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Resampling Inference with Complex Outline

Survey Data . o
e Main concepts of survey sampling statistics (Cochran 1977)

Stanidav Kolenikov _ Simple random sample

skolenik@unc.edu — Stratified random sample

117 New West, Cameron Ave, — Cluster/multistage random sample

University of North Carolina,
Chapel Hill, NC 27599-3260, US e Estimation of variance as the main problem
Linearization estimate (Huber 1967)

Jackknife estimate (Krewski and Rao 1981)
Balanced repeated replication (M cCarthy 1969)
The bootstrap (Rao and Wu 1988)

— Estimates of the mean, total, ratio

e Summary and comparison of performance (Shao 1996)
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Simple random sample - |

¢ Finite population, size N
e Observed characteristic of interest: y, auxiliary x — nonrandom

e Might be interested in the estimates of thetotal Y = >"¥ | V;, orin
theaverageY = Y/N, orintheratio R =Y /X.

e Simplerandom sample: sizen = fN, f isthe sampling fraction

e Estimator of the average: § = = > | v;;
itsvariance: V([y] = %2(1 —Af).
The last factor is the finite sample correction, A = 1 for sampling
without replacement, O for sampling with replacement
§? = ﬁ ZzN:1<Yi -Y)?
e Unbiased estimator of 52 iss® = L= 3" | (y; — §)2.

e Theonly randomnessisin the sampling process
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Simple random sample - Il

Estimation of the total:

Y =

==
<=

y,  V[Y]=

Estimation of theratio:

Not unbiased, although B2[R] = O(1).

. o 1= SN (yi — Ray)?
MSE(R) = VIR] = —3 1N —
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Stratified Random Sample - |

The population of N unitsisfirst divided into non-overlapping
subpopulations, called strata, of Ny, Ns, ... , Nz units, with strata

weights W, = Ny /N, ..., number of sampled unitsn,, ..., sampling
fractions f; = ny1/Ny,. .., Strataaverages Yy, ... and variances S%, . ..
Reasons to stratify:

e Efficiency gainsif within strata variances are small
¢ Need data on those subpopul ations
e Administrative division

o Markedly different sampling problems (different types of objects)

YV h fr, = f: proportional alocation of n;,’s; self-weighting sample.

© S. Kolenikov [5]

Resampling with complex survey data

Stratified Random Sample - I

Estimate of the mean:

L
gst - Z Whgh
h=1
Unbiased, with variance
L L g2
— 1 2 — 1 _ 25h
V|yst] = ; Wi Viyn] = hzl Wi n—h(l — A fn)

so the variance of y,; can be unbiasedly estimated by
L

L L
1 52 W2s? A W), 52
27— R hSh h YV hSh
ot] = —= E Ny (N, — A = E —n E
az N2 = n(Nh hnh)nh = N P N
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Stratified Random Sample - I

The variance of the mean is minimized, for afixed total sample size n,
when (Neyman-Tschuprow allocation)
o NSy,

> NinSh
Stratification provides gainsin precision: if terms of the order 1/N;, are
ignored,

np

Vopt [gst] S Vprth [gst] S VSRS [g]

Sp’sunknown = optimal variance unattainable; N;’s (W},’s) are wrong
— Y4 IS biased.
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Multistage Random Sample - |

The process of sampling can be repeated:

1. Get arandom sample (SRS, PPS, etc.) of the primary sampling units
(PSUV) at thefirst level;

2. Get asample of second stage units (SSU) from each chosen primary
unit;

3 ...
4. Get asample of individual observations.

Sometimes, unfortunately, also called subsampling . . .

Stratified multistage samples: PSUs are stratified; small # of PSUs per
strata
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Multistage Random Sample - I

Denote by E, expectation over the first stage (over all possible first-stage

selections), Es, the expectation over the second stage selections, etc.
Then for an estimate 6 of some parameter 6,

~ A~

E[0] = E1[E2[0]],
V(0] = V1[E2[0]] + E1[Va[d],

~ ~ A~

V[0] = V1[E2[E3[0]]] + E1[Va[Es[0]] + E1[E2[V3[0]]],
etc.

