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Table 8.7 Wald tests X2(b) for the significance of the interaction
term SEX*PHYS in Model 2 under the design-based and unweighted
SRS analysis options.

Design-based Unweighted SRS

Term df X2
des p-value X2

bin p-value

SEX∗PHYS 1 2.39 0.1218 3.97 0.0463

Let us turn to the corresponding design-based analysis with a linear model for
the proportions of Table 8.2. In this situation, logit and linear formulations of an
ANOVA model lead to similar results because proportions do not deviate much
from the value 0.5. The main effects model (Model 1) is chosen, and results on model
fit, residuals, and on significance of the model terms, are close to those for the logit
model. But the estimates of the model coefficients differ and are subject to different
interpretations. For the logit model with the partial parametrization, an estimated
coefficient indicates differential effect on a logit scale of the corresponding class
from the estimated intercept being the fitted logit for the reference domain. And
for the linear model, an estimated coefficient indicates differential effect on a linear
scale of the corresponding class from the estimated intercept, which is now the
fitted proportion for the reference domain.

The linear model formulation thus involves a more straightforward interpreta-
tion of the estimates of the model coefficients. Under Model 1, these estimates are
as follows:

b̂1 = 0.5705 (Intercept)

b̂2 = −0.1172 (Differential effect of SEX = Males)

b̂3 = −0.0355 (Differential effect of AGE = −44)

b̂4 = 0.0650 (Differential effect of PHYS = 1).

The fitted proportion for falling into the upper psychic strain group is thus 0.57
for females in the older age group whose working conditions are less hazardous,
and for males in the same age group, 0.57 − 0.12 = 0.45. The highest fitted
proportion, 0.57 + 0.07 = 0.64, is for the older age group females doing more
hazardous work. Also, the fitted proportions are close to those obtained with the
corresponding logit ANOVA model.

8.4 LOGISTIC AND LINEAR REGRESSION

The PML method of pseudolikelihood is often used on complex survey data for logit
analysis in analysis situations similar to the GWLS method. But the applicability
of the PML method is wider, covering not only models on domain proportions of
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a binary or polytomous response but also the usual regression-type settings with
continuous measurements as the predictors. We consider in this section first a
PML analysis on domain proportions and then a more general situation of logit
modelling of a binary response with a mixture of continuous measurements and
categorical variables as predictors. Finally, an example is given of linear modelling
for a continuous response variable in an ANCOVA setting.

In PML estimation of model coefficients and their asymptotic covariance
matrix, we use a modification of the maximum likelihood (ML) method. In the ML
estimation for simple random samples, we work with unweighted observations
and appropriate likelihood equations can be constructed, based on standard
distributional assumptions, to obtain the ML estimates of the model coefficients and
the corresponding covariance-matrix estimate. Using these estimates, standard
likelihood ratio (LR) and binomial-based Wald test statistics can be used for testing
the model adequacy and linear hypotheses on the model coefficients.

Under more complex designs involving element weighting and clustering, an
ML estimator of the model coefficients and the corresponding covariance-matrix
estimator are not consistent and, moreover, the standard test statistics are not
asymptotically chi-squared with appropriate degrees of freedom. For consistent
estimation of model coefficients, the standard likelihood equations are modified
to cover the case of weighted observations. In addition to this, a consistent
covariance-matrix estimator of the PML estimators is constructed such that the
clustering effects are properly accounted for. Using these consistent estimators,
appropriate asymptotically chi-squared test statistics are derived.

The PML method can be conveniently introduced in a setting similar to the
GWLS method, assuming again a binary response variable and a set of categorical
predictors. The data set is arranged in a multidimensional table, such as Table 8.1,
with u domains, and our aim is to model the variation of the domain proportion
estimates p̂j across the domains. The variation is modelled by a logit model of the
type given in (8.1) and (8.2). A PML logit analysis for domain proportions, covering
logit ANOVA, ANCOVA and regression models with categorical predictors can
be carried out under any of the analysis options previously introduced by
using the corresponding domain proportion estimator vector and its covariance-
matrix estimate, and the steps in model-building are equivalent to those in the
GWLS method. The design-based analysis option provides a generally valid PML
logit analysis for complex surveys. In practice, a PML logit analysis under the
design-based option requires access to specialized software for survey analysis.

