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The SRS-based options assume simple random sampling with replacement.
Under the weighted SRS option, it is assumed that the domain proportions are
consistently estimated using the appropriate element weights, and a binomial
covariance matrix is assumed for these proportions. Under the unweighted SRS
option, simple random sampling with replacement is assumed, and the data set
is assumed to be self-weighting. Thus, all the complexities of the sampling design
are ignored.

Because the two versions of the SRS-based option are not valid for complex
surveys involving clustering, they will be used as reference options for the design-
based option and in the construction of appropriate generalized design-effect
matrices. The weighted SRS option is used when assessing the magnitude of
the clustering effects on results from multivariate analyses, and the unweighted
SRS option can be used as a reference option for the design-based option when
examining the effects of all the complexities of the sampling design on analysis
results, including the effect of weighting procedures.

The analysis options with respect to sampling design are summarized below:

Allowing Allowing Allowing
Option weights stratification clustering

Design-based Yes Yes Yes
Weighted SRS Yes No No
Unweighted SRS No No No

It should be noticed that in multivariate survey analysis, as in the analysis of
two-way tables, the design-based approach to inference also constitutes inference
on the parameters of the corresponding superpopulation model, provided that the
finite population is large (see Rao and Thomas 1988).

8.3 ANALYSIS OF CATEGORICAL DATA

The GWLS method of generalized weighted least squares estimation provides a
simple technique for the analysis of categorical data with ANOVA-type logit and
linear models on domain proportions. Allowing all the complexities of a sampling
design including stratification, clustering and weighting, the design-based option
provides a generally valid GWLS analysis. Analysis under the weighted or
unweighted SRS options assuming simple random sampling serves as a reference
when studying the effects of clustering and weighting on results.

The GWLS method is computationally simple because it is noniterative for both
logit and linear models on proportions. The alternative PML and GEE methods
of pseudolikelihood and generalized estimating equations for logit models are, as
iterative methods, computationally more demanding. For logit regression with
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continuous predictors, which are not categorized, the PML and GEE methods can
be used but the GWLS method is inappropriate. The application area of the GWLS
method is thus more limited than that of PML and GEE methods.

In surveys with large samples, closely related results are usually attained by any
of the methods. But in fitting ANOVA-type models there can be many multi-class
predictors included in the model and, therefore, the number of domains can be
large, and a large element-level sample size is required to obtain a reasonably large
number of observations falling in each domain. This is especially important for
the GWLS method, which is mainly used in large-scale surveys where the sample
sizes can be in thousands of persons, as is the case in the OHC and MFH Surveys.
For proper behaviour of GWLS, PML and GEE methods, a large number of sample
clusters is beneficial. Recall that this property holds for the OHC Survey.

We consider the GWLS method for a binary response variable and a set of
categorical predictors. The data can thus be arranged into a multidimensional
table, such as Table 8.1, where the u domains are formed by cross-classifying the
categorical predictors and the proportions pj of the binary response are estimated
in each domain. The consistent estimates p̂j, used under the design-based and
weighted SRS options, are weighted ratio-type estimators of the form p̂j = n̂j1/n̂j,
where n̂j1 is the weighted sample sum of the binary response in domain j, and
n̂j are weighted domain sample sizes. The unweighted proportion estimates p̂U

j ,
used under the unweighted SRS option, are obtained using the unweighted
counterparts nj1 and nj.

When applying the GWLS method for logit and linear modelling under an
analysis option, the starting point is the calculation of the corresponding propor-
tion estimate vector and its covariance-matrix estimate. By using these estimates,
the model coefficients are estimated, together with a covariance matrix of the
estimated coefficients, and using these, fitted proportions and their covariance-
matrix estimates are obtained. Further, the Wald test of goodness of fit of the
model, and desired Wald tests of linear hypotheses on the model coefficients, are
executed. Finally, residual analysis is carried out to more closely examine the fit
of the selected model.

