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Multilevel model

Hierarchical model

 Starting point: Population and the sample have a
natural multilevel or hierarchical structure

 Data has observational units (units of analyses, cases)
at every level of data

 Units at lower level are clustered, and these clusters
(or groups) are units at higher level

 Sample is representative at every level of data
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Examples of two-level data structure

Level 1 Level 2
Students Schools
Persons Households/Families
Employees Employers
Athletes Athletic club
Patients Clinics/Hospitals
Peers Peer groups

In longitudinal study:
Level 1: Measurement occasions
Level 2: Persons 5
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Multilevel analyses should be used
when:
 Data have a natural hierarchical/multilevel/nested

structure

 Data include variables at different levels

 Level 1 units are not statistically independent

 We are interested in the effects of data structure
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 Data have a natural hierarchical/multilevel/nested
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If multilevel analyses are not used
when they should be used

We may get incorrect results in:
 Coefficient estimates
 Standard errors of estimates
 Statistical tests
 Conclusions

And we loose information of how the data structure
influences the results.

=> We have to include the data structure in the
statistical model and analyses

We may get incorrect results in:
 Coefficient estimates
 Standard errors of estimates
 Statistical tests
 Conclusions

And we loose information of how the data structure
influences the results.

=> We have to include the data structure in the
statistical model and analyses
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Applications of multilevel analyses
 Variance component model
 Random intercept model
 Random coefficient model
 Modeling contextual (compositional) variables
 Complex level 1 and 2 variation
 Model for repeated measures
 Growth curve model
 Model for multivariate response data
 Model for binary responses and proportions
 Multiple membership model

 Variance component model
 Random intercept model
 Random coefficient model
 Modeling contextual (compositional) variables
 Complex level 1 and 2 variation
 Model for repeated measures
 Growth curve model
 Model for multivariate response data
 Model for binary responses and proportions
 Multiple membership model
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Artificial example
Data:

Schools: 5
Students: 5 x 10 = 50
Dependent variable: y
Explanatory variable: x2
Overall correlation: r(y,x2) = -0.51
Within-schools correlations: r(y,x2) = 0.86

Three regression lines:
1. “Normal” regression
2. Within-schools regression
3. Between-schools regression

Data:
Schools: 5
Students: 5 x 10 = 50
Dependent variable: y
Explanatory variable: x2
Overall correlation: r(y,x2) = -0.51
Within-schools correlations: r(y,x2) = 0.86

Three regression lines:
1. “Normal” regression
2. Within-schools regression
3. Between-schools regression
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13
1 3 5 7

X2

0

5

10

15

20

Y
Koulujen sisäiset regressiosuorat



UNIVERSITY OF JYVÄSKYLÄ

1 3 5 7

0

5

10

15

20

Koulujen sisäiset ja koulukeskiarvojen regressiosuorat

Within-schools and between-schools regression lines
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We can calculate three regression lines:

Within-schools, between-schools and total
regression lines

Which one is the correct one?

All are correct, but:
• we have to know which one we have

calculated,
• to make the correct interpretations

Which one is the correct one?

All are correct, but:
• we have to know which one we have

calculated,
• to make the correct interpretations
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2. Simple variance component model

Antero Malin
Helsinki 22.-23.5.2014
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Simple variance component model

 Variation between higher level units in mean
performance

 No explanatory variables
 ICC is estimate of the between-group variation

(and of statistical dependence between level-
one units)
– Intra-class correlation
– Intra-cluster correlation
– Intra-level-2 correlation
– Intra-school correlation
– Variance Partition Coefficient (VPC)

 Variation between higher level units in mean
performance

 No explanatory variables
 ICC is estimate of the between-group variation

(and of statistical dependence between level-
one units)
– Intra-class correlation
– Intra-cluster correlation
– Intra-level-2 correlation
– Intra-school correlation
– Variance Partition Coefficient (VPC)
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ijjij euy  0

yij is outcome variable

i is level 1 unit, i=1,…,nj

j is level 2 unit, j=1,…,J

is intercept of the model

eij is level 1 residual

uj is level 2 residual

Statistical model

3

yij is outcome variable

i is level 1 unit, i=1,…,nj

j is level 2 unit, j=1,…,J

is intercept of the model

eij is level 1 residual

uj is level 2 residual

0)cov(),0(~),0(~ 22 ijjeijuj euNeNu 
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ICC (VPC)