Design-based and Binomial PML Methods

Under both design-based and weighted SRS options, a consistent PML estimator
b̂pml for the vector b of the s model coefficients bk in a logit model F(p) = Xb is
obtained by iteratively solving the PML estimating equations

X′Wf(b̂pml) = X′Wp̂, (8.24)
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where W is a u × u diagonal weight matrix with weights wj = n̂j on the main
diagonal, and f = exp(Xb)/(1 + exp(Xb)) is the inverse function of the logit
function. It is essential in (8.24) that the weighted domain sample sizes n̂j and the
weighted proportion estimates p̂j be used, not their unweighted counterparts nj

and p̂U
j as in the ML method, i.e. under the unweighted SRS option. This is for

consistency of the PML estimators. The corresponding vector (8.5) of the GWLS
estimates can be used as an initial value for the PML iterations. Note that under
the linear formulation of the ANOVA model, the function vector f(b̂pml) would
be linear in b̂k and, thus, no iterations are needed. Henceforth, in this section we
denote the vector of PML estimates of logit model coefficients by b̂ for short.

Because the vector b̂ of PML estimates is equal under the design-based and
weighted SRS options, so also are the vectors F̂ = Xb̂ and f̂ = F−1(Xb̂) of fitted
logits and fitted proportions. The equality also holds for estimated odds ratios,
which can be obtained as exp(b̂k) under the partial parametrization of the model.
Fitted proportions f̂j = fj(b̂) are estimated under both options by the formula

f̂ = f(b̂) = exp(Xb̂)/(1 + exp(Xb̂)). (8.25)

Let us derive under the weighted SRS and design-based options the s × s
covariance-matrix estimators of the PML estimator vector b̂ calculated by (8.24).
Assuming simple random sampling, the covariance-matrix estimator is given by

V̂bin(b̂) = (X′W�̂WX)−1, (8.26)

where the diagonal elements of the diagonal u × u matrix �̂ are binomial-type
variances f̂j(1 − f̂j)/n̂j. The binomial covariance-matrix estimator (8.26) is not
consistent for complex sampling designs involving clustering. For these designs,
we derive a more complicated consistent covariance-matrix estimator that is valid
under the design-based option:

V̂des(b̂) = V̂bin(b̂)X′WV̂desWXV̂bin(b̂). (8.27)

This estimator is of a ‘sandwich’ form such that the design-based covariance-
matrix estimator V̂des of the proportion vector p̂ acts as the ‘filling’.

Approximate confidence intervals for odds ratio estimates exp(bk) under the
design-based and weighted SRS options can be calculated by (8.7) using the
corresponding variance estimates v̂des(b̂k) and v̂bin(b̂k) of the PML estimates b̂k,
as in the GWLS method. Also, the design-effect estimates d̂(b̂k) of the model
coefficients b̂k can be obtained by (8.23), again analogously to the GWLS method.

Expressions for the consistent covariance-matrix estimators V̂des(F̂) and V̂des(f̂)
of the vector F̂ of fitted logits and the vector f̂ of fitted proportions are similar
under the design-based option to those of the GWLS method, as given in equations
(8.8) and (8.9). The PML analogue V̂des(b̂) from (8.27) and the corresponding
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matrix Ĥ must of course be used in the equations. And under the weighted SRS
option, the covariance-matrix estimators V̂bin(F̂) and V̂bin(f̂) are derived similarly
by using the binomial estimator (8.26) in the equations in place of its design-based
counterpart.

A residual covariance-matrix estimator is needed for conducting a proper
residual analysis under the design-based option. This u × u estimator is given by

V̂res = AV̂desA′, (8.28)

where the matrix A is obtained by the formula

A = I − �̂WX(X′W�̂WX)−1X′W

with I being a u × u identity matrix. Using this estimate, design-based standardized
residuals of the form (8.22) can then be calculated.

There are thus many similarities between the PML formulae and those derived
for the GWLS method. The main differences lie in the way the estimates of model
coefficients and their covariance-matrix estimate are calculated. More similarities
are evident in the testing procedures. All the test statistics derived for the GWLS
method are also applicable to the PML method.

Under the design-based option, goodness of fit of the model can be tested with
the design-based Wald statistic X2

des given by (8.11). When examining the model
fit more closely, PML analogues to the Wald statistics X2

des(overall) and X2
des(gof )

can be used. The Wald statistics (8.13) and (8.14) for linear hypotheses on model
parameters are applicable as well. Finally, in unstable situations, the F-corrected
Wald and Rao–Scott statistics (8.16)–(8.20) can be used. It should be noted that
the PML estimates from (8.24) and the corresponding covariance-matrix estimate
(8.27) must be used in the calculation of these test statistics under the design-based
option. These test statistics are available in commonly used software products for
logit analysis for complex survey data.