~
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Multistage Random Sample - Il|

In particular, in two stage sampling with equal number of subunitsm in

each of n units, the mean, its variance, and the estimate of the variance are

n
@ = Z gZ/nv
=1

. N-nS? M-m S2
_+4_

Vigl = n o n M mn’
. 1-f1 fi(l—fo
2= g N0 S) g
n mn
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Notation

The survey sampling world lives on its own... Below is some notation for
Shao (1996).

The estimate of the distribution function: F'(x)

The parameter of interest: 6 = g(Z) for some vector of the population
characteristics/ means/ totals Z.

Variance estimates: Usomething for different methods.
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Linearization Estimate - |

General case: 0 = g(Y), Y € RP isthe p-variate population total (or
mean Y; note that sometimes the number of unitsin the population may
be unknown). Estimate 6 by § = ¢(¥).

Linearization estimate of V[g(y)] is available whenever thereisan
unbiased (consistent?) estimator of V[y|. By the delta method / first order
Taylor series expansion,

p
0—0="> Vig¥) G — Vi) + |5 — Yill) =
k=1

V0] = Vy(y) VIy] Va(¥)

Derivatives might be tedious (do numerical approximations instead?).
The above estimates of variances for the mean and the ratio are the
linearization estimates.
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Linearization Estimate - Il

Plug-in estimate (\;, = 1 for w/o replacement sample, O for with
replacement):

L
ol = 3. 220 g5y 2 V()

n
h—1 h

Also known / can be viewed as Huber (1967) robust variance estimate

similar to (information) sandwich estimate.

Idea works for many sorts of second moment assumption violations. In
econometrics, heteroskedasticity — White estimator; autocorrelation —

Newey-West estimator.
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Jackknife Estimate - |

Pretty clear for SRS; what to do with clustered / stratified samples?
Except for stratified SRS, need original sampling of PSUs to be with
replacement (not what is done in practice) to justify the jackknife.

Jackknife replicate: in the stratum A, omit the whole PSU y ;.
Jackknife estimates:
g(hi) — Z Wi yn + Wh(nnyn — Yni)/(nn — 1)

h'#£h

N h

I = (g0, G =S g

=1
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Jackknife Estimate - Il

Jackknife estimate of variance:

L np
V,10] = Z (nn — 1)7(;1— A fn) Z(é(hi) _§7)?
h=1 i=1

where 7 can beany oneof 4y, 6, 3, 3=, 0% /n, or 3, 6,/ L.

Might use arandom sample of m;, unitsinstead of al n;, in every stratum
to reduce the computational effort.
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Jackknife Estimate - Ill

Pseudoval ues:
é(hi) = nhé — (nh — l)é(m),
L nh A ; L nh
- g(hi) ~ 1 1 < p
=33 Bf=> >
h=1i=1 h=1 h i1

Th

L
T =3 (np, — 1)(1 — Anfn) SO@ — @2, =1

n
h=1 h =1
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Balanced Repeated Replication - |

Two PSUs per strata (n;, = 2) — can use BRR: delete one of two unitsin
each stratum, repeat S times. Can do this efficiently by borrowing from
the factorial experiment design literature: a minimal number of BRR
resamples (to estimate variance in each stratum) is L < S < L + 3.

¥, = estimator of Y based on j-th half-sample, j = 1,... , S;

09 = g(3Y RR) 0% is based on the complement of the j-th half-sample,

~1I A N ~p .
BRR Z (09 —0)? Vprrlf] = Z 45(9( -0y

N5 § QPN 1, 4 Ny A
Virell) =3 55 (09 = 0)* + (0 - 0)?)

J
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Asymptotics - |

Typical stratified sample: large number of strata, few PSU in each one.

L — oo, max np, = O(1) (C2), max W, =O(L™ 1) (C3)

<h<L 1<h<L

Also need: finite non-singular limit T" of n V[y] (C4), something for CLT
(e.g. Lyapunov/moment condition (C1)). Those are the conditions
(C1)—(C4) of Krewski and Rao (1981).

