∑
k=1

(Yk − R × Zk)
2

N − 1
, (3.25)

whose estimator is given by

v̂srs(t̂rat) = N2
(

1 − n
N

)(
1
n

) n∑
k=1

(yk − r̂zk)
2

n − 1
. (3.26)

By studying the sum of squares in the variance equation (3.25), it is possible to
find the condition under which ratio estimation results in an improved estimate
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of a total. The total sum of squares can be decomposed as follows:

N∑
k=1

(Yk − R × Zk)
2/(N − 1) =

N∑
k=1

[(Yk − Y) − R(Zk − Z)]2/(N − 1)

=
N∑

k=1

[(Yk − Y)2 − R2(Zk − Z)2

− 2R(Yk − Y)(Zk − Z)]/(N − 1)

= S2
y + R2S2

z − 2RρyzSySz,

where ρyz is the finite-population correlation coefficient of the variables y and z.
Consider the difference

Vsrs(t̂) − Vsrs(t̂rat) = N2
(

1 − n
N

)(
1
n

)
{S2

y − [S2
y + R2S2

z − 2RρyzSySz]}.

The ratio estimator improves efficiency if Vsrs(t̂) > Vsrs(t̂rat), which occurs when

R2S2
z < 2RρyzSzSy

is valid or
2ρyz >

RSz

Sy
.

It should be noted that R = Y/Z, and that the former condition expressed in terms
of coefficients of variation (c.v) of the variables z and y is given by

ρyz >

(
1
2

)
c.vy

c.vz
,

where c.vy = Sy/Y and c.vz = Sz/Z are the coefficients of variation of y and z
respectively. Therefore, improvement in efficiency depends on the correlation
between the study and auxiliary variables y and z and the c.v of each variable.

Example 3.11

Efficiency of a ratio-estimated total in the Province’91 population. The variable
UE91 is the study variable y and HOU85 is chosen as the auxiliary variable z.
The correlation coefficient between UE91 and HOU85 is ρyz = 0.9967, and the
corresponding coefficients of variation are c.vy = Sy/Y = 743/472 = 1.57 and
c.vz = Sz/Z = 4772/2867 = 1.66. Thus, the condition given above is valid since

ρyz = 0.9967 > 0.4729 = 1
2

× 1.57
1.66

.
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It can be seen that the ratio estimation improves the efficiency. The improvement
can also be measured directly as a design effect. In addition to the parameters
given, the ratio R = Y/Z = 472/2867 = 0.1646 is required. The value of the design
effect of the ratio-estimated total t̂rat in the Province’91 population is given by

DEFFsrs(t̂rat) = S2
y + R2S2

z − 2RρyzSySz

S2
y

= 7432 + 0.16462×47722 − 2×0.1646×0.9967×743×4772
7432

= 0.0102

which is close to 0. This substantial improvement in efficiency is due to the
favourable relationship between UE91 and HOU85 such that the ratio Yk/Zk is
nearly constant across the population.

The ratio-estimated total is in practice calculated using the available survey
data under the actual sample design. If the design is, say, stratified SRS, the
corresponding parameters would be estimated by using appropriate stratum
weights. The present example was evaluated under simple random sampling
without replacement, which will also be used in the following example. There, the
use of g weights will also be illustrated.

Example 3.12

Calculating a ratio-estimated total from a simple random sample drawn without
replacement from the Province’91 population. Again we use UE91 as the study
variable and HOU85 as the auxiliary variable. The estimated ratio is r̂ = y/z =
0.1603, which is calculated from the sample in Table 3.15. The sample identifiers
are STR = 1, ID is the cluster identifier, and the weight is WGHT = 4.

Table 3.15 A simple random sample drawn without replacement from the Province’91
population prepared for ratio estimation.

Sample design identifiers
Element Study var. Aux. var. g Adj.