Design-based GWLS Estimation

Under the design-based option, a consistent GWLS estimator b̂des, denoted b̂ for
short in this section, of the s × 1 model coefficient vector b for a model F(p) = Xb
is given by

b̂ = (X′(HV̂desH)−1X)−1X′(HV̂desH)−1F(p̂), (8.5)

where V̂des is a consistent estimator of the covariance matrix of the consis-
tent domain proportion estimator vector p̂, and HV̂desH is a covariance-matrix
estimator of the function vector F(p̂). An estimate V̂des is obtained using, for
example, the linearization method as described in Chapter 5. The GWLS estimating
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equations (8.5) are thus based on the consistently estimated functions F(p̂j) and
their design-based covariance-matrix estimate. The equations also indicate that
no iterations are needed to obtain the estimates b̂k. A justification for the label
‘GWLS’ is that element weights are used in obtaining the proportion vector
estimate and its covariance-matrix estimate, which are supplied to the GLS
estimating equations.

The GWLS estimator b̂ from (8.5) applies for both logit and linear models
on domain proportions. But the matrix H in the covariance-matrix estimator
of the function vector differs. In the logit model, the diagonal u × u matrix H
of partial derivatives of the functions F(p̂j) has diagonal elements of the form
hj = 1/(p̂j(1 − p̂j)). And in the linear model, the matrix H is an identity matrix
with ones on the main diagonal and zeros elsewhere.

Under a partial parametrization of a logit ANOVA model (see Section 8.2),
where the columns of the model matrix X corresponding to the classes of the
predictors are binary variables, a log odds ratio interpretation can be given to the
estimates b̂k. Thus, an estimate exp(b̂k) is the odds ratio for the corresponding class
with respect to the reference class adjusted for the effects of the other terms in
the model. This interpretation of the estimated model coefficients is common in
epidemiology and also in social sciences.

A covariance-matrix estimate V̂des(b̂) of the estimated model coefficients b̂k

from (8.5) is used in obtaining Wald test statistics for the coefficients. This s × s
covariance matrix is given by

V̂des(b̂) = (X′(HV̂desH)−1X)−1. (8.6)

With proper choice of H, this estimator applies again for both logit and linear
models. Diagonal elements of V̂des(b̂) provide the design-based variance estimates
v̂des(b̂k) of the estimated coefficients b̂k to be used in obtaining the corresponding
standard-error estimates s.edes(b̂k) = v̂1/2

des (b̂k). Under a logit model, using these
standard-error estimates, for example, an approximative 95% confidence interval
for an odds ratio exp(bk) can be calculated as follows:

exp(b̂k ± 1.96 × s.edes(b̂k)). (8.7)

Two additional covariance-matrix estimators are useful in practice. These are
the u × u covariance-matrix estimator V̂des(F̂) of the vector F̂ = Xb̂ of the fitted
logits and the covariance-matrix estimator V̂des(f̂) of the vector f̂ = F−1(Xb̂) of
the fitted proportions. These are

V̂des(F̂) = XV̂des(b̂)X′ (8.8)

and
V̂des(f̂) = Ĥ−1V̂des(F̂)Ĥ−1. (8.9)
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For a linear model, these covariance matrices obviously coincide, because the fitted
functions are equal to the fitted proportions. For a logit model, the diagonal matrix
Ĥ has diagonal elements of the form ĥj = 1/(f̂j(1 − f̂j)), and the terms f̂j = fj(b̂) are
elements of the vector f̂ of fitted proportions calculated using the equation

f̂ = f(b̂) = exp(Xb̂)/(1 + exp(Xb̂)). (8.10)

The diagonal elements of the covariance-matrix estimates (8.8) and (8.9) are
needed to obtain the design-based standard errors of the fitted functions and of
the fitted proportions.

Goodness of Fit and Related Tests

Examining goodness of fit of the model is an essential part of a logit and linear
modelling procedure on domain proportions. Various goodness-of-fit statistics
can be obtained by first partitioning the total variation (total chi-square) in the
table into the variation due to the model (model chi-square) and into the residual
variation (residual chi-square). Hence, we have

total chi-square = model chi-square + residual chi-square

similar to the partition of the total sum of squares for usual linear regression and
ANOVA. A design-based Wald test statistic X2

des measuring the residual variation
is commonly used as an indicator of goodness of fit of the model. This statistic is
given by