Under (CL)~C4), n'/2(y — Y) % N(0,T); n(V]y] — viy]) == 0.
To go further, also need: Y — 1 (C5), Vg(-) € Cyy,,) (C8).
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Asymptotics - I

Under (C1)—HC6),

n'/2(0 — 0) <5 N(0,0%), o® = Vg(u)' T V()

ni\]whatever [0] L) 02 ;

0—0 d
Twhatever = ~11/2 - N(Ov 1)
(thatever [9])

whatever is the estimator we are using (linearization, jackknife, BRR).
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Comparison of the Methods - |

Simulation findings reported in Krewski and Rao (1981):
2-sided CI : BRR > jackknife > linearization

Stability : linearization > jackknife = BRR

1
2

sy nce71] = 570D

The smaller the index, the better is the estimator.
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The Naive Bootstrap - |

Resamples: {y;,}:", i.i.d. with replacement in stratum £ from F,’;h,

independently across strata.

Estimates: g = n, " >, yjvi, 0° = >, Wibih, 0" = g(7).
Variance: Vy ps[0*] = E. [(0* — E.[0*])?], or itssimulation
approximation

2
Wi ng, —

Linear case: Vy pgl0*] = 32, wene=1s2 __ hiased down, inconsistent!

Nh Nh

(Think of n;, = 2, asit isoften the case.)
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The Rescaled Bootstrap - |

Rao and Wu (1988) propose resamples: {y;, }:" i.i.d. sample of size
my, > 1 with replacement in stratum A from Ff;h, independently across
Strata.

Pseudovalues (?? not called thisway in the article):
m1/2 .

Yni = Un + ooz (Wi — Un)

Notable features of the proposed method:

e Captures the dependence structure: thei.i.d. pieces are those within
Strata

e The bootstrap subsample size m;, < the original size ny,

e Madification of the subsample value
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The Rescaled Bootstrap - I

Estimates: 75 = my, >, Gni F = 3o Wilin, 0 = g(3).

Variance: Vi pslf] = E. [(0 — E.[0])?], or its smulation approximation.

Linear case: Vpps[0*] = 32, ‘;Lvh s? — as desired.

The scaleis chosen so as to fit the “right” thing, just as we did for the
jackknife estimator of variance of thei.i.d. sample mean.
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The Rescaled Bootstrap - Il

Can we estimate something beyond the variance? What about bias?

_ W2 _
Z Vi (Y Z n—:Shjk + higher order terms, (1)

j k=1 h
Shik = El(Ynij — (Ynix — Ynr)] 2

Yi5)
Bjpsll] = Efpslf] — 0 = ©)
W2
= Z Vi@ Z —I . naivety factor - 55,1, + Op(n™%/%)  (4)
np
j k=1
where the naivety factor is 1 for the rescaled bootstrap, and (n;, — 1)/ny,
for the naive bootstrap. The rescaled bootstrap gives a consistent estimate
of bias, while the naive one, does not.

© S. Kolenikov [24]




Resampling with complex survey data

The Rescaled Bootstrap - IV

mp = np — 1 = yp; =y, — theoriginal bootstrap subsample with the
“correct” subsample size.

ny = 2, mp = 1 = the (exact) rescaled bootstrap reduces to (complete)
BRR, athough in simulations may not be as efficient if BRR resamples
are chosen wisely.

ny, > 3 = thereisan option of choosing m;, so asto match the
bootstrap third moment of y to its empirical estimate:
—92)2
mp = M Ny — 3
np — 1
Rao and Wu (1988): “ The bootstrap histogram of at statistic captures the
second order term of the Edgeworth expansion in the specia case of
known strata variances” — c.f. thei.i.d. bootstrap histogram properties.
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The Rescaled Bootstrap - V

Simulations results. p. 235 of Rao and Wu (1988).
e Not much gainin going beyond B = 100

e Substantial biasesin one-sided Cl coverage for nonlinear statistics
(ratio, correlation)

e Onesided intervals: the bootstrap with m;, = n;, — 1 isclearly
superior in terms of coverage

e Two-sided CIs OK for either linearization, jackknife, or the bootstrap

e The choice of m;, = n;, — 3 for bootstrapping understates the errors
in both tails when the variance of 7 is not known.