In testing procedures for the weighted and unweighted SRS options, the
corresponding binomial covariance-matrix estimates are used in the test statistics
in place of those from the design-based option. As an alternative to the Wald
statistics, LR test statistics can be used, which for the design-based option should
be adjusted using the Rao–Scott methodology. A second-order adjustment to
LR test statistics similar to (8.14) for the binomial-based Wald statistic provides
asymptotically chi-squared test statistics. The residual covariance-matrix estimate
(8.28) can be used in deriving an appropriate generalized design-effects matrix
estimate for the adjustments.

The main application area of the PML method for complex surveys is under
the design-based option, and the weighted and unweighted SRS options are
used as the reference when examining the effects of weighting and intra-cluster
correlation on standard-error estimates of model coefficients and on p-values of
Wald test statistics.
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Logistic Regression

The PML method can also be used in strictly regression-type logit analyses on
a binary response variable from a complex survey, where the predictors are
continuous measurements. In logistic regression, we work with an element-level
data set without aggregating these data into a multidimensional table. So, the
measured values of the continuous predictor variables constitute the columns in
an n × s model matrix X for a logistic regression model. But all the other elements
of the PML estimation remain unchanged, and consistent PML estimates with
their consistent covariance-matrix estimate are obtained in a way similar to that
described for the design-based analysis option. Moreover, a logistic ANCOVA can
be performed by incorporating categorical predictors into the logistic regression
model. Then, interaction terms of the continuous and categorical predictors can
also be included.

A logistic regression model is usually built by entering predictors into the model
using subject-matter criteria or significance measures of potential predictors. In
this, t-tests tdes(bk), or the corresponding Wald tests X2

des(bk), on model coeffi-
cients can be used as previously and, under the design-based option, asymptotic
properties of these test statistics remain unchanged.

Instability of an estimate V̂des(b̂) from (8.27) can destroy the distributional
properties of the test statistics on model coefficients in such small-sample situations
where the number of sample clusters is small. Usual degrees-of-freedom, F-
corrections to the Wald and t-test statistics can then be used.

The GEE methodology of generalized estimating equations can also be used for
logistic modelling on complex survey data. In this method, the model coefficients
are estimated using the multivariate quasilikelihood technique, and intra-cluster
correlations are taken as nuisances. Using an estimated intra-cluster correlation
structure, a ‘robust’ estimator of the covariance matrix of the model coefficients
can be obtained, basically similar to the ‘sandwich’ form in the PML method.
Thus, the GEE method can be used to account for the clustering effects. We
describe only briefly the method and give an example for logistic ANCOVA in the
OHC Survey.

The GEE method was originally developed for accounting for the possible
correlation of observations in fitting generalized linear models in the context of
longitudinal surveys (Liang and Zeger 1986). The methodology has been further
described and illustrated in Liang et al. (1992) and Diggle et al. (2002).

Two alternatives of the GEE method have been presented. A preliminary GEE
method with an independent correlation assumption relates to the standard
PML method where observations are assumed independent within clusters for
the estimation of the regression coefficients, but are allowed to be correlated for
the estimation of the covariance matrix of the estimated regression coefficients.
In covariance-matrix estimation, a ‘sandwich’ form of estimator is used. In a
more advanced GEE method, assuming an exchangeable correlation structure,
observations are allowed to be correlated within clusters in the estimation of both
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regression coefficients and the covariance matrix of estimated regression coeffi-
cients. There, a ‘working’ intra-cluster correlation is estimated and incorporated
in the estimation procedure of regression coefficients and the covariance matrix
of estimated coefficients.

A generalized linear model can be compactly written as

EM(g(y)) = Xb, (8.29)

where EM refers to the expectation under the model and the function g refers to the
so-called link function postulating a relationship between the expectation of the
response variable vector y and the linear part Xb of the model. Special cases of link
functions are identity, logistic and logarithmic functions used in linear models for
continuous responses, logistic models for binary responses and log-linear models
for count data, respectively.

The covariance structure of observations within clusters is modelled by

Vi = φA1/2
i R(α)A1/2

i , i = 1, . . . , m, (8.30)

where Ai is a diagonal matrix of variances V(yk) in cluster i and R(α) is the
‘working’ correlation matrix specified by the (possibly vector-valued) correlation
parameter α of observations in cluster i. The parameter φ denotes the dispersion
parameter of the corresponding member of the exponential family of distributions.
Under an independent correlation assumption, all off-diagonal elements α of the
‘working’ correlation matrix are set to zero. Under an exchangeable correlation
of pairs of observations within a cluster, the parameter α is a scalar and requires
estimation. In an estimation procedure to obtain an estimate b̂, Newton–Raphson-
type algorithms are usually used. The covariance-matrix estimate V̂des(b̂) is
obtained using a ‘sandwich’ type estimator (see equation (8.27)). Element weights
can be incorporated in a GEE estimation procedure. GEE and the weighted analogue
can be applied using suitable software for the analysis of complex surveys.

