4.1. The estimated standard deviation is $\mathrm{s}=0.05$ (seconds). Determine n such that the estimation error for the mean reaction time is less than 0.01.
a) with 95% confidence. Start by using normal distribution and z-value $=1.96$.

The estimation error is

$$
\pm 1.96 \mathrm{~s} / V_{\mathrm{n}}=1.96 \times 0.05 V_{\mathrm{n}}(=\Delta)
$$

Want: $\Delta \leq 0.01 . \mathrm{n}$ can be solved from the equation (you may use an inequality as well):

$$
0.01=1.96 \times 0.05 / \sqrt{ } \mathrm{n} \Rightarrow V_{\mathrm{n}}=1.96 \times 0.05 / 0.01 \Rightarrow \sqrt{ } \mathrm{n}=9.8
$$

Thus: $\mathrm{n}=(9.8)^{2}$, leading to $\mathrm{n} \geq 97$.
REMARK: Since $n>30$, the use of the normal distribution is justified.
b) with 99% confidence. Repeat he previous calculations by using the z-value $=2.58$.

Thus, n can be solved from the equation (you may use an inequality as well):

$$
0.01=2.58 \times 0.05 / \sqrt{n} \Rightarrow \sqrt{n}=2.58 \times 0.05 / 0.01 \Rightarrow \sqrt{n}=12.9
$$

Thus: $\mathrm{n}=(9.8)^{2}$, leading to $\mathrm{n} \geq 167$.
4.2. The estimated standard deviation is $s=100$ (hours). Determine n such that the estimation error for the mean life time of the lamps is less than a) 20 hours, b) 10 hours. a) Repeat the argumentation used in 4.2 . with $\Delta=20$, yielding

$$
20=1.96 \times 100 / V_{\mathrm{n}} \Rightarrow V_{\mathrm{n}}=1.96 \times 100 / 20 \Rightarrow V_{\mathrm{n}}=1.96 \times 5=9.8
$$

Thus: $\mathrm{n}=(9.8)^{2}$, leading to $\mathrm{n} \geq 97$.
b) Now $\Delta=10$. Thus:

$$
10=1.96 \times 100 / V_{n} \Rightarrow V_{n}=1.96 \times 100 / 10 \Rightarrow V_{n}=1.96 \times 10=19.6
$$

Thus: $\mathrm{n}=(19.6)^{2}$, leading to $\mathrm{n} \geq 385$
4.3. 40 tosses of a coin $\Leftrightarrow n=40$. Result 24 heads. Determine the confidence limits for $p=P\left(\right.$ Head) by using the estimate $p^{*}=24 / 40=0.6$. (p^{*} is used her ONLY for typographical convenience)
a) 95% confidence limits: $40>30 \Rightarrow$ we may use the z-value 1.96

The confidence limits are:

$$
\mathrm{p}^{*} \pm 1.96 \sqrt{ } \mathrm{p}^{*}\left(1-\mathrm{p}^{*}\right) / \mathrm{n} \ll>0.6 \pm 1.96 \sqrt{ } 0.6 \times 0.4 / 40 \ll 0.6 \pm 0.15
$$

Thus, the 95% confidence interval is: $0.45<p<0.75$.
b) 99% confidence. Repeat the calculations above by using the z -value $=2.58$.

We get $0.6 \pm 2.58 \sqrt{ } 0.6 \times 0.4 / 40<=>0.6 \pm 0.23$
Thus, the 99% confidence interval is: $0.37<p<0.83$.
4.4. 100 voters $=>\mathrm{n}=100$ and $\mathrm{p}^{*}=0.55(=55 \%)$
a) 95% confidence limits for p can be obtained by repeating the calculation in 4.4. with $\mathrm{n}=100$ and $\mathrm{p}^{*}=0.55$ yielding

$$
0.55 \pm 1.96 \sqrt{ } 0.55 \times 0.44 / 100<=>0.55 \pm 0.10
$$

Thus, the 95% confidence interval is: $0.45<\mathrm{p}<0.65$.
b) 99% confidence. Repeat the calculations above by using the z-value $=2.58$.

We get $0.55 \pm 2.58 \sqrt{ } 0.55 \times 0.45 / 100<=>0.55 \pm 0.13$
Thus, the 99% confidence interval is: $0.42<\mathrm{p}<0.68$.
4.5. Observed mean $=1570, \mathrm{~s}=120$.
$\mathrm{H}_{\mathrm{o}}: \mu=1600, \mathrm{H}_{1}: \mu \neq 1600 \quad(\mathrm{n}=100)$.
Two-tailed test. Significance level $\alpha=0.05 . \mathrm{n}=100 \Rightarrow$ may use normal distr. => Critical values ± 1.96
Under H_{0} we have: $\mathrm{z}=(\mathrm{m}-1600) /(120 \times 10)=(1570-1600) / 12=-2.50$ (within the critical region). Conclusion: We reject H_{o} at a 0.05 significance level.
$\alpha=0.05$ Critical values ± 2.56. Now the observed value $=-2.50$ is not within the critical region. $=>$ We cannot reject H_{o} at 0.01 significance level.
4.6. Suppose two classes come from two populations having the respective means μ_{1} and μ_{2}. Test

$$
\mathrm{H}(0): \mu_{1}=\mu_{2} \text { against } \mathrm{H}(1): \mu_{1} \neq \mu_{2} \text { (two-tailed test) }
$$

Observed $\mathrm{m}_{1}=74 \quad\left(\mathrm{n}_{1}=40\right)$ and $\mathrm{s}_{1}=8$

$$
\mathrm{m}_{2}=78 \quad\left(\mathrm{n}_{2}=50\right) \text { and } \mathrm{s}_{2}=7
$$

$H(0)$ true: The estimated variance of the test statistic $m_{1-} m_{2}$ is

$$
s=\sqrt{ }\left(8^{2} / 40+7^{2} / 50\right)=1.606
$$

=> the test statistic is

$$
z=(74-78) / 1.606=-2.49
$$

a) $\alpha=0.05$ Critical values of z are ± 1.96. Thus, there is a statistically significant difference in the performance of the two classes at the level 0.05
b) $\alpha=0.01$ No statistically significant difference at the level 0.01 .

