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Resampling with complex survey data

Outline

• Main concepts of survey sampling statistics (Cochran 1977)

– Simple random sample

– Stratified random sample

– Cluster/multistage random sample

– Estimates of the mean, total, ratio

• Estimation of variance as the main problem

– Linearization estimate (Huber 1967)

– Jackknife estimate (Krewski and Rao 1981)

– Balanced repeated replication (McCarthy 1969)

– The bootstrap (Rao and Wu 1988)

• Summary and comparison of performance (Shao 1996)

c© S. Kolenikov [ 2 ]



Resampling with complex survey data

Simple random sample - I

• Finite population, size N

• Observed characteristic of interest: y, auxiliary x — nonrandom

• Might be interested in the estimates of the total Y =
∑N

i=1 Yi, or in
the average Ȳ = Y/N , or in the ratio R = Ȳ /X̄ .

• Simple random sample: size n = fN , f is the sampling fraction

• Estimator of the average: ȳ = 1
n

∑n
i=1 yi;

its variance: V[ȳ] = S2

n (1 − λf).
The last factor is the finite sample correction, λ = 1 for sampling
without replacement, 0 for sampling with replacement
S2 = 1

N−1

∑N
i=1(Yi − Ȳ )2

• Unbiased estimator of S2 is s2 = 1
n−1

∑n
i=1(yi − ȳ)2.

• The only randomness is in the sampling process
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Simple random sample - II

Estimation of the total:

Ŷ =
N

n
ȳ, V[Ŷ ] =

(N
n

)2

V[ȳ]

Estimation of the ratio:

R̂ = ȳ/x̄

Not unbiased, although B
2[R̂] = O( 1

n ).

MSE(R̂) ≈ V[R̂] ≈ 1 − f

nX̄2

∑N
i=1(yi −Rxi)2

N − 1
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Stratified Random Sample - I

The population of N units is first divided into non-overlapping

subpopulations, called strata, of N1, N2, . . . , NL units, with strata

weights W1 = N1/N, . . . , number of sampled units n1, . . . , sampling

fractions f1 = n1/N1, . . . , strata averages Ȳ1, . . . and variances S2
1 , . . .

Reasons to stratify:

• Efficiency gains if within strata variances are small

• Need data on those subpopulations

• Administrative division

• Markedly different sampling problems (different types of objects)

∀h fh = f : proportional allocation of nh’s; self-weighting sample.
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Stratified Random Sample - II

Estimate of the mean:

ȳst =
L∑

h=1

Whȳh

Unbiased, with variance

V[ȳst] =
L∑

i=1

W 2
i V[ȳh] =

L∑
h=1

W 2
h

S2
h

nh
(1 − λhfh)

so the variance of ȳst can be unbiasedly estimated by

s2[ȳst] =
1
N2

L∑
h=1

Nh(Nh − λhnh)
s2h
nh

=
L∑

h=1

W 2
hs

2
h

nh
−

L∑
h=1

λhWhs
2
h

N
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Stratified Random Sample - III

The variance of the mean is minimized, for a fixed total sample size n,

when (Neyman-Tschuprow allocation)

nh = n
NhSh∑
NhSh

Stratification provides gains in precision: if terms of the order 1/Nh are

ignored,

Vopt[ȳst] ≤ Vprop[ȳst] ≤ VSRS [ȳ]

Sh’s unknown =⇒ optimal variance unattainable; Nh’s (Wh’s) are wrong

=⇒ ȳst is biased.
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Multistage Random Sample - I

The process of sampling can be repeated:

1. Get a random sample (SRS, PPS, etc.) of the primary sampling units

(PSU) at the first level;

2. Get a sample of second stage units (SSU) from each chosen primary

unit;

3. . . .

4. Get a sample of individual observations.

Sometimes, unfortunately, also called subsampling . . .

Stratified multistage samples: PSUs are stratified; small # of PSUs per

strata.
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Multistage Random Sample - II

Denote by E1 expectation over the first stage (over all possible first-stage

selections), E2, the expectation over the second stage selections, etc.

Then for an estimate θ̂ of some parameter θ,

E[θ̂] = E1[E2[θ̂]],

V[θ̂] = V1[E2[θ̂]] + E1[V2[θ̂]],

V[θ̂] = V1[E2[E3[θ̂]]] + E1[V2[E3[θ̂]]] + E1[E2[V3[θ̂]]],

etc.
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Multistage Random Sample - III

In particular, in two stage sampling with equal number of subunits m in

each of n units, the mean, its variance, and the estimate of the variance are

¯̄y =
n∑

i=1

ȳi/n,

V[¯̄y] =
N − n

n

S2
1

n
+
M −m

M

S2
2

mn
,

s2[¯̄y] =
1 − f1

n
s21 +

f1(1 − f2)
mn

s22
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Notation

The survey sampling world lives on its own... Below is some notation for

Shao (1996).