STR CLU WGHT LABEL UE91 HOU85 WGHT WGHT

1 1 4 Jyväskylä 4123 26 881 0.5562 2.2248
1 4 4 Keuruu 760 4896 0.5562 2.2248
1 5 4 Saarijärvi 721 3730 0.5562 2.2248
1 15 4 Konginkangas 142 556 0.5562 2.2248
1 18 4 Kuhmoinen 187 1463 0.5562 2.2248
1 26 4 Pihtipudas 331 1946 0.5562 2.2248
1 30 4 Toivakka 127 834 0.5562 2.2248
1 31 4 Uurainen 219 932 0.5562 2.2248

Sampling rate: 8/32 = 0.25.
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To carry out ratio estimation of the total, the calibrated weights w∗
k are

first calculated. The sampling weight wk is a constant wk = N/n = 32/8 = 4 as
before. The values of the g weight are gk = Tz/t̂z. The population total of the
auxiliary variable is Tz = 91 753 and its estimate calculated from the sample is
t̂z = 164 952. Thus, the g weight is the constant gk = 91 753/164 952 = 0.5562.
Multiplying the weight wk by the g weight gives the value for the calibrated weight
w∗

k = 4 × 0.5562 = 2.2248.
The ratio estimate for the total is calculated as

t̂rat =
n∑

k=1

w∗
k yk = r̂ × Tz = 0.1603 × 91 753 = 14 707,

which is much closer to the population total T = 15 098 than the SRSWOR
estimate t̂ = 26 440 for the total number of unemployed. The variance estimate
for the total estimator is

v̂srs(t̂rat) = 322 (1 − 0.25)
8

× 912 = 8922.

The corresponding deff estimate is

deffsrs(t̂rat) = v̂srs(t̂rat)

v̂srs(t̂)
= 8922/13 2822 = 0.0045,

which also shows that ratio estimation improves the efficiency. The minimal
auxiliary information of the population total Tz and the sample values of z yield
good results.

It is also possible to calculate the DEFF when using the ratio-estimated total
since the variance of Vsrs(t̂rat) is

Vsrs(t̂rat)
.= N2

(
1 − n

N

)(
1
n

) N∑
k=1

(Yk − R × Zk)
2

(N − 1)

= 322 (1 − 0.25)
8

× 752 = 7362.

Division by the corresponding SRSWOR design variance of t̂ gives

DEFFsrs(t̂rat) = Vsrs(t̂rat)

Vsrs(Ny)
= 7362/72832 = 0.0102,

which is the same figure presented previously in Example 3.11.
For these data, ratio estimation considerably improves efficiency and brings

the point estimate for the total close to its population value. The value of the
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ratio estimator is based on the fact that across the population, the ratio Yk/Zk

remains nearly constant. It should be noted that even a high correlation between
the variables does not guarantee this, because the ratio estimator assumes that
the regression line of y and z goes near the origin. Thus, an intercept term is
not included in the corresponding regression equation. The ratio estimator may
therefore be unfavourable if the population regression line intercepts the y-axis
far from the origin, even if the correlation is not close to zero. For these situations,
the method presented next would be more appropriate.

Regression Estimation of Totals

Regression estimation of the population total T of a study variable y is based on
the linear regression between y and a continuous auxiliary variable z. The linear
regression can, for example, be given by EM(yk) = α + β × zk with a variance
VM(yk) = σ 2, where yk are independent random variables with the population
values Yk as their assumed realizations, α, β and σ 2 are unknown parameters,
Zk are known population values of z, and EM and VM refer respectively to the
expectation and variance under the model. The finite-population analogues of
α and β, denoted respectively by A and B, are estimated from the sample using
weighted least squares estimation so that the sampling design is properly taken
into account. It is immediately obvious that multiple auxiliary variables can also
be incorporated in the model. Note that the model assumption introduces a new
type of randomness; in the estimation considered previously, the sample selection
was the only source of random variation.