X2
des = (F(p̂) − Xb̂)′(HV̂desH)−1(F(p̂) − Xb̂), (8.11)

which is asymptotically chi-squared with u − s degrees of freedom under the
design-based option. A small value of this statistic, relative to the residual degrees
of freedom, indicates good fit of the model, and obviously, the fit is perfect for a
saturated model. A Wald statistic denoted by X2

des(overall), measuring the variation
due to the overall model, is used to test the hypothesis that all the model coefficients
are zero. It is given by

X2
des(overall) = F(p̂)′(HV̂desH)−1F(p̂) − X2

des, (8.12)

where the first quadratic form measures the total variation and the second is
the residual chi-square (8.11) for the model under consideration. This statistic
is asymptotically chi-squared with s degrees of freedom. Also, a Wald statistic
denoted by X2

des(gof ) can be constructed for the hypothesis that all the model
parameters, except the intercept, are zero. This statistic is defined as the difference
of the observed values of the residual chi-square statistic (8.11) for the model where
only the intercept is included and for the model including all the terms of the
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current model, and therefore, it is asymptotically chi-squared with s − 1 degrees of
freedom. The statistic X2

des(overall) is sometimes called a test for the overall model,
and X2

des(gof ) a test of goodness of fit. Note that all these test statistics apply for
both logit and linear models on domain proportions.

Linear hypotheses H0 : Cb = 0 on the model coefficient vector b can be tested
using the Wald statistic

X2
des(b) = (Cb̂)′(CV̂des(b̂)C′)−1(Cb̂), (8.13)

where C is the desired c × s (c ≤ s) matrix of contrasts. The statistic is asymptot-
ically chi-squared with c degrees of freedom under the design-based option. This
statistic is used, for example, in the testing of hypotheses H0 : bk = 0 on single
parameters of the model using the Wald statistics

X2
des(bk) = b̂2

k/v̂des(b̂k), k = 1, . . . , s,

which are asymptotically chi-squared with one degree of freedom. Note that for
the corresponding t-test statistic the equation t2

des(bk) = X2
des(bk) holds.

Another asymptotically valid testing procedure for linear hypotheses on model
parameters is based on a second-order Rao–Scott adjustment to a binomial-based
Wald test statistic using the Satterthwaite method. This technique is similar to that
used in Chapter 7 on the Pearson and Neyman test statistics. We first calculate
the GWLS estimate b̂ = b̂bin by using in (8.5) the binomial covariance-matrix
estimate V̂bin of p̂ in place of V̂des, and construct the corresponding Wald test
statistic X2

bin(b):

X2
bin(b) = (Cb̂)′(CV̂bin(b̂)C′)−1(Cb̂),

where V̂bin(b̂) is the covariance-matrix estimate of the binomial GWLS estimates
obtained by using the estimate V̂bin in place of V̂des in (8.6). The second-order
corrected Wald statistic is given by

X2
bin(b; δ̂ž, â2) = X2

bin(b)

δ̂ž(1 + â2)
, (8.14)

where the first-order and second-order adjustment factors δ̂ž and (1 + â2) are
calculated from the c × c generalized design-effects matrix estimate

D̂ = (CV̂bin(b̂)C′)−1(CV̂des(b̂)C′) (8.15)

so that
δ̂ž = tr(D̂)/c
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is the mean of the eigenvalues δ̂k of the generalized design-effects matrix esti-
mate, and

(1 + â2) =
c∑

k=1

δ̂2
k /(cδ̂2

ž ),

where the sum of squared eigenvalues is calculated by the formula

c∑
k=1

δ̂2
k = tr(D̂2).

The second-order adjusted statistic X2
bin(b; δ̂ž, â2) is asymptotically chi-squared

under the design-based option with Satterthwaite adjusted degrees of freedom
dfS = c/(1 + â2). If c = 1, as in tests on separate parameters of a model, we have
(1 + â2) = 1 because the generalized design-effects matrix reduces to a scalar and
the adjustment reduces to a first-order adjustment. The test statistics are available
in software products for the analysis of complex surveys.

Unstable Situations

Because the Wald statistics X2
des, X2

des(overall)and X2
des(gof )of goodness of fit, and the

statistic X2
des(b) of linear hypotheses on model parameters, are asymptotically chi-

squared under the design-based option, they can be expected to work reasonably
well if the number m of sample clusters is large relative to the number u of
domains. But the test statistics can become overly liberal relative to the nominal
significance levels if the covariance-matrix estimate V̂des appears unstable. This
can happen if the degrees of freedom f = m − H are small for an estimate V̂des,
relative to the residual or model degrees of freedom.

