Ex. 5 Part I Fall 2013/ SOLUTIONS

1.1. a) a.1) $\mathrm{P}=1 / 6 \times 1 / 6=1 / 36$
a.2) $P=1 / 6$
a.3) $\mathrm{P}=0$ (impossible event)
b) 0.5565
c) $\mathrm{z}=0.405$
1.2. 100 voters $=>\mathrm{n}=100$ and $\mathrm{p}^{*}=0.55(=55 \%)$
a) 95% confidence limits for p can be obtained by:
$0.55 \pm 1.96 \sqrt{ } 0.55 \times 0.44 / 100<=>0.55 \pm 0.10$
Thus, the 95% confidence interval is: $0.45<\mathrm{p}<0.65$.
b) We want to be sure that according to the opinion poll the candidate will get more than 50% of the votes. Determinene the needed sample size (by using the assumption that p^{*} $=0.55$).
Thus, the estimation error Δ must be less than $55 \%-50 \%=5 \% ~(=0.05)$
95% confident: Carry out the calculations by using similar argumentation as in a) yielding
$1.96 \times \sqrt{ } 0.55 \times 0.45 / \mathrm{n}=0.05<=>V_{\mathrm{n}}=1.96 \times 0.5 / 0.05 \Rightarrow \sqrt{ } \mathrm{n}=19.6$
Thus: $\mathrm{n}=(19.6)^{2}$, leading to $\mathrm{n} \geq 385$ (too large due to some rounding: $\mathrm{n} \geq 381$ is the correct answer).
1.3. Two groups: A (treatment group) and B (control group) 100 people in each. Proportion of recovery

$$
\begin{array}{lll}
\mathrm{A} & 75 \% & (=\mathrm{p}(\mathrm{~A})) \\
\mathrm{B} & 65 \% & (=\mathrm{p}(\mathrm{~B}))
\end{array}
$$

Hypothesis: The treatment helps to cure the disease.
$\mathrm{H}(0): \mathrm{p}(\mathrm{A})=\mathrm{p}(\mathrm{B})$
$\mathrm{H}(1): \mathrm{P}(\mathrm{A})>\mathrm{P}(\mathrm{B}) \quad$ (one-tailed test)
Use normal approximation (z -transformation) to test $\mathrm{H}(0): \mathrm{p}(\mathrm{A})-\mathrm{p}(\mathrm{B})=0$.
Under $\mathrm{H}(0): \quad \mu=0$

$$
\begin{aligned}
\sigma & =\sqrt{ } \mathrm{pqq}(1 / \mathrm{N}(\mathrm{~A})+1 / \mathrm{N}(\mathrm{~B})) \\
& =\sqrt{ } 0.3 \times 0.7(1 / 100+1 / 100) \\
& =0.0684
\end{aligned}
$$

How to estimate p ? It is the weighted average of the observed proportions in the two groups:

$$
\begin{aligned}
& \mathrm{p}=(\mathrm{N}(\mathrm{~A}) \times \mathrm{p}(\mathrm{~A})+\mathrm{N}(\mathrm{~B}) \times \mathrm{p}(\mathrm{~B})) /(\mathrm{N}(\mathrm{~A})+\mathrm{N}(\mathrm{~B}))=(0.75+0.65) / 2=0.7 \\
& \mathrm{z}=(\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})) / \sigma=(0.75-0.65) / 0.0648=1.54
\end{aligned}
$$

a) $\alpha=0.05 \quad \&$ one-tailed test. The critical z-value $=1.645$.

Cannot reject $\mathrm{H}(0)$.
b) $\alpha=0.10 \&$ one-tailed test. The critical z -value $=1.28$.

Can reject $\mathrm{H}(0)$
Statistical conclusion: The serum is effective at a 0.10 level of significance.
1.4. Two sample polls of voters (different districts):

A 300 voters 56% in favor of the candidate
B 200 voters 48% in favor of the candidate
a) Is there a difference between the districts?
$\mathrm{H}(0): \mathrm{p}(\mathrm{A})=\mathrm{p}(\mathrm{B})$
$\mathrm{H}(1): \mathrm{p}(\mathrm{A}) \neq \mathrm{p}(\mathrm{B})$ (two-tailed test)
Use the same formulas as earlier:
$\sigma=\sqrt{ } \mathrm{p} q(1 / \mathrm{N}(\mathrm{A})+1 / \mathrm{N}(\mathrm{B}))=\sqrt{ } 0.528 \times 0.472(1 / 300+1 / 200)=0.0456$
Here: $\quad \mathrm{p}=(\mathrm{N}(\mathrm{A}) \mathrm{xp}(\mathrm{A})+\mathrm{N}(\mathrm{B}) \mathrm{xp}(\mathrm{B})) /(\mathrm{N}(\mathrm{A})+\mathrm{N}(\mathrm{B}))$

$$
=(300 \times 0.56+200 \times 0.48) / 500
$$

$$
=0.528
$$

$$
\mathrm{q}=1-\mathrm{p}=0.472
$$

$$
\mathrm{z}=(\mathrm{p}(\mathrm{~A})-\mathrm{p}(\mathrm{~B})) / \sigma=(0.560-0.480) / 0.0456=1.75
$$

Conclusion: Cannot reject $\mathrm{H}(0)$.
b) Test whether the candidate is preferred in district A .
$\mathrm{H}(0): \mathrm{p}(\mathrm{A})=\mathrm{p}(\mathrm{B})$
$\mathrm{H}(1): \mathrm{p}(\mathrm{A})>\mathrm{p}(\mathrm{B})$ (one-tailed test)
Critical z-value $(5 \%)=1.645$
Conclusion: $\mathrm{H}(0)$ is rejected.
1.5. 6 tosses of a coin gives the result " 6 Heads". Can we conclude that the coin is not fair?
$\mathrm{p}=$ probability of "Heads" in a single toss.
Use Binomial distribution with 6 repetitions, with $\mathrm{p}=0.5(=\mathrm{H}(0))$
$\mathrm{P}(6$ Heads $)=1 / 64=0.01562$
$(\mathrm{P}(5$ or 6 Heads $)=7 / 64=0.1095)$
a) One-tailed test.

We can reject $\mathrm{H}(0)$ at a 0.05 level but not at a 0.01 level of significance.
b) Two tailed test. Now the critical region is symmetric ($=\{0$ or 6 Heads $\}$)
$\mathrm{P}(0$ or 6 Heads $)=1 / 64+1 / 64=0.03125$.
We can reject $\mathrm{H}(0)$ at a 0.05 level but not at a 0.01 level of significance.