We consider the basic principles of regression estimation for SRS without
replacement using the above regression model with a single auxiliary variable.
The finite-population quantities A and B are estimated by the ordinary least
squares method giving b̂ = ŝyz/ŝ2

z as an estimator of the slope B and â = y − b̂z as
an estimator of the intercept A. Using the estimator b̂, the regression estimator of
the total T of y is given by

t̂reg = N(y + b̂(Z − z)) = t̂ + b̂(Tz − t̂z) (3.27)

where t̂ = Ny is the SRSWOR estimator of T, t̂z = Nz is the SRSWOR estimator of
Tz and Z = Tz/N. Alternatively, if transformed values z∗

k = Z − zk are used in the
regression instead of zk, an estimated intercept for this model is â∗ = â + b̂Z giving
t̂reg = Nâ∗, because (3.27) can be written also as t̂reg = Nâ + b̂Tz. Note that the
regression estimation of the total T presupposes only knowledge of the population
total Tz and the sample values zk of the auxiliary variable z.

Regression estimators constitute a wide class of estimators. For example, the
previous ratio estimator t̂rat = r̂Tz is a special case of (3.27) such that the intercept
A is assumed 0 and the slope B is estimated by b̂ = r̂ = t̂/t̂z.
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Alternatively, we can calculate calibrated weights w∗
k = wk × gk where wk is

the sampling weight and the g weight is calculated from

gk = N

N̂


1 + Z − z

n − 1
n

ŝ2
z

× (zk − z)


 ,

where Z is the population mean and z is the sample mean of the auxiliary variable
z, the sum of the sampling weights is

∑n
k=1 wk = N̂ and

ŝ2
z =

∑n
k=1(zk − z)2

n − 1
.

The weights gk and calibrated weights w∗
k are presented under the model EM(yk) =

α + β × zk in Table 3.16 for an SRSWOR sample from the Province’91 Population.
A regression estimate for the population total thus is the calibrated weight w∗

k
multiplied by the observed value yk and summed-up over all sample elements. The
regression estimator given in (3.27) can thus also be expressed as t̂reg = ∑n

k=1 w∗
k yk.

An approximate design variance of t̂reg under SRSWOR is given by

Vsrs(t̂reg)
.= N2

(
1 − n

N

)(
1
n

)
S2

E, (3.28)

where S2
E = ∑N

k=1(Ek − E)2/(N − 1), Ek = Yk − Ŷk and E = ∑N
k=1 Ek/N is the

mean of population residuals. The fitted values Ŷk = A + B × Zk are calculated
from the population values. An approximate estimator of the design variance of
t̂reg under SRSWOR design is given by substituting S2

E by an estimate ŝ2
ê =∑n

k=1(êk − ê)2/(n − 1), where êk = yk − ŷk and ê = ∑n
k=1 êk/n. Fitted values ŷk =

â + b̂ × zk are calculated from the sample values. An alternative, more conserva-
tive estimator, which uses g-weights is given by

ν̂srs(t̂reg) = N2
(

1 − n
N

)(
1
n

) (
n − 1
n − p

)
× ŝ2

ê∗ , (3.29)

where ŝ2
ê∗ = ∑n

k=1(ê∗
k − ê

∗
)2/(n − 1), e∗

k = gk × e∗
k , ê

∗ = ∑n
k=1 ê∗

k/n and p is the
number of estimated model parameters.

The improvement gained in regression estimation, as compared to the cor-
responding simple-random-sampling estimators, depends on the value of the
finite-population correlation coefficient ρyz = Syz/(SySz) between the variables y
and z. This can be seen by writing the approximate variance (3.28) in the form

Vsrs(t̂reg)
.= N2

(
1 − n

N

)(
1
n

)
S2

y(1 − ρ2
yz). (3.30)
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It will be noted that the value of the correlation coefficient has a decisive influence
on the possible improvement of the regression estimation. If ρyz is zero, the
variance of the regression estimator t̂reg equals that of the SRSWOR counterpart
t̂. But with a nonzero correlation coefficient, the variance obviously decreases.