Total variance
is divided in two variance components:
between clusters
and within clusters

2
tot

2
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ICC:
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ICC and sample size
If ICC>0, efficient sample size is smaller than number of
observations (nominal sample size):

)1(1 



n

nJ
Neff

Neff efficient sample size
J number of cluster
n group size (constant in this example)
ρ ICC
J x n number of observations
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Neff efficient sample size
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n group size (constant in this example)
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Example: ICC and efficient sample size

Number of level 1 observations N=4500

A. Schools 150=J, students in every school 30=n

B. Schools 300=J, students in every school 15=n
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Efficient sample
size
J=150 J=300

ICC n=30 n=15

Example: ICC and efficient sample size

Number of level 1 observations N=4500

A. Schools 150=J, students in every school 30=n

B. Schools 300=J, students in every school 15=n

ICC n=30 n=15
0 4500 4500
0.1 1154 1875
0.2 662 1184
0.3 464 865
0.4 357 682
0.5 290 563
0.6 245 479
0.7 211 417
0.8 186 369
0.9 166 331
1.0 150 300
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Intra-cluster correlation ICC

 Is the correlation between the lower level units within higher
level units. It is not correlation between two variables.

 Range:

 If there is ICC, the lower level units are statistically
dependent, not statistically independent which is one of the
assumptions of ”traditional” statistical methods

 ICC means that lower level units are more or less
homogeneous

 ICC tells how much of the total variance is attributable to
the variation between higher level units

 If ICC increases, efficient sample size decreases

10  
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Example 1: Shool differences in reading literacy in
Finland (PISA 2000). Simple variance component model.

Statistics of reading literacy score:

Mean 549

SD 87.0

10

SD 87.0

Min 204

Max 838

Students 4859

Schools 154
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Statistical model

ijjij euy  0

yij is outcome variable: reading literacy score

i is level 1 unit: student, i=1,…,nj

j is level 2 unit: school, j=1,…,J

is constant of the model: overall mean of reading literacy score

uj is level 2 residual: school’s j deviation from the estimated overall
mean

eij is level 1 residual: student’s deviation from the school mean

yij is outcome variable: reading literacy score

i is level 1 unit: student, i=1,…,nj

j is level 2 unit: school, j=1,…,J

is constant of the model: overall mean of reading literacy score

uj is level 2 residual: school’s j deviation from the estimated overall
mean

eij is level 1 residual: student’s deviation from the school mean

0)cov(),0(~),0(~ 22 ijjeijuj euNeNu 

0

0̂

jûˆ
0 



UNIVERSITY OF JYVÄSKYLÄ

Example 1 (cont.): Finland
PISA 2000 data, Combined reading literacy score
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Example 1 (cont.): Finland
PISA 2000 data, Combined reading literacy score
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About 6.5 % of the total student variance in the
reading literacy score is attributable to the between-
school variation
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Example 1 (cont.): Finland
School means (deviations from overall mean)of the
combined reading literacy score with 95 %
confidence intervals in rank order
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Example 2: Shool differences in reading literacy in
Germany (PISA 2000). Simple variance component model.

Statistics of reading literacy score:

Mean 504

SD 98.9

15

SD 98.9

Min 143.1

Max 779.4

Students 4108

Schools 183
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Example 2 (cont.): Germany
PISA 2000 data, Combined reading literacy score

16



UNIVERSITY OF JYVÄSKYLÄ

2.4512ˆ8.5541ˆ 22  eu 

3.496ˆ
0 

551.0
0.10054
8.5541

2.45128.5541
8.5541

ˆˆ
ˆˆ

22

2









eu

u






Example 2 (cont.): Germany
PISA 2000 data, Combined reading literacy score
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Example 2 (cont.): Germany
School residuals of the combined reading literacy
score with 95 % confidence intervals in rank order
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3.

Random intercept model

3.

