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Multilevel model

Hierarchical model

. Starting point: Population and the sample have a
natural multilevel or hierarchical structure

- Data has observational units (units of analyses, cases)
at every level of data

- Units at lower level are clustered, and these clusters
(or groups) are units at higher level

. Sample is representative at every level of data
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Examples of two-level data structure

Level 1 Level 2

Students Schools

Persons Households/Families
Employees Employers

Athletes Athletic club
Patients Clinics/Hospitals
Peers Peer groups

In longitudinal study:
Level 1: Measurement occasions
Level 2: Persons
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Multilevel analyses should be used
when:

Data have a natural hierarchical/multilevel/nested
structure

Data include variables at different levels
- Level 1 units are not statistically independent

. We are interested in the effects of data structure
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If multilevel analyses are not used
when they should be used

We may get incorrect results in:
m Coefficient estimates

m Standard errors of estimates
m Statistical tests

m Conclusions

And we loose information of how the data structure
Influences the results.

=> We have to include the data structure in the
statistical model and analyses
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Applications of multilevel analyses

Variance component model

Random intercept model

Random coefficient model

Modeling contextual (compositional) variables
Complex level 1 and 2 variation

Model for repeated measures

Growth curve model

Model for multivariate response data

Model for binary responses and proportions
Multiple membership model
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Artificial example

Data:
Schools: 5
Students: 5 x 10 = 50
Dependent variable: y
Explanatory variable: x2
Overall correlation: r(y,x2) = -0.51
Within-schools correlations: r(y,x2) = 0.86

Three regression lines:

1. “Normal” regression

2. Within-schools regression
3. Between-schools regression
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Overall scatterplot of data
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Regression line of Y on X2
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Scatterplot by schools
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Within-schools regression lines

Koulujen sisaiset regressiosuorat
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Within-schools and between-schools regression lines

Koulujen siséaiset ja koulukeskiarvojen regressiosuorat
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Within-schools, between-schools and total regression lines

Koko aineiston, koulujen sisaiset
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Within-schools, between-schools and total regression lines

Koko aineiston, koulujen
ja koulukeskiarvojen regressiosuorat
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We can calculate three regression lines:

Within-schools, between-schools and total
regression lines

Which one is the correct one?

All are correct, but:

 we have to know which one we have
calculated,

* to make the correct interpretations

17
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2. SImple variance component model

Antero Malin
Helsinki 22.-23.5.2014
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Simple variance component model

m Variation between higher level units in mean
performance

® No explanatory variables

m |CC is estimate of the between-group variation
(and of statistical dependence between level-
one units)

— Intra-class correlation

— Intra-cluster correlation

— Intra-level-2 correlation

— Intra-school correlation

— Variance Partition Coefficient (VPC)
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Statistical model

Vi =bo+uj +€

y; Is outcome variable

i is level 1 unit, i=1,...,nj
J is level 2 unit, j=1,...,J
b, is intercept of the model
e; Is level 1 residual

u; IS level 2 residual

u ~N(@Os?) e ~N(0s;?) coviue)=0
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ICC (VPC)

Total variance s 2

Is divided In two variance components:
between clusters s’
and within clusters s 2

2 2 2 2
St =S =S, +S,
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ICC:

Between-clusters variance component
Is divided by total variance

2 2

I = Su :Su

s’+s’ s?
IF:s?=0 = r =0
IF:s2=0 = r =1
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ICC and sample size

If ICC>0, efficient sample size is smaller than number of
observations (nominal sample size):

N, = Jxn
1+ (n=-Dr

N efficient sample size

J number of cluster

n group size (constant in this example)
p ICC

J X n number of observations

If r =0then N, =Jxn
If r =1then N, =J
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Example: ICC and efficient sample size
Number of level 1 observations N=4500
A. Schools 150=], studentsin every school 30=n
B. Schools 300=J], studentsin every school 15=n
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Example: ICC and efficient sample size
Number of level 1 observations N=4500
A. Schools 150=], studentsin every school 30=n
B. Schools 300=J, studentsin every school 15=n