Under certain conditions, the regression estimator of a total is more efficient than
the ratio estimator. This will be demonstrated below by considering the variances
of the SRSWOR estimator, the ratio estimator and the regression estimator. Simple
random sampling without replacement is assumed, and the constant (c) given in
the formulae represents c = N2(1 − (n/N))(1/n) The variances are

Design-based estimator Vsrs(t̂) = cS2
y

Ratio estimator Vsrs(t̂rat) = c(S2
y + R2S2

z − 2RρyzSySz)

Regression estimator Vsrs(t̂reg) = cS2
y(1 − ρ2

yz)

Studying the relationship between the regression coefficient B and the ratio
R = T/Tz will reveal the condition where the regression-estimated total is more
efficient than the ratio-estimated total. To find this condition, the difference
between the two variances is

Vsrs(t̂rat) − Vsrs(t̂reg) = c[(S2
y + R2S2

z − 2RρyzSySz) − S2
y + ρ2

yzS2
y]

= c[(R2S2
z − 2RρyzSySz) + ρ2

yzS2
y].

Regression estimation is more efficient if the difference is positive:

R2S2
z − 2RρyzSySz + ρ2

yzS2
y > 0.

The condition can be rewritten as

−ρ2
yzS2

y− < R2S2
z − 2RρyzSySz.

By dividing the inequality above by S2
z and inserting ρyz = Syz/SySz and B =

Syz/S2
z , gives

−B2 < R2 − 2RB.

Regression estimation, then, is more efficient than ratio estimation if

(B − R)2 > 0.

Thus the squared difference between the finite-population regression coefficient
and the ratio determines when the regression estimation is more efficient.

Regression estimation can also be applied using a multiple regression model
as the assisting model. We postulate a linear regression model between the
study variable y and p continuous auxiliary variables z1, z2, . . . , zp, given by
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yk = α + β1z1k + β2z2k + · · · + βpzpk + εk, where α refers to the intercept and
βj, j = 1, . . . , p, are the slope parameters, and εk is the residual. For multiple
regression estimation, we assume that the population totals Tz1, Tz2, . . . , Tzp are
known for each auxiliary variable. They can come from some source outside
the survey, such as published official statistics. The regression estimator of the
population total T of y is now given by

t̂reg = t̂ + b̂1(Tz1 − t̂z1) + b̂2(Tz2 − t̂z2) + · · · + b̂p(Tzp − t̂zp), (3.31)

where the estimated regression coefficients b̂1, b̂2, . . . , b̂p are obtained from the
sample data set using weighted least squares estimation with wk = 1/πk as
the weights. The estimators t̂ and t̂zj, j = 1, . . . , p, refer to Horvitz–Thompson
estimators.

A different form, often referred to as the generalized regression (GREG) estimator
(Särndal et al. 1992) is given by

t̂reg =
N∑

k=1

ŷk +
n∑

k=1

wk(yk − ŷk), (3.32)

where ŷk = â + b̂1z1k + b̂2z2k + · · · + b̂pzpk are fitted values calculated using the
estimated regression coefficients and the known values of z-variables. Note
the difference between (3.31) and (3.32). In the former we only need to know the
population totals of the auxiliary z-variables, but in the latter, the individual values
of z-variables are assumed known for every population element (because the first
summation is over all N population elements). Thus, (3.32) requires more detailed
information on the population than (3.31). Micro-level auxiliary z-data may indeed
be available, for example, in a statistical infrastructure where population census
registers or similar statistical registers, compiled from various administrative
registers, are used as sampling frames. In this case, the frame population often
includes the necessary auxiliary z-data at a micro-level (see Chapter 6).

Let us consider the expression (3.32) for a multiple regression estimator in
more detail. It is obvious that if the weights are equal for all sample elements,
and ordinary least squares estimation had been used for a model that includes
an intercept, then the latter part of (3.32) vanishes, and the regression estimate
reduces to the sum of the fitted values over the population. This is the case for a
self-weighting design such as simple random sampling. But if the weights vary
between elements, then the sum of weighted residuals can differ from zero, as can
happen for example in stratified SRS with non-proportional allocation. In such
cases, the latter part of (3.32) serves as a bias adjustment factor protecting against
model misspecification.