The estimate of the distribution function: F̂ (x)

The parameter of interest: θ = g(Z) for some vector of the population

characteristics / means / totals Z.

Variance estimates: vsomething for different methods.
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Linearization Estimate - I

General case: θ = g(Y), Y ∈ IRp is the p-variate population total (or

mean Ȳ; note that sometimes the number of units in the population may

be unknown). Estimate θ by θ̂ = g(ȳ).

Linearization estimate of V[g(ȳ)] is available whenever there is an

unbiased (consistent?) estimator of V[ȳ]. By the delta method / first order

Taylor series expansion,

θ̂ − θ =
p∑

k=1

∇kg(ȳ)(ȳk − Ȳk) + o(‖ȳk − Ȳk‖) =⇒

V[θ̂] ≈ ∇g(ȳ)′ V[ȳ]∇g(ȳ)

Derivatives might be tedious (do numerical approximations instead?).

The above estimates of variances for the mean and the ratio are the

linearization estimates.

c© S. Kolenikov [ 12 ]



Resampling with complex survey data

Linearization Estimate - II

Plug-in estimate (λh = 1 for w/o replacement sample, 0 for with

replacement):

V̂L[θ̂] =
L∑

h=1

1 − λhfh

nh
∇g(ȳ)′ s2h ∇g(ȳ)

Also known / can be viewed as Huber (1967) robust variance estimate

similar to (information) sandwich estimate.

Idea works for many sorts of second moment assumption violations. In

econometrics, heteroskedasticity — White estimator; autocorrelation —

Newey-West estimator.
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Jackknife Estimate - I

Pretty clear for SRS; what to do with clustered / stratified samples?

Except for stratified SRS, need original sampling of PSUs to be with

replacement (not what is done in practice) to justify the jackknife.

Jackknife replicate: in the stratum h, omit the whole PSU yhi.

Jackknife estimates:

ȳ(hi) =
∑
h′ �=h

Wh′ ȳh′ +Wh(nhȳh − ȳhi)/(nh − 1)

θ̂(hi) = g(ȳ(hi)), θ̂h =
nh∑
i=1

θ̂(hi)/nh
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Jackknife Estimate - II

Jackknife estimate of variance:

V̂J [θ̂] =
L∑

h=1

(nh − 1)(1 − λhfh)
nh

nh∑
i=1

(θ̂(hi) − θ̂?)2

where θ̂? can be any one of θ̂h, θ̂,
∑

h

∑
i θ̂

(hi)/n, or
∑

h θ̂h/L.

Might use a random sample of mh units instead of all nh in every stratum

to reduce the computational effort.
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Jackknife Estimate - III

Pseudovalues:

θ̃(hi) = nhθ̂ − (nh − 1)θ̂(hi),

θ̃I
J =

L∑
h=1

nh∑
i=1

θ̃(hi)

n
, θ̃II

J =
1
L

L∑
h=1

1
nh

nh∑
i=1

θ̃(hi)

Couple more variance estimates:

V̂J [θ̂] =
L∑

h=1

(nh − 1)(1 − λhfh)
nh

nh∑
i=1

(θ̃(hi) − θ̃j
J)2, j = I,II
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Balanced Repeated Replication - I

Two PSUs per strata (nh = 2) — can use BRR: delete one of two units in

each stratum, repeat S times. Can do this efficiently by borrowing from

the factorial experiment design literature: a minimal number of BRR

resamples (to estimate variance in each stratum) is L ≤ S ≤ L+ 3.

ȳ(j)
BRR = estimator of Ȳ based on j-th half-sample, j = 1, . . . , S;

θ̂(j) = g(ȳ(j)
BRR), θ̂(j)

c is based on the complement of the j-th half-sample,

V̂
I

BRR[θ̂] =
∑

j

1
S

(θ̂(j) − θ̂)2; V̂
II

BRR[θ̂] =
∑

j

1
4S

(θ̂(j) − θ̂(j)
c )2

V̂
III

BRR[θ̂] =
∑

j

1
2S

(
(θ̂(j) − θ̂)2 + (θ̂(j)

c − θ̂)2
)

c© S. Kolenikov [ 17 ]

Resampling with complex survey data

Asymptotics - I

Typical stratified sample: large number of strata, few PSU in each one.

L → ∞, max
1≤h≤L

nh = O(1) (C2) , max
1≤h≤L

Wh = O(L−1) (C3)

Also need: finite non-singular limit Γ of nV[ȳ] (C4), something for CLT

(e.g. Lyapunov/moment condition (C1)). Those are the conditions

(C1)–(C4) of Krewski and Rao (1981).