Efficient sample
size

J=150 | J=300
ICC | n=30 | n=15

0 | 4500 | 4500
0.1 | 1154 | 1875
0.2 | 662 | 1184
0.3 | 464 865
0.4 | 357 682
0.5]| 290 563
0.6 | 245 479
0.7 | 211 417
0.8 | 186 369
0.9 | 166 331
1.0 | 150 300
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| ntra-cluster correlation |CC

» |sthe correlation between the lower level units within higher
level units. It is not correlation between two variables.
0<r <1
= Range:
= |f thereisICC, the lower level units are statistically
dependent, not statistically independent which is one of the
assumptions of "traditional’ statistical methods

= |CC meansthat lower level units are more or less
homogeneous

= |CCtells how much of thetotal varianceis attributableto
the variation between higher level units

» |f ICC Increases, efficient sample size decreases
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Example 1. Shool differencesin reading literacy in
Finland (PISA 2000). Simple variance component model.

Statistics of reading literacy score:

Mean 549
SD 87.0
Min 204
Max 838

Students 4859
Schools 154
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Statistical model
Yij = bo"'uj + 6

y; is outcome variable: reading literacy score

I is level 1 unit: student, i=1,...,nj

J is level 2 unit: school, j=1,...,J

b, is constant of the model: overall mean of reading literacy score

u;is level 2 residual: school’s j deviation from the estimated overall

~

mean b,

€; is level 1 residual: student’s deviation from the school mean b, +Q,

u ~N(@Os?) e ~N(s?) coviue)=0
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Example 1 (cont.): Finland
PISA 2000 data, Combined reading literacy score

=# Equations =10 x|
1‘&3(11!]. ~ N(XE, Q)

readl, = g ntercept

Py = 348.803(2.160) +u, +e

[0gy] N Q) - Q= [490.768(81.799) ]
[E n:-j-] ~NO, Q) : Q= ['-{:rﬂ'ﬁu{luilzﬁ}]

~2*loglikelihood(IGLS) = 57047.410(4859 of 4859 cazes 1n use)

Fontz | Subz | Hame | + | - | Add Term | Estimates | Monlinear ?Help Clear
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Example 1 (cont.): Finland
PISA 2000 data, Combined reading literacy score

. SI 4908
s?+sZ2 490.8+7087.5
_ 490.8 _ 0.065
7578.3

About 6.5 % of the total student variance in the
reading literacy score is attributable to the between-
school variation

13
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Example 1 (cont.): Finland

School means (deviations from overall mean)of the
combined reading literacy score with 95 %
confidence intervals in rank order

&l Graph display L .;IQ‘E'
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Example 2: Shool differencesin reading literacy in
Germany (PISA 2000). Simple variance component model.

Statistics of reading literacy score:

Mean 504
SD 98.9
Min 143.1
Max 7179.4

Students 4108
Schools 183
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Example 2 (cont.): Germany

PISA 2000 data, Combined reading literacy score

=l Equations

1‘&3{11!}. ~ N(XE, )

readl, = /i tercept

Pog =496.324(5.610) +u te

] TN Q) QT [5541.795(601.573)

g, “NO Q) ¢ Qe [4512.242(101.859) |

=10f x|

~2*laglikelihood(TGLS) = 46832.950(4108 ot 4108 cases 1n use)

Fonts | Subz  Mame + - | Add Term | Estimates | Monlinear ?Help

Clear

16
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Example 2 (cont.): Germany
PISA 2000 data, Combined reading literacy score

N

b, = 496.3

N

$2=55418 $2=4512.2

- S _ 55418
S?+s? 5541.8+4512.2
_ 5541.8 _ 0,551
10054.0

About 55.1 % of the total student variance in the
reading literacy score is attributable to the between-
school variation

17
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Example 2 (cont.): Germany

School residuals of the combined reading literac
score with 95 % confidence intervals in rank order

=% Graph display = |EI|E|
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3.