There are certain F-corrected Wald test statistics available to protect against
the effects of instability similar to those used in Chapter 7 for hypotheses of
homogeneity and independence. For the goodness-of-fit test statistic (8.11), these
degrees-of-freedom corrections are

F1.des = f − (u − s) + 1
f (u − s)

X2
des, (8.16)

referred to the F-distribution with (u − s) and (f − (u − s) + 1) degrees of free-
dom, and

F2.des = X2
des/(u − s), (8.17)

referred in turn to the F-distribution with (u − s) and f degrees of freedom. These
F-corrections can also be derived for the Wald statistics X2

des(overall) and X2
des(gof ),

using the corresponding degrees of freedom s or (s − 1) in place of (u − s).
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Similar F-corrections can be derived for the Wald test statistics of linear
hypotheses on model parameters. For the statistic (8.13), these are

F1.des(b) = f − c + 1
fc

X2
des(b) (8.18)

and
F2.des(b) = X2

des(b)/c, (8.19)

referred to the F-distributions with c and (f − c + 1), and c and f degrees of
freedom, respectively.

Second-order Rao–Scott adjustments can be expected to be robust to instability
problems. However, for the second-order corrected statistic (8.14), an F-correction
can be derived. It is given by

Fbin(b; δ̂ž, â2) = (1 + â2)X2
bin(b; δ̂ž, â2)/c = X2

bin(b)/(cδ̂ž), (8.20)

which is referred to the F-distribution with dfS and f degrees of freedom.
The impact of these F-corrections on p-values of the tests is small if f is large.

However, if f is relatively small, and especially if f and the residual degrees of
freedom are close, the corrections can be effective. Under serious instability, the
statistics F1.des, and F1.des(b) or Fbin(b; δ̂ž, â2), are preferable. These corrections
have been implemented as testing options in software products for the analysis of
complex surveys.

Residual Analysis

It is desirable to examine more closely the fit of the selected model by calculating
the raw and standardized residuals. These can be used in detecting possible
outlying domain proportions. The raw residuals are simple differences (p̂j − f̂j) of
the fitted proportions f̂j from the corresponding observed proportions p̂j. Under the
design-based option, the standardized residuals are calculated by first obtaining a
covariance-matrix estimate V̂res of the raw residuals given by

V̂res = H−1(HV̂desH − V̂des(F̂))H−1, (8.21)

where HV̂desH and V̂des(F̂) are the design-based covariance-matrix estimates of
the vector F(p̂) of the observed functions and the vector F̂ = Xb̂ of the fitted
functions, respectively, and the matrix H depends on which model type, logit or
linear, is fitted. Using (8.21), the standardized residuals are calculated as

êj = (p̂j − f̂j)/

√
v̂j, j = 1, . . . , u, (8.22)
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where v̂j are the diagonal elements of the residual covariance matrix V̂res. A
large standardized residual indicates that the corresponding domain is poorly
accounted for by the model. Because the standardized residuals are approximate
standard normal variates, they can be referred to critical values from the N(0,1)
distribution.

Design Effect Estimation

A principal property of the GWLS method is its flexibility, not only for various
model formulations but also for alternative sampling designs. The design-based
GWLS method appeared valid under the design-based option involving a complex
multi-stage design with clustering and stratification. But the GWLS method can
also be used for simpler designs with the choice of an appropriate proportion
estimator and its covariance-matrix estimator reflecting the complexities of the
sampling design.

Under the weighted SRS option, the consistent proportion estimate p̂ and
its binomial covariance-matrix estimate V̂bin(p̂) are used in equations (8.5) and
(8.6) to obtain the corresponding GWLS estimate b̂ of model coefficients and
the covariance-matrix estimate V̂bin(b̂). The same holds for the unweighted SRS
option, where the unweighted counterparts p̂U and V̂bin(p̂U) are used. The GWLS
estimating equations indicate that the estimates b̂k obtained under the SRS-based
options would not numerically coincide with those from the design-based option.