Under SRSWOR, an approximate design variance given in (3.28) can be applied
by using the fitted values Ŷk = A + B1Z1k + · · · + BpZpk. A variance estimator is
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obtained by replacing Ŷk by sample-based fitted values ŷk = â + b̂1z1k + · · · + b̂pzpk.
An alternative variance estimator is calculated as

ν̂srs(t̂reg) = ν̂srs(t̂)(1 − R̂2), (3.33)

where the multiple correlation coefficient squared R̂2 is calculated for the sample
data set. Because this term is always non-negative, the multiple regression
estimator is always at least as efficient as simple random sampling without
replacement. Efficiency improves when multiple auxiliary z-data that correlates
with the study variable y are incorporated in the estimation procedure.

In the next example, we compute a regression-estimated total from a sample
data set, first in a single auxiliary variable case and then in the context of multiple
regression estimation.

Example 3.13

Single Auxiliary Variable
Regression estimation of the total in the Province’91 population. The previously
selected simple random sample is used. There, the study variable UE91 is regressed
with the auxiliary variable HOU85. We conduct regression estimation in two ways,
resulting in equal estimates. HOU85 is first used as the predictor and an estimate
t̂reg is computed using the estimated slope b̂. In Table 3.16, the sample identifiers
correspond to the SRSWOR case, and the sampling rate is, as previously, 0.25.

Using UE91 as the dependent variable and HOU85 as the predictor, the slope is
estimated as b̂ = 0.152, giving

t̂reg = t̂ + b̂(Tz − t̂z) = 26 440 + 0.152(91 753 − 164 952) = 15 312.

Table 3.16 A simple random sample drawn without replacement from the Province’91
population prepared for regression estimation.

Auxiliary information

Sample design identifiers
Element Study var. Variable Model

WGHT

STR CLU WGHT LABEL UE91 HOU85 group g-weight w∗-weight

1 1 4 Jyväskylä 4123 26 881 1 0.2844 1.1378
1 4 4 Keuruu 760 4896 1 1.0085 4.0341
1 5 4 Saarijärvi 721 3730 1 1.0469 4.1877
1 15 4 Konginkangas 142 556 1 1.1057 4.6058
1 18 4 Kuhmoinen 187 1463 1 1.1216 4.4863
1 26 4 Pihtipudas 331 1946 1 1.1391 4.4227
1 30 4 Toivakka 127 834 1 1.1423 4.5691
1 31 4 Uurainen 219 932 1 1.1515 4.5562

Sampling rate = 8/32 = 0.25.
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The same point estimate is obtained using the calibrated weights by calcu-
lating t̂reg = ∑8

k=1 w∗
k yk = 15 312 (see Table 3.16). For variance estimation, the

formula (3.29) or (3.33) can be used. The former gives a conservative estimate
especially if the sample size is small as is the case here. Thus, by (3.29) we obtain

ν̂srs(t̂reg) = N2
(

1 − n
N

)(
1
n

)(
n − 1
n − p

)
× ŝ2

ê∗

= 322
(

1 − 8
32

) (
8 − 1
8 − 2

) (
1
8

)
× 61.242 = 6482.

The corresponding design-based total estimate obtained under SRSWOR was
t̂ = 26 440, whose standard error was 13 282. Therefore, the deff estimate is
deff = 6482/13 2822 = 0.002, which is almost zero and is persuasive evidence
of the superiority of regression estimation over design-based estimation for the
present estimation problem. Improved efficiency is due to the strong linear
relationship between UE91 and HOU85.

Multiple Regression Model
Multiple regression estimation of the total in the Province’91 population. Here,
the study variable UE91 is regressed with two auxiliary variables, HOU85 and
a variable named URB85 with a value 1 for urban municipalities and zero
otherwise (see Table 2.1). We use both the formula (3.31) and the GREG method
with equation (3.32). First, the estimated regression coefficients b̂1 and b̂2 are
calculated by fitting a two-predictor regression model for the sample data set
of n = 8 municipalities, as given in Table 3.16. The estimates are b̂1 = 0.14956
and b̂2 = +68.107. The estimated totals of auxiliary variables are t̂z1 = 164 952,
as previously, and t̂z2 = 12. In addition, we use the known population totals
Tz1 = 91 753 and Tz2 = 7. Using (3.31), we obtain

t̂reg = t̂ + b̂1(Tz1 − t̂z1) + b̂2(Tz2 − t̂z2)=26 440 + 0.14956 (91 753 − 164 952)

+ 68.107 (7 − 12) = 15 152.