Random intercept model

Antero Malin
Helsinki 22.-23.5.2014




UNIVERSITY OF JYVASKYLA

Random intercept model

* [ntercept is varying between clusters

= Regression lines are parallel, i.e. slope
(regression coefficient) is not varying

between clusters
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Random intercept model

10
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Random intercept model:
Y = b0+bl><)(ij +U; +€
=(by+u;)+b;xx +€

y; Is outcome variable

I is level 1 unit, i=1,...,nj

J is level 2 unit, j=1,...,J
b, is intercept of the model
b, is coefficient

e; is level 1 residual

u; is level 2 residual

u ~N(@Os?) e ~N(Os;) covfusg)=0
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Example 3. Reading literacy and socio-economic index
(hisel) in Finland (PISA 2000).

Statistics of reading literacy score and hisal:

Reading Hisel
score

Mean 549 50.1
SD 87.0 16.2
Min 204 16
Max 838 90
Students 4859 4859
Schools 154 154
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Example 3 (cont.): Finland

PISA 2000 data, Combined reading literacy score

Yi =b,+b,;x Hiseiij +U; +6
= (b, +U;)+ b, xHisal; +€

:(b0+uj +qj)+b1>< Hiseiij

Neamons _Ioix
readl, ~ N(XB, Q)

readl, = gy ntercept + 1.174(0.077)hisel,

Bos =491.006(4.343) +u +e,,

] “NO Q) 2 Q= [396.150(69.887)]

eg,] "N Q) 5 Q7 [6665.530(138.822)

~2¥oglikelihood(IGLS) = 55637.020(4765 of 4859 cases inuse)

Fontz | Subs | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear
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Testing statistical significance

Example 3 (cont): Finland

1.174 se=0.077
H,:b, =0 ; H;:b;, #0
2=2334 ; p<.001

$2=2396.150, withse =69.887
H,:s2=0 ; H,:s?>0
c?=321 ; p<.001
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Example 3 (cont.): Finland

Separate regression lines for sample schools

are due to variation in the intercept: (b, +U;)
Regression lines are parallel: (b, +0,)+ b, x Hisei;

650

=10l |

B30+
10
590+
5701

5l

predicted y

5304
5104
490+

470 | I I I I I I I
10 20 2l 40 a0 B0 o sl 40
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Proportional reduction in variance component

Estimated variance components for the null
model are: S5, and s,

Estimated variance components for the
model including predictors are: S and s,

. . . 2 2 2
Proportional reduction in Ré B (§u(0) —§u(x)) _1_§u(x)
" o 2 o 2
!evel 2 variance component S S
IS:
. . . (S\Z _S\Z ) S\Z
Proportional reduction in 2 _ e ") _q_ e
H o 2 o 2
!evel 1 variance component S e0) S «0)
IS:
. . S
Proportional reduction in RZ =1-" '™

. . ot 2
total variance is: S tot(0)
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Example 3 (cont.): How much does the model (or hisel alone
In this example ) explain of the variance of reading literacy

score?

Null | Model with | 'anance
model | predictors explained
%

Between-school 490.8 306.2 19.3
variance
Between-student
variance 7087.5 6665.5 6.0
Total variance 75785 7061.7 6.8
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Example 4: Reading literacy and socio-economic index
(hisal) in Germany (PISA 2000).

Statistics of reading literacy score and hisal:

Reading Hisel

score
Mean 504 49.9
SD 98.9 15.6
Min 143.1 16
Max 779.4 90

Students 4108 4108
Schools 183 183
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Example 4 (cont.): Germany
PISA 2000 data, Combined reading literacy score
Y = b, + b, x Hiseiij +U; +6€
= (b, +u;)+ b, xHisei; +¢

= (b, +U; +€;)+b, xHisel,

=8 Equations ;|g|5|
1‘&3(11!3. ~ N(XE, ()

readl; = g antercept +0.726(0.076 Jhisei,
Py =460.582(6.465) +u, +e g,

g NO Q) Q0= [4843.145(528.299)]

o] N Q) Qe [4438.686(100.198)

~2¥laglikelihood(FGLS) = 46744.610(4108 0ot 4108 cases 1 use)