The SRS-based options are restrictive in the sense that the effect of clustering
on standard-error estimates of estimated model coefficients cannot be accounted
for. This effect is indicated in design-effect estimates of model coefficient estimates.
The design-effect estimates are calculated by using the diagonal elements of the
covariance-matrix estimates V̂des(b̂) and V̂bin(b̂∗) of the model coefficients. Hence,
we have

d̂(b̂k) = v̂des(b̂k)/v̂bin(b̂∗
k), k = 1, . . . , s, (8.23)

where b̂∗
k denotes the estimated model coefficients obtained under the weighted

or unweighted SRS option. Under the unweighted SRS option, these design-
effect estimates indicate the contribution of all the sampling complexities, and
under the weighted SRS option, the contribution of clustering is indicated. It is
often instructive to calculate the design-effect estimates under both SRS options,
because then the contribution of the weighting to design effects can be examined.

Criteria for Choosing a Model Formulation

Which one of the model formulations for proportions, logit or linear, should
be chosen? In certain sciences, one type is more standard than the other, but
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taking an explicit position in favour of either of the types generally is not
possible. It appears that there are gains with the logit formulation, such as
possibilities for interpretation with odds ratios, and in certain cases with standard
independence concepts. Moreover, being a member of the broad category of so-
called exponential family models, a logit model for binomial proportions involves
convenient statistical properties that are not shared with linear models for
binomial proportions. Although these properties do not necessarily apply to logit
models in complex surveys, attention has also been directed to the use of logit
models for this kind of survey.

The linear model formulation on proportions, on the other hand, provides a
simple modelling approach that is especially convenient for those familiar with
linear ANOVA on continuous measurements. Being additive on a linear scale, the
coefficients of a linear model describe differences of the proportions themselves,
not their logits. In practice, however, logit and linear GWLS estimation results on
model coefficients do not markedly differ if proportions are in the range 0.2–0.8,
say. In the following example, we compare the logit and linear model formulations
in a typical health sciences analysis.

Example 8.1

Logit and linear ANOVA with the GWLS method. Let us apply the GWLS method for
logit and linear modelling on domain proportions in the simple OHC Survey setting
displayed in Table 8.1. Our aim is to model the variation of domain proportions
of the binary response variable PSYCH, measuring overall psychic strain, across
the u = 8 domains formed by sex and age of respondent, and the variable PHYS
describing the respondent’s physical working conditions. Table 8.2 provides a
more complete description of the analysis situation. The original domain sample
sizes n̂j and the number mj of sample clusters covered by each domain are included
in addition to the domain proportions p̂j, standard errors s.ej and design effects d̂j.
Note that the domain proportions vary around the value 0.5.

The design-based option provides valid GWLS logit and linear modelling in
this analysis. The sampling design involves clustering effects, as indicated by
design-effect estimates of proportions being on average greater than one. The
average design-effect estimate is 1.28. Further, the domains constitute cross-
classes, which is indicated by the fact that each domain covers a reasonably
large number of sample clusters. More apparently, this property can be seen
from the design-based covariance-matrix estimate V̂des of domain proportions
displayed in Figure 8.1. It can be noted that there exist nonzero covariance terms
in the off-diagonal part of the covariance-matrix estimate. The estimate also
seems relatively stable, because covariance estimates are much smaller than the
corresponding variance estimates. The condition number of V̂des is 12.1, which
also indicates stability. The corresponding binomial covariance-matrix estimate
V̂bin is displayed for comparison.
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Table 8.2 Proportion p̂j of persons in the upper psychic strain group, with standard error
estimates s.ej and design-effect estimates d̂j of the proportions, and domain sample sizes n̂j

and the number of sample clusters mj (the OHC Survey).

Domain j SEX AGE PHYS p̂j s.ej d̂j n̂j mj

1 Males –44 0 0.419 0.0128 1.16 1734 230
2 1 0.472 0.0145 1.33 1578 198
3 45– 0 0.461 0.0178 0.88 690 186
4 1 0.520 0.0247 1.18 483 138
5 Females –44 0 0.541 0.0125 1.23 1966 240
6 1 0.620 0.0270 1.38 447 152
7 45– 0 0.532 0.0236 1.65 740 185
8 1 0.700 0.0391 1.48 203 101

All 0.500 0.0073 1.69 7841 250
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Figure 8.1 Design-based and binomial covariance-matrix estimates V̂des and V̂bin of
domain proportion estimates p̂j.