Under (C1)–(C4), n1/2(ȳ − Ȳ) d−→ N(0,Γ); n
(
V̂[ȳ] − V[ȳ]

) p−→ 0.

To go further, also need: Ȳ → µ (C5), ∇g(·) ∈ CU(µ) (C6).
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Asymptotics - II

Under (C1)–(C6),

n1/2(θ̂ − θ) d−→ N(0, σ2), σ2 = ∇g(µ)′ Γ∇g(µ)

nV̂whatever[θ]
p−→ σ2,

Twhatever =
θ̂ − θ(

V̂whatever[θ̂]
)1/2

d−→ N(0, 1)

whatever is the estimator we are using (linearization, jackknife, BRR).
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Comparison of the Methods - I

Simulation findings reported in Krewski and Rao (1981):

2-sided CI : BRR 
 jackknife 
 linearization

Stability : linearization 
 jackknife 
 BRR

Stability index
[
V̂[θ̂]

]
=

(
MSE

[
V̂[θ̂]

]) 1
2

MSE[θ̂]

The smaller the index, the better is the estimator.
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The Naive Bootstrap - I

Resamples: {y∗hi}nh
i=1 i.i.d. with replacement in stratum h from F̂h

nh
,

independently across strata.

Estimates: ȳ∗h = n−1
h

∑
i y

∗
hi, ȳ

∗ =
∑

i Wiȳ
∗
h, θ̂∗ = g(ȳ∗).

Variance: V̂
∗
NBS [θ̂∗] = E∗

[
(θ̂∗ − E∗[θ̂∗])2

]
, or its simulation

approximation

Linear case: V̂
∗
NBS [θ̂∗] =

∑
h

W 2
h

nh

nh−1
nh

s2h — biased down, inconsistent!

(Think of nh = 2, as it is often the case.)
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The Rescaled Bootstrap - I

Rao and Wu (1988) propose resamples: {y∗hi}mh
i=1 i.i.d. sample of size

mh ≥ 1 with replacement in stratum h from F̂h
nh

, independently across

strata.

Pseudovalues (?? not called this way in the article):

ỹhi = ȳh + m
1/2
h

(nh−1)1/2 (y∗hi − ȳh)

Notable features of the proposed method:

• Captures the dependence structure: the i.i.d. pieces are those within

strata

• The bootstrap subsample size mh < the original size nh

• Modification of the subsample value
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The Rescaled Bootstrap - II

Estimates: ȳ∗h = m−1
h

∑
i ỹhi, ỹ∗ =

∑
i Wiỹh, θ̃ = g(ỹ).

Variance: V̂
∗
RBS [θ̃] = E∗

[
(θ̃ − E∗[θ̃])2

]
, or its simulation approximation.

Linear case: V̂
∗
RBS [θ̂∗] =

∑
h

W 2
h

nh
s2h — as desired.

The scale is chosen so as to fit the “right” thing, just as we did for the

jackknife estimator of variance of the i.i.d. sample mean.
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The Rescaled Bootstrap - III

Can we estimate something beyond the variance? What about bias?

B[θ̂] =
1
2

p∑
j,k=1

∇2
jkg(Ȳ )

∑
h

W 2
h

nh
Shjk + higher order terms, (1)

Shjk = E[(yhij − Ȳhj)(yhik − Ȳhk)] (2)

B
∗
RBS [θ̂] = E

∗
RBS [θ̃] − θ̂ = (3)

=
1
2

p∑
j,k=1

∇2
jkg(ȳ)

∑
h

W 2
h

nh
· naivety factor · shjk +Op(n−3/2) (4)

where the naivety factor is 1 for the rescaled bootstrap, and (nh − 1)/nh

for the naive bootstrap. The rescaled bootstrap gives a consistent estimate

of bias, while the naive one, does not.

c© S. Kolenikov [ 24 ]



Resampling with complex survey data

The Rescaled Bootstrap - IV

mh = nh − 1 =⇒ ỹhi = y∗hi — the original bootstrap subsample with the

“correct” subsample size.

nh = 2, mh = 1 =⇒ the (exact) rescaled bootstrap reduces to (complete)

BRR, although in simulations may not be as efficient if BRR resamples

are chosen wisely.

nh ≥ 3 =⇒ there is an option of choosing mh so as to match the

bootstrap third moment of ȳ to its empirical estimate:

mh =
(nh − 2)2

nh − 1
≈ nh − 3

Rao and Wu (1988): “The bootstrap histogram of a t statistic captures the

second order term of the Edgeworth expansion in the special case of

known strata variances” — c.f. the i.i.d. bootstrap histogram properties.
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The Rescaled Bootstrap - V

Simulations results: p. 235 of Rao and Wu (1988).