Fontz | Subz | Mame | + | - | Add Term | Estimates | Monlinear ?Help Clear
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Testing statistical significance

Example 4 (cont.): Germany

b, =0.726 with se = 0.076
H,:b, =0 ; H;:b, #0

c;/ =905 ; p<.001

$2=4843.1 se=528.3
H,:s2=0 ; H,:s?>0
c;/ =840 ; p<.001

13
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Example 4 (cont.): Germany

Separate regression lines for sample schools
are due to variation in the intercept: (b,+U;)

Regression lines are parallel: (b, +U;)+ b, x Hisei,

=8 Graph display

=101 x|
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Example 4 (cont.): How much does the model (or hisal In
this case) explain of the variance of reading literacy score?

Null | Model with | Yariance
model predictors explained
%

Between-school
variance 5541.8 4843.1 12.6
Between-student
variance 4512.2 4438.7 1.6
Total variance 10054.0 9981 8 25

15
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4. Random coefficient model

Antero Malin
Helsinki 22.-23.5.2014
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Random coefficient model

U Slopes (regression coefficients) are varying between

clusters

» Regression lines are not parallel!

1 Usually the intercept is also varying between clusters
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Random coefficient model

10

10
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Random coefficient model
Y :(b0+u0j)+(b1+ulj)xxlij + €

=Dy + by x X +Ug; +Up; x X + €

y; Is outcome variable

i islevel 1 unit, i=1,...,n; ; j islevel 2 unit, j=1,...,J
b, is intercept of the model

b, Is slope

e; Iis level 1 residual

uy is level 2 residual associated with intercept Db,

uy;is level 2 residual associated with slope 0

Uoj ~ N(O,s 50); U ~ N(O’Sfl); ST N(O,s e2)
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Example 5: Finland

PISA 2000 data, Combined reading literacy score
Yi = (b, + qu)+ (b, "‘ulj)>< Hiseilij + €

= bO + blx H|Se|1ij +uoj +u1j X Hlsellij +Qj

=8 Equations = _lol x|
1‘&3(11!.3. ~ N(XE, ()

readl, = gy ntercept + 7, hisel,
Boy =491.423(4.307) + 1y, ey,
By, =1.162(0.083) +u

MDJ.] K0 5] ¢ B |:56:5:.(~;61~}{516.641}

125 -3.886(5.884)  0.158(0 1:0}]

eg] N ) ¢ QT [6635.175(140.186)

~2¥oglikelihood(IGLE) = 55631.030(4765 of 4859 cages 1 uge)

Fonts | Subz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear
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Example 5 (cont.): Finland

Separate regression lines of sample schools

9ij = (b0+00j)+(b1+01j)x Hisel 1ij

ok Graph display _ ;IQIEI
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Testing statistical significance

Example 5 (cont.): Finland
s 2 =0.158

H,:s%=0 ; H,:s5>0

c/=172 ; p=.190

= Variance estimate is not statistically significant.
= We leave it out of the model
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Example 6: Germany
PISA 2000 data, Combined reading literacy score

Yi = (b0+u0j)+(bl+u1j)x HiSEilij + €
=Db,+ b, x Hisnei1ij +Ug; + Uy X Hiszei1ij +6,

o

1'&3(11!]. ~ N(XEB, Q) I
readl, = f ntercept + 7 husei,

B =459.377(7.535) +u i T

Py =0.785(0.089) +u |,

iy ~NQO, Q) : = |7553:340(1082.233)
i, 36.706(11.115)  0.364(0.145)

:E? n;}-] ~N(0; Q) © Q.= [.15{-;9_ Ti‘ii{lﬂﬂ_{i})l}]

~2*¥oglikelihood(7GLS) = 46726.980(4108 of 4108 cases in use) ==

Fontz | Subz | Hame | + | - | Add Term | Eztimates | Honlinear ?Help Clear




UNIVERSITY OF JYVASKYLA

Example 6 (cont.): Germany
Separate regression lines of sample schools

9ij = (b0+00j)+(bl+alj)x Hisei 1ij

¥ Graph display I ;lglﬂ
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Testing statistical significance

Example 6 (cont.): Germany

$2=0.158 and s, =-36.7

H,:s5=0 and s =0

c:=782 ; p<.001

= Variance estimates are statistically significant.
= We keep them in the model

10
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b.
Modelling contextual and
compositional effect

Antero Malin
Helsinki 22.-23.5.2014
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Group level variables:

1. Aggregated variables: Value of the group
level variable is calculated from the individual
values of group members, i.e. group mean

Interesting question: Is there group effect, in
addition to the individual effect?