o Stability is better for the linearization and jackknife than for the
bootstrap

© S. Kolenikov [26]




Resampling with complex survey data

The Rescaled Bootstrap - VI

Rao and Wu (1988) give extensions to:
e sampling without replacement;
e unegual probability sampling;

e two-stage cluster sampling with equal probabilities and without
replacement.
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Other bootstrap schemes

Shao (1996) gives several other bootstrap schemes used in literature.

nhfl

—k——, no other modifications/
i

With replacement bootstrap, BWR: mj = 5
rescaling.

Mirror-match bootstrap, BMM: draw an SRS (w/o0 replacement) of size
n; < np, repeat ky times, somy, = nj, k,. BMM keeps higher variability by
ruling out the subsamples replicating a single observation; reducesto BWR
when n} = 1; when the statistic is linear, ¥ 5 1/1,[0] = V. [0).

Without replacement bootstrap, BWO: mimics the original sampling scheme.
Create a pseudopopul ation of the size N}, by replication of the strata
samples, then take samples of size n;, from this pseudopopul ation. May not
provide a consistent estimate of the variance even in the linear case.

Shao (1996): “ ... not necessarily al of [the bootstrap procedures] are
second-order accurate”
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Asymptotics - Il
Asymptoticsin Shao (1996) is a bit different from that of (Krewski and
Rao 1981).

e Array of populationsindexed by some k; & might differ for different
k, but {6} isabounded set

n=>y,n,— oo,sup fn <1

VEIH, C{1,...,L} :Suppeq, k h < 00, MiNpgge, k Mp — 00

Bounded survey weights: maxy, ; j nnwnijn/N = O(1)

Lyapunov condition on Y’

Vg # 0 in aneighborhood of Y.
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Comparison of the Methods - I

Baseline: linearization method

Jackknife: different jackknife estimators are O, (n~2) equivalent;
Vs[0]/VL[0) =14 O,(n~") in general case;
Vs101/VL[0) = 1+ O, (n=2) whenVh nj, = 2;
V(0] = V.[6] for linear statistics or (ns, = 2 & g(+) is quadratic).
BRR: Vpppld)/V0[0] =1+ 0p(n~112);
~IT AS A
Verrld]/VLll] =1+ O0p(n~).
Unlike other methods, can be applied to estimation of non-smooth
functionals (quantiles).

Rescale Bootstrap: Vrps[0]/VL[0] = 1 4 O,(n ).
Empirical evidence: variance estimate is not quite stable.
The bootstrap histogram —- target distribution in sup norm.

Some minor regularity conditions might be omitted.
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Comparison of the Methods - IlI Other topics - |

Shao (1996): “ ... the choice of the method may depend more on Some other topics covered in Shao (1996):
nonstatistical considerations, such as the feasibility of their
implementation . .. Blindly applying the resampling methods may yield
incorrect results” — that’s often the case!

e Confidenceintervals for quantiles

Jackknife estimates of bias

Resampling with missing / imputed data

BRR-type methods when the # PSU per cluster varies (not al of them
behave nice)
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Other topics -

Discussion part of Shao (1996) provides a number of important
comments.

e Jackknife for non-normal data (Binder 1996)
e Design efficiency (Binder 1996)

Estimating functions (Binder 1996)

Jackknife with non-smooth functions (Rao and Sitter 1996)

Post-stratification weights (Rao and Sitter 1996)

Linearized jackknife estimator (Rao and Sitter 1996)
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Other topics - Il

e Strata collapsing (Valliant 1996)

e Insmall / moderate samples, V ;[1z] = V1 [1r] where
Tr = Ny X /z istheratio estimator of the total (Valliant 1996)

e Post-stratification: V7, V; might be = ¥, (Valliant 1996)
e Parallel computing (Valliant 1996)

e Variance stabilizing transformations help achieving better
performance (Valliant 1996)

e Performance of certain bootstrap schemes may deteriorate as
complexity of the sampling design increases (Valliant 1996).
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