We consider the model-building process under the design-based option, and
use the unweighted SRS option as a reference. There are three predictors, and
together with their main effects, an intercept, and four interaction terms, a total of
eight model terms appear in the saturated logit and linear ANOVA models, which
can be written in the form

F(P) = INTERCEPT + SEX + AGE + PHYS + SEX ∗ AGE

+ SEX ∗ PHYS + AGE ∗ PHYS + SEX ∗ AGE ∗ PHYS,
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where the function is F(P) = log(P/(1 − P)) for the logit model and F(P) = P for
the linear model, and P stands for proportions of the upper PSYCH group.

In the model-building process, we first fit the saturated logit and linear models
and test the significance of the interaction term of all the three predictors.
If it appears nonsignificant, we remove the term, and study the two-variable
interactions, in turn, for further reduction of the model. Model building is
completed when a reasonably well-fitting reduced model is attained. This stepwise
process is an example of the so-called backward elimination common in fitting of
log-linear and logit ANOVA models.

Let us consider more closely the results on logit model fitting. Under the
design-based option, the main effects model appeared reasonably well-fitting
and could not be further reduced. Results for the model reduction are given in
Table 8.3. There, the values of X2

des for a difference Wald statistic are obtained,
for example, in the comparison of the saturated model 5 and the model 4.
The difference statistic is calculated as X2

des(overall; 5) − X2
des(overall; 4) = 78.84 −

76.90 = 1.94, and compared to the chi-squared distribution with one degree of
freedom attains a nonsignificant p-value 0.1635, and thus, the interaction term
can be removed from the model 5. The observed value of the Wald statistic of
goodness of fit of the main effects model (Model 1) is X2

des = 78.84 − 72.39 = 6.45,
which with 4 degrees of freedom attains a p-value 0.1681, indicating reasonably
good fit.

Substantial reduction of the saturated logit model was possible, and the
model-building procedure produced quite a simple structure including the main
effects terms only. So, the suspected interaction of SEX and PHYS appeared
nonsignificant. We return to this conclusion later when fitting logit models under
the SRS-based analysis options.

Table 8.3 Observed values of the Wald statistics X2
des (overall) for overall models, and the

differences statistics X2
des when compared with reduced logit ANOVA models, under the

design-based analysis option.

Model df
Overall

X2
des p-value

Model
comparison df

Difference
X2

des p-value

5 8 78.84 0.0000 — 1 — —
4 7 76.90 0.0000 5–4 1 1.94 0.1635
3 6 76.09 0.0000 4–3 1 0.81 0.3693
2 5 74.78 0.0000 3–2 1 1.31 0.2533
1 4 72.39 0.0000 2–1 1 2.39 0.1218

Model 5: SEX + AGE + PHYS + SEX∗AGE + SEX∗PHYS + AGE∗PHYS + SEX∗AGE∗PHYS
Model 4: SEX + AGE + PHYS + SEX∗AGE + SEX∗PHYS + AGE∗PHYS
Model 3: SEX + AGE + PHYS + SEX∗PHYS + AGE∗PHYS
Model 2: SEX + AGE + PHYS + SEX∗PHYS
Model 1: SEX + AGE + PHYS
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In the partial parametrization used here, for each predictor the model coefficient
for the first class is set to zero. The first class of the last domain is the reference
domain—here domain 7 in Table 8.2. There are four coefficients bk to be estimated
in the main effects models. GWLS estimates b̂k are actually obtained under the
following model matrix:

X =




1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1




.

The fitted models can be written with b̂k and the model matrix as

F(f̂j) = b̂1 + b̂2(SEX)j + b̂3(AGE)j + b̂4(PHYS)j, j = 1, . . . , 8,

where F(f̂j) = log(f̂j/(1 − f̂j)) for the logit model, and F(f̂j) = f̂j for the linear model,
and the indicator variable values for SEX, AGE and PHYS are in the second, third
and fourth columns of the model matrix X.

Let us consider more closely the estimation and test results for the main effects
logit model. The estimation results for the model coefficients are displayed in
Table 8.4.