2. "Real” group level variables, like shool’s
georaphical location or school size

NOTE: The value of the group level variable is
the same for all members of the group
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Compositional/Contextual effect

Compositional variable:
o Group level variable
o0 Usually aggregated variable

0 It measures an aspect of the composition of
level 2 unit, i.e. of the school to which the
Individual students belong.

How the outcome of individuals is affected by
their social contexts?

How the outcome of students is affected by the
social composition of the school?
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Example 7: The effect of socio-economic
background in Germany

Compositional variable: School mean of Highest
socio-economic index (AHisei)

Mean 49.9
SD 15.6
Min 29.2
Max /1.1
Schools 183
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Statistical model

y; = by + b, x Hisel; +g, x AHisel, +u; +€

y; is outcome variable

i 1s level 1 unit, i=1,...,nj

J is level 2 unit, j=1,...,J

b, is intercept of the model

b, is individual level coefficient of socio-economic background
0. is group level coefficient of socio-economic background

e; Is level 1 residual

u; IS level 2 residual

u ~N(@Os?) e ~N(0s;Z) coviue)=0
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Example 7 (cont.): Germany
PISA 2000 data, Combined reading literacy score

Vi = b,+ b, x Hiseiij +0, X AHiseij +U; +€

23 Equations CEX
readlz.j. ~ N{XE, Q)

readl, = gy intercept +0.628(0.077)hise1, + 7.366(0.385 jahiser,

B = 102.468(18.847) iy tey,

] TN Q) QLT [1427.413(170.978)

~2¥loglikelihood(IGLS) = 46543.900(4108 of 4108 cages in use)

Fontz Subs | Hame + - Add Term Estimates 'online: ?Help: Clear
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Example 7 (cont.):

Statistical significance
g, =7.366 withse =0.385

H,:9, =0 ; H,:g, #0
p < 0.0001

=> Socio-economic background has statistically
significant contextual effect
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Example 7 (cont.): How much does the model (or hisel
and ahisal in this case) explain of the variance of reading

literacy score?
Null model Model with Variance
predictors | explained %

Between-
school 5541.8 1427 .4 74.2
variance
Between-
student 4512.2 44447 1.5
variance
Total

10054.0 5872.1 41.6

variance
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Example 7 (cont.): Germany

PISA 2000 data, Combined reading literacy score

Red line: Regression of school mean literacy score on shool mean hisei
(ahisei)
Blue lines: Within-school regression lines of literacy score on hisei

=¥ Graph display [Z”E][E
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Example 8: Effect of school size in Germany

School size variable (Schsize) is scaled by
dividing the number of students in each school
by 100

Mean 6.79
SD 3.7
Min 0.5
Max 29.8
Schools 183

10
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Example 8 (cont.): Effect of school size on literacy
score
=¥ Graph display E”E|E|
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Example 8 (cont.): Effect of school size on literacy

score
y; =D, +0, xschsize, +u; +€

=¥ Fquations

readlz.j. ~ N{XE, )
readl, = g, intercept +6.574(1.362)schsize,
Doy =453.423(10.349) +uy, e,

0] “NO Q)2 = [4g84.445(532.614)]

[e4,] ~NO Q)+ Q.= [4512.568(101.869)]

~2*¥laglikelihood(IGLS) = 46811.030{(4108 of 4108 cases in use)

Fontz Subs | Hame + - | Add Term Estimates “lonlinear ?Hellﬂn Clear
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Example 8 (cont.): Effect of school size on literacy
score

Red line: Model prediction
Blue dots: Empirical means
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Example 8 (cont): Effect of school size on literacy
score