Random intercept model

Antero Malin
Helsinki 22.-23.5.2014
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Random intercept model

 Intercept is varying between clusters

 Regression lines are parallel, i.e. slope

(regression coefficient) is not varying

between clusters

2

Random intercept model
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Random intercept model:

yij is outcome variable

i is level 1 unit, i=1,…,nj
j is level 2 unit, j=1,…,J

is intercept of the model

is coefficient

eij is level 1 residual

uj is level 2 residual

ijijj

ijjijij

exu

euxy





10

10

)( 


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yij is outcome variable

i is level 1 unit, i=1,…,nj
j is level 2 unit, j=1,…,J

is intercept of the model

is coefficient

eij is level 1 residual

uj is level 2 residual

0)cov(),0(~),0(~ 22 ijjeijuj euNeNu 
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Example 3. Reading literacy and socio-economic index
(hisei) in Finland (PISA 2000).

Statistics of reading literacy score and hisei:

Reading
score

Hisei

Mean 549 50.1

5

Mean 549 50.1

SD 87.0 16.2

Min 204 16

Max 838 90

Students 4859 4859

Schools 154 154
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ijijj

ijijj

ijjijij
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Example 3 (cont.): Finland
PISA 2000 data, Combined reading literacy score
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Example 3 (cont): Finland

Testing statistical significance
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Example 3 (cont.): Finland
Separate regression lines for sample schools
are due to variation in the intercept:
Regression lines are parallel: ijj Hiseiu  10

ˆ)ˆˆ( 
)ˆˆ( 0 ju
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Estimated variance components for the null
model are:
Estimated variance components for the
model including predictors are:
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Example 3 (cont.): How much does the model (or hisei alone
in this example ) explain of the variance of reading literacy
score?

Null
model

Model with
predictors

Variance
explained

%
Between-school
variance

10

Between-school
variance 490.8 396.2 19.3

Between-student
variance 7087.5 6665.5 6.0

Total variance 7578.5 7061.7 6.8
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Example 4: Reading literacy and socio-economic index
(hisei) in Germany (PISA 2000).

Statistics of reading literacy score and hisei:

Reading
score

Hisei

Mean 504 49.9

11

Mean 504 49.9

SD 98.9 15.6

Min 143.1 16

Max 779.4 90

Students 4108 4108

Schools 183 183
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Example 4 (cont.): Germany
PISA 2000 data, Combined reading literacy score

ijijj
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Example 4 (cont.): Germany

Testing statistical significance
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ijj Hiseiu  10 )( 

Example 4 (cont.): Germany
Separate regression lines for sample schools
are due to variation in the intercept:
Regression lines are parallel:

)ˆˆ( 0 ju
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Example 4 (cont.): How much does the model (or hisei in
this case) explain of the variance of reading literacy score?

Null
model

Model with
predictors

Variance
explained

%
Between-school
variance 5541.8 4843.1 12.6

15

Between-school
variance 5541.8 4843.1 12.6

Between-student
variance 4512.2 4438.7 1.6

Total variance 10054.0 9281.8 7.7
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4. Random coefficient model

Antero Malin
Helsinki 22.-23.5.2014
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Random coefficient model

 Slopes (regression coefficients) are varying between

clusters

 Regression lines are not parallel!

 Usually the intercept is also varying between clusters

2

Random coefficient model

 Slopes (regression coefficients) are varying between
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Random coefficient model
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Example 5: Finland
PISA 2000 data, Combined reading literacy score
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Example 5 (cont.): Finland
Separate regression lines of sample schools

ijjjij Hiseiuuy 11100 )ˆˆ()ˆˆ(ˆ  
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Example 5 (cont.): Finland

Testing statistical significance

158.0ˆ 2
1 u

7

0:;0: 2
11

2
10  uu HH 

190.;72.12
1  p

 Variance estimate is not statistically significant.
We leave it out of the model
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Example 6: Germany
PISA 2000 data, Combined reading literacy score
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Example 6 (cont.): Germany
Separate regression lines of sample schools

ijjjij Hiseiuuy 11100 )ˆˆ()ˆˆ(ˆ  
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Example 6 (cont.): Germany

Testing statistical significance

7.36ˆ158.0ˆ 01
2
1  uu and 

10

00: 01
2
10  uu andH 

001.;2.782
2  p

 Variance estimates are statistically significant.
We keep them in the model
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5.
Modelling contextual and

compositional effect

Antero Malin
Helsinki 22.-23.5.2014
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Group level variables:
1. Aggregated variables: Value of the group
level variable is calculated from the individual
values of group members, i.e. group mean

Interesting question: Is there group effect, in
addition to the individual effect?