The GEE method has been shown to produce consistent estimates of model
parameters and their covariance matrices, independently of a correct specification
of the ‘working’ correlation structure. In the next two examples, we apply logistic
ANCOVA first with the PML method and then with the GEE method assuming
an exchangeable intra-cluster correlation structure. For further training on the
PML and GEE methods in logistic modelling on the OHC Survey data, the reader
is advised to visit the web extension of the book.

Example 8.2

Logistic ANCOVA with the PML method. Let us consider in a slightly more general
setting the analysis situation of Example 8.1, where a logit ANOVA model was
fitted by the GWLS method to proportions in a multidimensional table. We now
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fit a logistic ANCOVA model using the PML method, by entering some of the
predictors as continuous measurements in the model. The design-based analysis
option is applied, providing valid PML analysis.

The binary response variable PSYCH measures high psychic strain, and we
take the variables AGE, PHYS (physical working conditions) and CHRON (chronic
morbidity) as continuous predictors such that AGE is measured in years and PHYS
and CHRON are binary. Thus there are four predictors, of which SEX is taken as a
qualitative predictor. So, the interaction of SEX with AGE, PHYS and CHRON can
also be examined.

A model with SEX, AGE, PHYS and CHRON as the main effects and an
interaction term of SEX and AGE was taken as the final model, because the
other interactions appeared nonsignificant at the 5% level. Results of the model
coefficients are displayed in Table 8.8.

The fitted logit ANCOVA model can be written using the estimated coefficients
b̂k and the corresponding model matrix X similar to the ANOVA modelling in
Example 8.1:

F(f̂1) = b̂1 + b̂2(SEX)l + b̂3(AGE)l + b̂4(PHYS)l

+ b̂5(CHRON)l + b̂6(SEX ∗ AGE)l,

where l = 1, . . . , 7841, and F(f̂l) = log(f̂l/(1 − f̂l)). The values for the model terms
are obtained from the corresponding columns of the 7841×6 model matrix X.
There, SEX, PHYS and CHRON are binary, and AGE has its original values (age

Table 8.8 Design-based logistic ANCOVA on overall psychic strain with the PML method.

95% confidence
interval for OR

Model
term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Odds
ratio Lower Upper

Intercept 0.1964 1.56 0.1572 1.25 0.2127 1.22 0.89 1.66
Sex

Males −0.9926 1.43 0.2033 −4.88 0.0000 0.37 0.25 0.55
Females∗ 0 n.a. 0 n.a. n.a. 1 1 1

Age −0.0046 1.55 0.0041 −1.12 0.2624 1.00 0.99 1.00
Physical health

hazards 0.2765 1.39 0.0596 4.64 0.0000 1.32 1.17 1.48
Chronic

morbidity 0.5641 1.17 0.0575 9.82 0.0000 1.76 1.57 1.97
Sex, Age

Males 0.0131 1.41 0.0051 2.56 0.0111 1.01 1.00 1.02
Females∗ 0 n.a. 0 n.a. n.a. 1 1 1

∗ Reference class; parameter value set to zero.
n.a. not available.
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in years). Note the difference in the ANCOVA model matrix when compared with
that for the ANOVA model.

The t-tests on model coefficients indicate that the coefficients for the interesting
predictors, physical working conditions and chronic morbidity are strongly
associated with experiencing psychic strain. Persons in hazardous work, and
chronically ill persons are more likely to suffer from psychic strain than healthy
persons and persons whose working conditions are less hazardous. Note that the
sex–age adjusted coefficient b̂5 for CHRON is larger than b̂4 for PHYS. Thus, in the
model, chronic morbidity is more important as a predictor of psychic strain. This
can also be seen in the odds ratio (OR) estimates provided in Table 8.8.

Odds ratios with their approximative 95% confidence intervals (in parenthesis)
thus are

PHYS: Odds ratio = exp(0.2765) = 1.32 (1.17, 1.48),

CHRON: Odds ratio = exp(0.5641) = 1.76 (1.57, 1.97).