Table 8.4 Estimates from design-based logit ANOVA on overall psychic strain (model
fitting by the GWLS method).

95% confidence
interval for OR

Model
term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Odds
ratio Lower Upper

Intercept −0.3282 1.32 0.0635 −7.02 0.0000 0.72 0.66 0.79
Sex

Males∗ 0 n.a. 0 n.a. n.a. 1 1 1
Females 0.4663 1.44 0.0579 8.06 0.0000 1.59 1.42 1.79

Age
–44∗ 0 n.a. 0 n.a. n.a. 1 1 1
45– 0.1385 1.23 0.0570 2.43 0.0159 1.15 1.03 1.28

Physical health
hazards
No∗ 0 n.a. 0 n.a. n.a. 1 1 1
Yes 0.2568 1.30 0.0574 4.48 0.0000 1.29 1.16 1.45

∗ Reference class; parameter value set to zero.
n.a. not available.
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In the table, a positive value of the estimated coefficients b̂2 and b̂3 for females
and for the older group is obtained as expected, and the corresponding t-tests
attain significant p-values. The sex–age adjusted estimate b̂4 for the PHYS class
of more hazardous work is positive, involving a clearly significant t-test. It should
be noticed that the absolute value of the t-test statistic used here corresponds to
the square root of the F-corrected Wald statistic (8.19). The design-effect estimates
d̂(b̂k) of the estimated model coefficients are larger than one owing to the clustering
effect. Thus, binomial standard-error estimates of the model coefficients would be
smaller than the corresponding design-based estimates.

Using the estimate b̂4 = 0.2568 for the interesting parameter of the PHYS class
of more hazardous work, the corresponding sex–age adjusted odds ratio estimate
with its 95% confidence interval can be obtained by (8.7). The odds ratio (OR)
estimate is exp(b̂4) = 1.29, and its 95% confidence interval is calculated as

exp(0.2568 ± 1.96 × 0.0574) = (1.16, 1.45).

The sex–age adjusted odds of experiencing a higher level of psychic strain is thus
1.3 times higher for persons under more hazardous working conditions than for
those in the group of less hazardous work. This result is consistent with the t-test
results, because the 95% confidence interval does not include the value one, which
is the odds ratio for the reference group.

We next turn to the test results on the model terms in the final main effects
ANOVA model (Table 8.5). There is a set of observed values from different Wald
test statistics and their F-corrections. Let us consider more closely the tests for the
model terms. The first test statistic corresponds to the original design-based Wald
statistic (8.13), and the second statistic is the F-corrected statistic (8.18). The third
statistic is the Satterthwaite corrected binomial statistic (8.14), and finally, the
fourth statistic is the F-corrected statistic (8.20). The design-based Wald statistic
X2

des(b) and the second-order corrected binomial statistic X2
bin(b; δ̂ž, â2) provide

similar results. The design-based Wald statistic thus works adequately in this

Table 8.5 Observed values and p-values of test statistics for model terms in the final logit
ANOVA model on overall psychic strain (model fitting by the GWLS method).

Contrast Df

(1) Design-
based
Wald
test

p-
value

(2)
F-cor-
rection
to (1)

p-
value

(3) Rao–Scott 2nd

order adjustment
to binomial
Wald test

p-
value

(4)
F-cor-
rection
to (3)

p-
value

SEX 1 64.92 0.0000 64.92 0.0000 64.92 0.0000 64.92 0.0000
AGE 1 5.90 0.0151 5.90 0.0159 5.90 0.0153 5.90 0.0159
PHYS 1 20.04 0.0000 20.04 0.0000 20.04 0.0000 20.04 0.0000

(1) Equation (8.13), (2) Equation (8.18), (3) Equation (8.14), (4) Equation (8.20)
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case, which is primarily due to the stability of the covariance-matrix estimate
V̂des(b̂). Because there is a large number of degrees of freedom f = 245 for an
estimate V̂des(b̂), the F-corrected tests do not contribute substantially to the
p-values of the original tests.

Although there is no controversy about the results from the alternative test
statistics in this analysis situation, there can be situations where the choice of an
adequate statistic is crucial. This is especially so if the number m of sample clusters
is small and the number of domains u is close to m. Then, some of the F-corrected
statistics can be chosen to protect against the effects of instability.