Using (3.32), we first calculate the fitted values for all population elements. The
sum of the fitted values over the population provides the desired regression
estimate. The GREG estimation procedure is summarized in Table 3.17. There also,
the estimate 15 152 can be obtained. Note that in the SRSWOR case in which the
sampling weights are equal, the sum of the residuals over the sample data set is
equal to zero.

Calculating the multiple correlation coefficient squared •R2 = 0.998 for the• Q2
sample data set, we obtain the variance estimate of t̂reg by (3.33), v̂(t̂reg) = 5692,
which is smaller than in the previous case where HOU85 was used as the only
auxiliary variable. There, an estimate v̂(t̂reg) = 6482 was obtained. Hence, multiple
regression estimation appeared to be slightly more efficient in this case. The design
effect estimate is now deff = 5692/13 2822 = 0.0018.
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Table 3.17 Population frame merged with sample data for multiple regression estimation.
Simple random sample drawn without replacement from the Province’91 population.

Population frame Sample Model fitting

ID
k LABEL

URB85
z1k

HOU85
z2k

Sample
indicator

WGHT
wk

UE91
yk

Fitted
value ŷk

Residual
êk

1 Jyväskylä 1 26 881 1 4 4123 4118.15 4.85
2 Jämsä 1 4663 0 . . . . . . 795.27 . . .

3 Jämsänkoski 1 3019 0 . . . . . . 549.40 . . .

4 Keuruu 1 4896 1 4 760 830.12 −70.12
5 Saarijärvi 1 3730 1 4 721 655.73 65.27
6 Suolahti 1 2389 0 . . . . . . 455.18 . . .

7 Äänekoski 1 4264 0 . . . . . . 735.60 . . .

8 Hankasalmi 0 2179 0 . . . . . . 355.66 . . .

9 Joutsa 0 1823 0 . . . . . . 302.42 . . .

10 J:kylä mlk. 0 9230 0 . . . . . . 1410.20 . . .

11 Kannonkoski 0 726 0 . . . . . . 138.36 . . .

12 Karstula 0 1868 0 . . . . . . 309.15 . . .

13 Kinnula 0 675 0 . . . . . . 130.73 . . .

14 Kivijärvi 0 634 0 . . . . . . 124.60 . . .

15 Konginkangas 0 556 1 4 142 112.93 29.07
16 Konnevesi 0 1215 0 . . . . . . 211.49 . . .

17 Korpilahti 0 1793 0 . . . . . . 297.93 . . .

18 Kuhmoinen 0 1463 1 4 187 248.58 −61.58
19 Kyyjärvi 0 672 0 . . . . . . 130.28 . . .

20 Laukaa 0 4952 0 . . . . . . 770.39 . . .

21 Leivonmäki 0 545 0 . . . . . . 111.29 . . .

22 Luhanka 0 435 0 . . . . . . 94.83 . . .

23 Multia 0 925 0 . . . . . . 168.12 . . .

24 Muurame 0 1853 0 . . . . . . 306.91 . . .

25 Petäjävesi 0 1352 0 . . . . . . 231.98 . . .

26 Pihtipudas 0 1946 1 4 331 320.82 10.18
27 Pylkönmäki 0 473 0 . . . . . . 100.52 . . .

28 Sumiainen 0 485 0 . . . . . . 102.31 . . .

29 Säynätsalo 0 1226 0 . . . . . . 213.13 . . .

30 Toivakka 0 834 1 4 127 154.51 −27.51
31 Uurainen 0 932 1 4 219 169.16 49.84
32 Viitasaari 0 3119 0 . . . . . . 496.25 . . .

Sum 7 91 753 8 32 6610 15 151.98 0.00

. . .Non-sampled elements.