• Not much gain in going beyond B = 100

• Substantial biases in one-sided CI coverage for nonlinear statistics

(ratio, correlation)

• One sided intervals: the bootstrap with mh = nh − 1 is clearly

superior in terms of coverage

• Two-sided CIs OK for either linearization, jackknife, or the bootstrap

• The choice of mh = nh − 3 for bootstrapping understates the errors

in both tails when the variance of ȳ is not known.

• Stability is better for the linearization and jackknife than for the

bootstrap
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The Rescaled Bootstrap - VI

Rao and Wu (1988) give extensions to:

• sampling without replacement;

• unequal probability sampling;

• two-stage cluster sampling with equal probabilities and without

replacement.
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Other bootstrap schemes

Shao (1996) gives several other bootstrap schemes used in literature.

With replacement bootstrap, BWR: mh = nh−1
1−λhfh

, no other modifications /

rescaling.

Mirror-match bootstrap, BMM: draw an SRS (w/o replacement) of size

n∗
h < nh, repeat kh times, so mh = n∗

hkh. BMM keeps higher variability by

ruling out the subsamples replicating a single observation; reduces to BWR

when n∗
h = 1; when the statistic is linear, V̂BMM [θ̂] = V̂L[θ̂].

Without replacement bootstrap, BWO: mimics the original sampling scheme.

Create a pseudopopulation of the size Nh by replication of the strata

samples, then take samples of size nh from this pseudopopulation. May not

provide a consistent estimate of the variance even in the linear case.

Shao (1996): “ . . . not necessarily all of [the bootstrap procedures] are

second-order accurate.”
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Asymptotics - III

Asymptotics in Shao (1996) is a bit different from that of (Krewski and

Rao 1981).

• Array of populations indexed by some k; θ might differ for different

k, but {θk} is a bounded set

• n =
∑

h nh → ∞; sup fh < 1

• ∀ k ∃Hk ⊂ {1, . . . , L} : suph∈Hk,k nh < ∞, minh/∈Hk,k nh → ∞
• Bounded survey weights: maxh,i,j nhiwhijn/N = O(1)

• Lyapunov condition on Ȳ

• ∇g �= 0 in a neighborhood of Ȳ .
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Comparison of the Methods - II

Baseline: linearization method

Jackknife: different jackknife estimators are Op(n−2) equivalent;

V̂J [θ̂]/V̂L[θ̂] = 1 +Op(n−1) in general case;

V̂J [θ̂]/V̂L[θ̂] = 1 +Op(n−2) when ∀h nh = 2;

V̂J [θ̂] = V̂L[θ̂] for linear statistics or (nh = 2 & g(·) is quadratic).

BRR: V̂
I

BRR[θ̂]/V̂L[θ̂] = 1 +Op(n−1/2);

V̂
II

BRR[θ̂]/V̂L[θ̂] = 1 +Op(n−1).
Unlike other methods, can be applied to estimation of non-smooth
functionals (quantiles).

Rescale Bootstrap:V̂RBS [θ̂]/V̂L[θ̂] = 1 +Op(n−1).
Empirical evidence: variance estimate is not quite stable.
The bootstrap histogram

p−→ target distribution in sup norm.

Some minor regularity conditions might be omitted.
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Comparison of the Methods - III

Shao (1996): “ . . . the choice of the method may depend more on

nonstatistical considerations, such as the feasibility of their

implementation . . . Blindly applying the resampling methods may yield

incorrect results” — that’s often the case!
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Other topics - I

Some other topics covered in Shao (1996):

• Confidence intervals for quantiles

• Jackknife estimates of bias

• Resampling with missing / imputed data

• BRR-type methods when the # PSU per cluster varies (not all of them

behave nice)
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Other topics - II

Discussion part of Shao (1996) provides a number of important

comments.

• Jackknife for non-normal data (Binder 1996)

• Design efficiency (Binder 1996)

• Estimating functions (Binder 1996)

• Jackknife with non-smooth functions (Rao and Sitter 1996)

• Post-stratification weights (Rao and Sitter 1996)

• Linearized jackknife estimator (Rao and Sitter 1996)
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Other topics - III

• Strata collapsing (Valliant 1996)

• In small / moderate samples, VJ [T̂R] 
 VL[T̂R] where

T̂R = NȳX̄/x̄ is the ratio estimator of the total (Valliant 1996)

• Post-stratification: V̂J , V̂J might be 
 V̂L (Valliant 1996)

• Parallel computing (Valliant 1996)

• Variance stabilizing transformations help achieving better

performance (Valliant 1996)

• Performance of certain bootstrap schemes may deteriorate as

complexity of the sampling design increases (Valliant 1996).
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