For a more detailed examination of the model fit, let us now calculate the fitted
proportions and the raw and standardized residuals for a residual analysis. These
are displayed in Table 8.6.

The observed and fitted proportions are close, except in the last three domains
where the largest raw residuals can be obtained. The standardized residuals in the
last two groups exceed the 5% critical value 1.96 from the N(0,1) distribution; so
the model fit is somewhat questionable for these domains. It should be noticed that
the fitted proportions and the residuals are independent of the parametrization of
the model.

It would be useful to consider briefly the logit analysis under the other analysis
options as a reference to the results from the design-based option. In this, we
are especially interested in the importance of the term SEX∗PHYS, describing
the interaction of SEX and PHYS, which appeared nonsignificant under the
design-based option. The results from the Wald tests are in Table 8.7.

The interaction of SEX and PHYS appears significant when ignoring the
clustering effect by using the unweighted SRS option. A more complex model is
thus obtained than under the design-based option. These results suggest further
warnings on ignoring the clustering effect even if it is not very serious as indicated
in the medium-sized domain design-effect estimates.

Table 8.6 Observed and fitted PSYCH proportions p̂j and f̂j with their standard errors,
and raw and standardized residuals (p̂j − f̂j) and êj for the logit ANOVA Model 1 under the
design-based option.

Domain SEX AGE PHYS p̂j s.e (p̂j) f̂j s.e (f̂j) (p̂j − f̂j) êj

1 Males –44 0 0.419 0.0128 0.419 0.0114 0.0000 0.0000
2 1 0.472 0.0145 0.482 0.0122 −0.0100 −1.270
3 45– 0 0.461 0.0178 0.453 0.0142 0.0082 0.771
4 1 0.520 0.0247 0.517 0.0167 0.0029 0.160
5 Females –44 0 0.541 0.0125 0.534 0.0115 0.0062 1.306
6 1 0.620 0.0270 0.597 0.0160 0.0222 2.012
7 45– 0 0.532 0.0236 0.569 0.0156 −0.0363 −2.073
8 1 0.700 0.0391 0.630 0.0199 0.0692 1.993
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Table 8.7 Wald tests X2(b) for the significance of the interaction
term SEX*PHYS in Model 2 under the design-based and unweighted
SRS analysis options.

Design-based Unweighted SRS

Term df X2
des p-value X2

bin p-value

SEX∗PHYS 1 2.39 0.1218 3.97 0.0463

Let us turn to the corresponding design-based analysis with a linear model for
the proportions of Table 8.2. In this situation, logit and linear formulations of an
ANOVA model lead to similar results because proportions do not deviate much
from the value 0.5. The main effects model (Model 1) is chosen, and results on model
fit, residuals, and on significance of the model terms, are close to those for the logit
model. But the estimates of the model coefficients differ and are subject to different
interpretations. For the logit model with the partial parametrization, an estimated
coefficient indicates differential effect on a logit scale of the corresponding class
from the estimated intercept being the fitted logit for the reference domain. And
for the linear model, an estimated coefficient indicates differential effect on a linear
scale of the corresponding class from the estimated intercept, which is now the
fitted proportion for the reference domain.

The linear model formulation thus involves a more straightforward interpreta-
tion of the estimates of the model coefficients. Under Model 1, these estimates are
as follows:

b̂1 = 0.5705 (Intercept)

b̂2 = −0.1172 (Differential effect of SEX = Males)

b̂3 = −0.0355 (Differential effect of AGE = −44)

b̂4 = 0.0650 (Differential effect of PHYS = 1).

The fitted proportion for falling into the upper psychic strain group is thus 0.57
for females in the older age group whose working conditions are less hazardous,
and for males in the same age group, 0.57 − 0.12 = 0.45. The highest fitted
proportion, 0.57 + 0.07 = 0.64, is for the older age group females doing more
hazardous work. Also, the fitted proportions are close to those obtained with the
corresponding logit ANOVA model.

8.4 LOGISTIC AND LINEAR REGRESSION

The PML method of pseudolikelihood is often used on complex survey data for logit
analysis in analysis situations similar to the GWLS method. But the applicability
of the PML method is wider, covering not only models on domain proportions of