Regression estimation was illustrated in simple cases where one or two auxiliary
variables were used and SRSWOR was assumed. The method can also be applied
for more complex designs, and multiple auxiliary variables can be incorporated
in the estimation. For this, weighted least squares regression can also be used.
Although the use of multivariate regression models for regression estimation
is technically straightforward, there are certain complexities when compared
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to regression estimation under simple random sampling, such as the possible
multicollinearity of the predictor variables. Another generalization is also obvious
since discrete covariates can also be incorporated into a linear model. Using this
kind of auxiliary variables for regression estimation leads to analysis-of-variance-
type models. Further extensions are discussed in Chapter 6 in connection with the
estimation for population subgroups.

Comparison of Estimation Strategies

For model-assisted estimation, we created three sets of new weights, denoted w∗.
First, we check the calibration property of these weights. For ratio estimation, the
calibration equation for the auxiliary variable z is

n∑
k=1

w∗
k × zk = Tz

where Tz = ∑N
k=1 Zk = 91 753. This holds for the regression estimator as well.

We next compare the model-assisted estimation results obtained previously
from a sample drawn with SRSWOR from the Province’91 population. More
specifically, poststratification, ratio estimation and regression estimation results
for the population total T of UE91 are compared. The design-based estimate using
the standard SRS formula is also included (see Table 3.18). The known population
total T = 15 098 of UE91 is the reference figure.

Two obvious conclusions can be drawn. Firstly, point estimates calculated using
auxiliary information are closer to the population total than the design-based
estimate. Secondly, the model-assisted estimators are much more efficient than
SRSWOR.

The poststratified estimator uses, as discrete auxiliary information, the admin-
istrative division of municipalities into urban and rural municipalities. Improved

Table 3.18 Estimates for the population total of UE91 under different estimation strategies:
an SRSWOR sample of eight elements drawn from the Province’91 population.

Estimation strategy Estimator Estimate s.e deff

Desing-based

SRSWOR t̂srswor 26 440 13 282 1.0000
SRSWR t̂srswr 26 440 15 095 1.2917

Design-based model-assisted

Poststratified estimator t̂pos 18 106 6021 0.3323
Ratio estimator t̂rat 14 707 892 0.0045
Regression estimator one z-variable t̂reg,1 15 312 648 0.0020

two z-variables t̂reg,2 15 152 569 0.0018
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estimates result, since this division is in relation to the variation of the study
variable in such a way that the variation of unemployment figures is smaller in
the poststrata than in the whole population. But the relation is not as strong as
that between UE91 and the continuous auxiliary variable HOU85, the number of
households. This can be seen from the ratio and regression estimation results.
Because ratio estimation assumes that the regression line of UE91 and HOU85
goes through the origin, and this is not the case, regression estimation performs
slightly better than ratio estimation.

Summary

Using auxiliary information from the population in the estimation of a finite-
population parameter of interest is a powerful tool to get more precise estimates, if
the variation of the study variable has some strong relationship with an auxiliary
covariate. If so, efficient estimators can be obtained such that they produce
estimates close to the true population value and have a small standard error. The
auxiliary variable can be a discrete variable, in which case poststratification can
be used. If the covariate is a continuous variable, ratio estimation or regression
estimation is appropriate.

Model-assisted estimation is often used in descriptive surveys to improve the
estimation of the population total of a study variable of interest, whereas in
multi-purpose studies, where the number of study variables may be large, it may
be difficult to find good auxiliary covariates for this purpose. In such surveys,
however, poststratification is often used to adjust for nonresponse.

We have examined here the elementary principles of model-assisted estimation
supplemented with computational illustrations. For more details, the reader is
encouraged to consult Särndal et al. (1992); there, model-assisted survey sam-
pling covering poststratification, ratio estimation and regression estimation is
extensively discussed. These methods are considered as special cases of generalized
regression estimation which is used in many statistical agencies in the production
of official statistics (for example Estevao et al. 1995). A clear overview of poststrat-
ification can be found in Holt and Smith (1979). Further, as a generalization of
poststratification, Deville and Särndal (1992) and Deville et al. (1993) consider a
class of weights calibrated to known marginal totals. Silva and Skinner (1997)
address the problem of variable selection in regression estimation.