. . 2 . 3
Y; =D, +0, x schsize, +g, x schsize +g; x schsize] +u; + €

=¥ Equations

readlz.j. ~ N{XB, Q)

readl, = gy intercept +44.068(8.219 )schsize; +-2.835(0.791 Jschsize2, +
D.USI(U.DIQ)schsize%

By =336.084(23.507) +u, +e,

N ~N0, Q) : Q,= [3854.839(424.907)]

2] "N ) Q7 [4512.736(101.875)

~2¥oglikelihood(TGLS) = 46769.930(4108 of 4108 cases in use)

Fontz | Subs  Mame |+ | - | Add Term Estimates | onlinear ?Help- Clear

14




UNIVERSITY OF JYVASKYLA

Example 8 (cont.): Effect of school size on literacy
score

. . 2 . 3
Y; =D, +0, x schsize, +g, x schsize +g; x schsize] +u; + €

=¥ Graph display |Z| |E E|
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Example 8 (cont.): Effect of school size on literacy
score

Red line: Model prediction
Blue dots: Empirical means
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6.

Modelling variance structure

Antero Malin
Helsinki 22.-23.5.2014
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Modelling variance structure

m \We can model the variation explicitly as a function of
explanatory variables.

m Variance does not have to be constant

Two examples:
1. Separate variances for subgroups at level 1

2. Variance is a function of continuous level 1
explanatory variable
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Example 9: Separate variances for subgroups
Gender difference in reading literacy in Germany

Statistics of reading literacy score:

Girls Boys All
Mean 518 490 504
SD 99.0 96.8 97.9
Min 143 172 143
M ax 779 765 779
Students 2104 2004 4108
Schools 183 183 183
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Example 9 (cont.): Gender difference in reading
literacy in Germany
y; = b, +b,x female, +u; +¢

Sy — LEX
readlz}. ~ N{XE, )
readl; = g, intercept +19.658(2.173 female,
Doy =486.354(5.671) +up, te,

] ~NO Q) t Q= [5450.360(591.499)]

2y, "N Q)+ Q= [4423.501(99.857)]

~2%¥oglikelihood(IGLS) = 46751.890{4108 of 4108 caszes in use)

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlir

Girls are better in reading than boys
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Example 9 (cont.): We estimate separate variances
for girls and boys at both levels

Variable female=1 if girl, O if boy
Variable male=1 if boy, O if girl

y; = by + b, x femalg; +(u,; +¢;)x female+ (u,, +&,;)xmale

Total variancefor girls: 07, +02
Total variancefor boys: 62, + 02,
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Example 9 (cont.): Separate variances for girls and
boys at both levels

y; = b, + b, x female; + (u,; +¢;)x female+ (u,, +&,;)xmale

=¥ Equations [:”E|E|
rea;clll.j. ~ N(XE, )

readl; =486.477(5.493)intercept + g, female; + e, male, +u ;male,

By =19.196(2.545) +u, te,,

_ul_,.‘ SN, 0 ¢ Q= [5949.436(664.?12} }

5 5351.134(590.129) 5065.300(576.993)

21| ~N(O, @) : O, = |4145.215(133.541)
0 4565.706(150.988)

_E::‘ 2

~2*oclikelihood(T3LS) =46732.900(4108 of 4108 cases in use)

Fontz | Subs  MWame | + | - | Add Term  Estimates | | ined ?Help Clear
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Example 9 (cont.): Testing the equality of variances

Between-school variances:
S2=52=50494 ; S? =52 =5065.3
L2 2 . L2 2
HO'SuF =Swm Hl'SuFisuM
c.=523 ; p=.022
Between-student variances within schools:
S2=52=41452 ; SZ, =s%, =4565.7
. 2 2 . . 2 2
HO'SeF =Sem Hl'SeF %S M
c/=435 ; p=.037

Results: Variances are not equal
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Example 10: Germany Variance is a function of
continuous level 1 explanatory variable

Level 2 variance depends on the individual level
predictor hisei

Statistics of hiseir:

Mean 49.9
SD 15.6
Min 16
Max 90
n 4108
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Statistical model:

Y = b0+(b1+u1j)>< Hiseiij +0, X AHiseij +Uy; + €&
= b, +b,x Hisel; +g, x AHIsal, +U,; +Uu;; x Hisel; + &
= b, + b, x Hisel; +g, x AHisal, + (U, +Uu,; x Hisel; ) + &

Level 2 variance function:
S = Vvar(Uy; +U,; x Hisai,)

=S 5 +2xS o xhisdl; +s 7 x hisei?
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Example 10 (cont): Level 2 variance depends on
the individual level predictor hisel

Vi = b, +(b1+u1j)>< Hiseiij +0, X AHiszeij +Ug; + €&;

=¥ Equations [:”E|E|
rea;dll.j. ~ N(XE, ()

readl, = g intercept + g, hiser, + 7.260(0.381)ahise1,

Buy =107.323(18.852) +u, +e

By, =0.646(0.089) + i

uy| ~NQO, @) : Q= |2908.145(588.967)
-23.811(8.530)  0.351(0.141)

e, ] N0 Q) Q.7 [4376.907(100.808) |

~2¥laglikelihood(IGLE) = 46531.250{4108 of 4108 cases in use)

Fonts | Subsz | Hame + | - | Add Term Estimates | Honlinea ?HEHJ: Clear
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Example 10 (cont):

Testing statistical significance of variance

component:

s2 =0.351

c/=6.14 ;

Result: Variance component is statistically significantly

different from O

H,:s% >0

p=.013

11
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Example 10 (cont): Level 2 variance depends on
the individual level predictor hisel

Sy =S +2xS o xhisel, +5% x hisei
= 2908.1- 2x 23.8x hisei; +0.351x hisei;

=% Graph display
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Example 10 (cont.): ICC (or VPC, and now conditional) is
a function of hisei

_ S +SuX tSuX;

S S aX TS +S

~ 2908.1-23.8xhisei; +0.351x hisei;

~ 2908.1-23.8x hisdi; +0.351x hisei + 4376.9

=% Graph display |Z”E”E|
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Example 10 (cont.): Within-school regression lines

in Germany

& Graph display B =10 x|
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7.

Interaction models

Antero Malin
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2 X 2 ANOVA model

Example 11: Is there any interaction between
gender and place of residence in Finland?

Predictors:
Female: Boys =0, Girls = 1
Urban: Rural areas = 0, Urban areas= 1

Empirical mean reading score:

Urban =1 | Rural =0 All

Girls = 1 574 574 574
Boys =0 927 509 522
All 551 542 549
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Example 11 (cont.): Is there any interaction
between gender and place of residence in Finland?

Model with only main effects:

1‘eacll!.j. ~ N(XB, Q)
readl; = gy intercept +52.115(2.326)temale_1, + 8.628(5.012 jurban_1,

Boy =515.401(4.521) +u +e

0] ~NO Q) Q= [504.700(30.820) ]
[e0,] N Q) : Q= [6402254(132.001) ]

-2¥oglikelihood(IGLS Deviance) = 56567.216(4859 of 4859 cases in use)

Gender difference is statistically significant.

Place of residence is not statistically significant.
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Example 11 (cont.): Interaction model, all effects
are statistically significant

1'eadlz.j ~ N(XE, )

-16.442(5 388 female 1.urban L,
Loy = 509.098(4.960) + i« o +e 0

[u q;] ~N(O, Q) Q.= [501 286(30 333,}]
[e0,] “NO Q) Q7 [6300.725(131.763) ]

~2¥oglikelihood(IGLS Deviance) = 56557.914(4859 of 4859 cases n use)

Model predictions:

Rural boys: 509.098

Rural girls: 509.098 + 64.494 = 573.592

Urban boys: 509.098 +17.034 = 526.132

Urban girls: 509.098 + 64.494 +17.034-16.442 = 574.184
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Example 12: Is there gender difference in the effect of hisei
in Finland? Interaction of categorical and continuous

variables.