We may thus conclude that odds for experiencing a higher level of psychic strain,
adjusted for sex, age and chronic morbidity, is about 1.3 times higher for those
in more hazardous work than for those in less hazardous work. This conclusion
was similar in Example 8.1, where a closely related odds ratio and confidence
interval were obtained. Furthermore, the odds of experiencing much psychic
strain, adjusted for sex, age and working conditions, are about 1.8 times higher
for chronically ill persons than for healthier persons. Because neither of the 95%
confidence intervals covers the value one, the corresponding odds ratios differ
significantly (at the 5% level) from one. It should be noted that the binomial-based
confidence intervals would be narrower especially for the predictor PHYS, for
which the design-effect estimate is larger than for CHRON.

An analysis under the SRS options yield the same final model as the design-
based analysis, but the observed values of the test statistics are somewhat larger
and thus more liberal test results are attained.

Finally, let us examine more closely the fitted proportions f̂l for the upper psychic
strain group under the present model. The results are summarized in Figure 8.2
by plotting the proportions against the predictors included in the model. Fitted
proportions increase with increasing age for males, and decrease for females. At
a given age, the proportions are larger for the chronically ill and for those in
more hazardous work than in the reference groups. Also, in females the fitted
proportions tend to be larger than in males in all the corresponding domains,
although the differences decline with increasing age.

Example 8.3

Logistic ANCOVA with the GEE method. Let us consider further the analysis
situation of Example 8.2, where a logistic ANCOVA model was fitted by the
PML method. We now fit a logistic ANCOVA model using the GEE method with
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Figure 8.2 Fitted proportions of falling into the high psychic strain group for the final
logistic ANCOVA model.

an assumed exchangeable correlation of pairs of observations within a cluster.
Similarly as in Example 8.2, our response variable is the binary PSYCH measuring
psychic strain. The variable SEX is included in the model as a categorical predictor
and AGE, PHYS (physical working conditions) and CHRON (chronic morbidity) as
continuous predictors such that AGE is measured in years and PHYS and CHRON
are binary. We fit the same model as in Example 8.2.

Results are shown in Table 8.9. A comparison with logistic ANCOVA with the
PML method in Example 8.2 indicates that the results are quite similar, and our
inferential conclusions remain the same. There are, however, certain differences.
First, the estimated beta coefficients have changed. Absolute values of estimates
are larger than in the PML application, except for the CHRON effect. Standard-
error estimates are somewhat smaller than the PML counterparts. Hence, the
observed t-statistics tend to be larger involving slightly more liberal tests than
in the PML case. These differences are due to the fact that in the GEE method
with an exchangeable correlation structure, the correlation of observations also
contributes to the estimation of the beta parameters. The ‘working’ intra-cluster
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Table 8.9 Design-based logistic ANCOVA on overall psychic strain with the GEE method
under exchangeable intra-cluster correlation structure.

Model
Term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Intercept 0.2292 1.44 0.1524 1.50 0.1338
Sex

Males −1.0290 1.36 0.2000 −5.14 0.0000
Females∗ 0 n.a. 0 n.a. n.a.

Age −0.0057 1.43 0.0039 −1.45 0.1489
Physical health hazards 0.3011 1.31 0.0587 5.13 0.0000
Chronic morbidity 0.5569 1.14 0.0568 9.81 0.0000
Sex, Age

Males 0.0144 1.33 0.0050 2.88 0.0044
Females∗ 0 n.a. 0 n.a. n.a.

∗ Reference class; parameter value set to zero.
n.a. not available.

correlation is estimated as α̂ = 0.0189. Using the expression deff = 1 + (m − 1)α̂,
where m is the average cluster size, this corresponds to an average design effect
of 1.57.

Linear Modelling on Continuous Responses

We have extensively considered the modelling of binary response variables from
complex surveys. The GWLS, PML and GEE methods were used, covering logit
and linear modelling on categorical data and logit modelling with continuous
predictors. These types of multivariate models are most frequently found in
analytical surveys, for example, in social and health sciences. But in some
instances it is appropriate to model a quantitative or continuous response variable,
such as the number of physician visits or blood pressure. We discuss briefly the
special features of multivariate analysis in such cases, and give an illustrative
example of a special case of linear ANCOVA.

Linear modelling provides a convenient analysis methodology for analysis
situations with a continuous response variable and a set of predictors. This
situation was present in Examples 8.2 and 8.3, where the dichotomized PSYCH
was analysed with a logistic ANCOVA model. There the original continuous
variable on psychic strain could be taken as the response variable as well, leading
to linear ANCOVA modelling. For a simple random sample, the analysis would
be based on ordinary least squares (OLS) estimation with a standard program for
linear modelling. For the OHC Survey data set, which is based on cluster sampling,
the design-based approach with weighted least squares (WLS) estimation provides
proper linear modelling.