2. ”Real” group level variables, like shool’s
georaphical location or school size

NOTE: The value of the group level variable is
the same for all members of the group
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Compositional/Contextual effect
Compositional variable:

o Group level variable

o Usually aggregated variable

o It measures an aspect of the composition of
level 2 unit, i.e. of the school to which the
individual students belong.

How the outcome of individuals is affected by
their social contexts?
How the outcome of students is affected by the
social composition of the school?
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Example 7: The effect of socio-economic
background in Germany

Compositional variable: School mean of Highest
socio-economic index (AHisei)

Mean 49.9

4

SD 15.6

Min 29.2

Max 71.1

Schools 183
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Statistical model
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eij is level 1 residual
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Example 7 (cont.): Germany
PISA 2000 data, Combined reading literacy score
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Statistical significance

0:;0:

385.0..366.7ˆ

1110

1
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Example 7 (cont.):

7

0001.0p

=> Socio-economic background has statistically
significant contextual effect
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Example 7 (cont.): How much does the model (or hisei
and ahisei in this case) explain of the variance of reading
literacy score?

Null model Model with
predictors

Variance
explained %

Between-
school
variance

8

Between-
school
variance

5541.8 1427.4 74.2

Between-
student
variance

4512.2 4444.7 1.5

Total
variance 10054.0 5872.1 41.6



UNIVERSITY OF JYVÄSKYLÄ
Example 7 (cont.): Germany
PISA 2000 data, Combined reading literacy score

Red line: Regression of school mean literacy score on shool mean hisei
(ahisei)
Blue lines: Within-school regression lines of literacy score on hisei
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Example 8: Effect of school size in Germany

School size variable (Schsize) is scaled by
dividing the number of students in each school
by 100

Mean 6.79

10

SD 3.7

Min 0.5

Max 29.8

Schools 183
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Example 8 (cont.): Effect of school size on literacy
score
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ijjjij euschsizey  10 

Example 8 (cont.): Effect of school size on literacy
score
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Example 8 (cont.): Effect of school size on literacy
score

Red line: Model prediction
Blue dots: Empirical means
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ijjjjjij euschsizeschsizeschsizey  3
3

2
210 

Example 8 (cont): Effect of school size on literacy
score

14
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ijjjjjij euschsizeschsizeschsizey  3
3

2
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Example 8 (cont.): Effect of school size on literacy
score
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Example 8 (cont.): Effect of school size on literacy
score

Red line: Model prediction
Blue dots: Empirical means

16
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6.

Modelling variance structure

6.

Modelling variance structure
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Helsinki 22.-23.5.2014
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Modelling variance structure

 We can model the variation explicitly as a function of
explanatory variables.

 Variance does not have to be constant

Two examples:
1. Separate variances for subgroups at level 1
2. Variance is a function of continuous level 1

explanatory variable
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Example 9: Separate variances for subgroups

Gender difference in reading literacy in Germany

Statistics of reading literacy score:

Girls Boys All

Mean 518 490 504

3

Mean 518 490 504

SD 99.0 96.8 97.9

Min 143 172 143

Max 779 765 779

Students 2104 2004 4108

Schools 183 183 183
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Example 9 (cont.): Gender difference in reading
literacy in Germany

ijjijij eufemaley  10 

4
Girls are better in reading than boys
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Example 9 (cont.): We estimate separate variances
for girls and boys at both levels

Variable female=1 if girl,    0 if boy

Variable male=1 if boy,    0 if girl

5

2
2

2
2

2
1

2
1

221110

:boysfor varianceTotal

:girlsfor varianceTotal

)()(

eu

eu

ijjijjijij
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Example 9 (cont.): Separate variances for girls and
boys at both levels

maleeufemaleeufemaley ijjijjijij  )()( 221110 
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Example 9 (cont.): Testing the equality of variances

22
1

22
0 :;: uMuFuMuF HH  

022.;23.52
1  p

Between-school variances:

3.5065ˆˆ;4.5949ˆˆ 22
2

22
1  uMuuFu 

7

022.;23.52
1  p

Between-student variances within schools:

22
1

22
0 :;: eMeFeMeF HH  

037.;35.42
1  p

Results: Variances are not equal

7.4565ˆˆ;2.4145ˆˆ 22
2

22
1  eMeeFe 
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Example 10: Germany Variance is a function of
continuous level 1 explanatory variable

Level 2 variance depends on the individual level
predictor hisei

Statistics of hisei:

Mean 49.9

8

Mean 49.9

SD 15.6

Min 16

Max 90

n 4108
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Statistical model:

Level 2 variance function:
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Example 10 (cont): Level 2 variance depends on
the individual level predictor hisei

ijjjijjij euAHiseiHiseiuy 001110 )(  
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Example 10 (cont):

Testing statistical significance of variance
component:

0:;0: 2
11

2
10  uu HH 

351.0ˆ 2
1 u

11

0:;0: 2
11

2
10  uu HH 

013.;14.62
1  p

Result: Variance component is statistically significantly
different from 0
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Example 10 (cont): Level 2 variance depends on
the individual level predictor hisei
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Example 10 (cont.): ICC (or VPC, and now conditional) is
a function of hisei
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Example 10 (cont.): Within-school regression lines

in Germany
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7.

Interaction models

1

Antero Malin
Helsinki 22.-23.5.2014
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2 x 2 ANOVA model
Example 11: Is there any interaction between
gender and place of residence in Finland?

Predictors:
Female: Boys =0, Girls = 1
Urban: Rural areas = 0, Urban areas= 1

Empirical mean reading score:

2

Example 11: Is there any interaction between
gender and place of residence in Finland?

Predictors:
Female: Boys =0, Girls = 1
Urban: Rural areas = 0, Urban areas= 1

Empirical mean reading score:

Urban = 1 Rural = 0 All
Girls = 1 574 574 574
Boys =0 527 509 522

All 551 542 549
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Example 11 (cont.): Is there any interaction
between gender and place of residence in Finland?

Model with only main effects:

Gender difference is statistically significant.

Place of residence is not statistically significant.
3
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Example 11 (cont.): Interaction model, all effects
are statistically significant

184.57416.442-17.03464.49409.0985:girlsUrban

132.52617.03409.0985:boysUrban

573.59264.49409.0985:girlsRural

09.0985:boysRural

:spredictionModel





4
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Example 12: Is there gender difference in the effect of hisei
in Finland? Interaction of categorical and continuous
variables.

114.10.160-.2741:girlsforofEffect

.2741:boysforofEffect

:estimatestCoefficien

hisei

hisei

However: Difference between boys’ and girls’ estimates, i.e. -

0.160, is not statistically significant! 5
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About interactions:
1. Both variables are level 1 predictors

2. Both variables are level 2 predictors

3. One variable is level 1 predictor and another is

level 2 predictor

4. Interaction of more than 2 factors
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8.

Logistic regression model

8.

Logistic regression model

Antero Malin
Helsinki 22.-23.5.2014
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In logistic regression model:

 Reponse variable yij is binary (0 or 1)

 Predictors are continuous or categorical

 Level 1 variation is binomially distributed

 Level 2 variation is normally distributed

In logistic regression model:
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Outcome variable in the statistical model is
logit-transformation of the probability
that the response variable yij is 1:
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When we have estimated the model, we can
calculate the propabilities for each individual on
belonging to group with yij = 1
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Distributional assumption at level 1 can be:
• Binomial
• Extra Binomial, when Binomial distribution

assumption is relaxed. Use this if necessary!

Linearisation:
• 1st order approximation in the Taylor expansion
• 2nd order approximation in the Taylor expansion

This one gives greater accuracy. Use this!

Estimation type:
• MQL – marginal quasi-likelihood

This tend to underestimate the values of fixed
and random parameters , especially when nij is
small

• PQL – predictive quasi-likelihood. Use this!
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Example 13, German data
Read1bin is dichotomous variable:

Read1bin Description N

1 Good readers (about 34 % ) 1412

0 Other readers (about 66 %) 2696

Read1bin = 1 if read1 > 550
Read1bin = 0 if read1 < 550



UNIVERSITY OF JYVÄSKYLÄ

Binomial distribution,
1st order linearisation,
MQL
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Binomial distribution,
2nd order linearisation,
PQL
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Extra binomial distribution,
2nd order linearisation,
PQL
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