1‘eacll!.j. ~ N(XE, Q)
readl, = gy intercept +60.020(7.359)female_1; + 1.274(0.103 )hisey, +-0.160(0.140)female_1 hisei,
Boy =458.946(5.696) + u 5 T 20y

[g] ~NO Q)+ Q.= [132483(71.401)]

[e0,] N Q) ¢ Q7 [5975 539(124.526)]

~2¥oglikelihood(IGLS Deviance) = 55139.151(4765 of 4859 cases in use)
Coefficient estimates:

Effect of hisal for boys: 1.274
Effect of hisal for girls: 1.274-0.160=1.114

However: Difference between boys’ and girls’ estimates, i.e. -

0.160, is not statistically significant!
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About interactions:

1. Both variables are level 1 predictors

2. Both variables are level 2 predictors

3. One variable is level 1 predictor and another is
level 2 predictor

4. Interaction of more than 2 factors
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8.

L ogistic regression model

Antero Malin
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In logistic regression model:

= Reponse variable y;is binary (O or 1)
= Predictors are continuous or categorical
= Level 1 variation is binomially distributed

= Level 2 variation is normally distributed
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Outcome variable in the statistical model is
logit-transformation of the probability P;
that the response variable y;;is 1:

logit(p

ij) = Iog(pij /(1_pij))
=by+b, xx +...+u,

Yi ~ Bin(pij , nij)

var(y;

When we
calculate t
belonging

oij) — pij (1_pij)/nij
nave estimated the model, we can

ne propabilities for each individual on
to group with y; = 1
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Distributional assumption at level 1 can be:

 Binomial

e Extra Binomial, when Binomial distribution
assumption is relaxed. Use this if necessary!

Linearisation:

e 1st order approximation in the Taylor expansion

o 2nd order approximation in the Taylor expansion
This one gives greater accuracy. Use this!

Estimation type:

 MQL — marginal quasi-likelihood
This tend to underestimate the values of fixed
and random parameters , especially when n; is
small

 PQL - predictive quasi-likelihood. Use this!
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Example 13, German data

Read1bin is dichotomous variable:

1 Good readers (about 34 % ) 1412
0 Other readers (about 66 %) 2696

Read1bin = 1 if read1 > 550
Read1bin = 0 if read1 < 550
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Binomial distribution,
1st order linearisation,
MQL

readlbin. ~ Bimomial{denom... 7.
7 g

lﬁgit(g!.j) =ﬁ,jj.i11tercept + 0.666(0 OEI-I}feumle_l!} + 0 Ul:‘{:fj.{}ﬂ:‘r}llisei!}. +0.170(0 Ull}ﬂlliseij
By =-10.594(0.536) iy,
0] ~NO ) = Q= [0.665(0.106) ]

o A 3 _— = - p
1-31(1&3{1113115}. ﬁ!}.) ﬁ!.31[1 ,,h}.).- cleumq}.
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Binomial distribution,
2nd order linearisation,
PQL

readlbim; ~ Binomial(denom, )
lﬂgit(m}) =‘,{5’Dj.i11te1'c:ept + 0.746(0 {}_*}{}}feumle_lg + 0 Ulﬁ{ﬁ.{){}:‘r}llisei{? +0.192(0 Gli}alliseij
Ly = -11.943(0.590) +u 0

] “NO )2 Q= [074300.122)]

1.fﬂ1‘(1'eacllbi111}. gl.j) = g!}(l - fh}.).f.(lﬁllﬂllg}.




UNIVERSITY OF JYVASKYLA

Extra binomial distribution,
2nd order linearisation,
PQL

1‘&ﬂd1bi11!}. ~ Biumuial(deumu}r 7

logit(7,) = pyintercept + 0.747(0.086 ffemale_1, +0.016(0.003 hiser, +0.193(0.011)ahisei,
By =-12.004(0.589) +u,,
1] ~NO Q)+ Q= [o78500.120)]

1-’31‘(1’Eﬂ£11bi111}. g!.}.) =(0.907(0 {}j{}}g!}(l - ‘,.-h].);"deum%.
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