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Design-based calibration methods for 

domain estimation to be discussed 

Traditional model-free calibration MFC 

 Deville J.-C. and Särndal C.-E. (1992), Särndal C.-E. (2007) 

 Deville J.-C., Särndal C.-E. and Sautory (1993)  (CALMAR I,II,...) 

 Estevao & Särndal (1999, 2004), Lehtonen & Veijanen (2009) 
 

Model-assisted calibration MC 

 Lehtonen & Veijanen (2012, 2016) 

 Wu & Sitter (2001), Montanari & Ranalli (2005) (Model calibration) 
 

Hybrid calibration HC 

 Lehtonen & Veijanen (2015) 

 Montanari & Ranalli (2009) (Multiple model calibration) 
 

Two-level hybrid calibration HC2 

 Lehtonen and Veijanen (2017)  
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Some key properties  
(under complete response) 
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Study 
variable y 

Estimator 
type 

Models Expected gain 

MFC continuous Direct 

No explicit 
model 
statement 

(Implicit linear 
fixed-effects 
model) 

Multi-purpose weighting 

Coherence with published 
statistics 

MC 
continuous 

binary 

polytomous 

count 

Indirect 

(essentially) 

Explicit model 
statement  

GLMM family 
e.g. logistic 
mixed model 

Accuracy improvement 

HC 
Accuracy improvement (MC part)  
Partial coherence (MFC part) 

HC2 
Same as HC1 and more: 
Reduction of instability of MFC 
part in small domains 

 



Questions of interest 

Relative design-based properties of MFC, MC, HC and HC2 
Accuracy properties 

Distributional properties of calibrated weights 
 

Comparison with model-based SAE 

 Design bias and accuracy of model-assisted calibration  

vs. model-based EB method 
 

Main interest: What happens in minor domains  

(with small domain sample size)? 

 

Empirical framework  

Design-based simulation experiments  

 Real population data 
 Mixed models 
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Target parameters 
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Sample data 
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Auxiliary data 
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1

0

, 1,...,  with known vector value for

We assume access to unit - level auxiliary data for variables 

    (

 every :

We usually add a

,..., )    

1 in the ve value 

For estimation purpose
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s the sample data and auxiliary data 

are merged at the unit level by using unique identifiers 

that are assumed available for both data sources

This option is available in increasing number of 

statical infrastructures



Assisting mixed models 
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Calibration weighting system - 1 
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 calibration weight for element 

Calibration equations for single-level calibration 

methods (MFC, MC and HC) for domains
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   generic calibration vector 
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NOTE: Distance measure in (3) corresponds to GREG weighting



Calibration weighting system - 2 
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Calibration vectors for single-level 
methods 
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Two-level hybrid calibration - 1 
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Two-level hybrid calibration - 2 
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(1)

2 (1)

(2) (2)

Minimize function
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Estimators of domain proportions 
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Calibration estimators of domain proportions
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or as in (10)  



Model-based EB predictor 

Risto Lehtonen 
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1

EB estimator of domain totals:
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SAE: see Rao & Molina (2015) Small Area Estimation. 

2nd Ed. Wiley.



Some known differences 
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Design-based 
calibration estimators 

Model-based 
EB predictor 

Design 
bias 

(Nearly) design unbiased 
even if model is wrong 

Design biased under 
model mis-specification 

Precision 
(Variance) 

Variance may be large  
for small domains 

Variance can be small 
even for small domains 

Accuracy 
(MSE) 

MSE = Variance  
(or nearly so) 

MSE = Variance  
+ squared bias 
Can be large if bias 
dominates 

 



EXAMPLE: Poverty rate for regions 

Design-based simulation experiment with real data 

Fixed finite population of about 600,000 persons 

 Western Finland 

 Register databases of Statistics Finland 

Regional hierarchy: NUTS4 (LAU1) regions within NUTS3 

regions 

 Domains of interest: 36 NUTS4 regions 

 Higher level regions: 7 NUTS3 regions 
 

SRSWOR sampling of n = 2000 persons 

Limited simulation experiments 
Calibration methods: K=1000 simulated samples 

Weight distributions: K=100 simulated samples 
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Variables 

Study variable y: 

 Binary indicator with values 1=in poverty, 0=otherwise 

 European Union definition, one of the AROPE indicators: The poverty indicator 

 shows when a person’s equivalized income is smaller than or equal to the poverty 

 threshold, 60% of the median equivalized income in the population 

 Equivalized income variable was taken from taxation registers  

 Overall poverty rate in population: 14.3% 

  lowest(NUTS4): 9.9%, highest(NUTS4): 22.4%  
 

Auxiliary x-variables 

 Labour force status (3 classes) 

 Gender (2 classes)  

 Age group (3 classes) 

 We generated five indicator variables for the x-vector  
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Estimators 
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Target parameters: At-risk-of poverty rate in dom

 /  

ˆwhere , 

ains

Weights

1,...,3

  

6

d

d

d d d

d k kk U

dCAL HT dCAL d

dCAL dk kk s

dk

p t N

t y y

p t N

t w y d

w









 





are method specific as in (6) or in (10)

Model-assisted estimators use logistic mixed model

ˆEstimators  are of HT type (11) 
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Quality measures of estimators 

Risto Lehtonen 
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Absolute relative bias (ARB) of poverty rate estimate: Table 1
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Table 1 Average absolute relative bias (ARB) (%) of HT type calibration 
estimators of poverty rate in domains in three domain sample size classes 

 

Estimator 
Assisting model & calibration 

scheme 

Expected domain sample size 

All Minor 
<25 

Medium 
25-50 

Major 
>50 

Direct estimators 

Model-free 
calibration 

NUTS4  1 5(1, ,..., )  k k kx x z  1.2 1.2 0.6 1.1 

Indirect (Semi-direct) estimators 

Model: ( ) exp( ) / (1 exp( ))
m k k d k dd

E y u u u    x β x β , 
1 2 3 4 5(1, , , , , )  k k k k k kx x x x x x  

Model MC 
calibration 

NUTS4 ˆ(1, )k ky z  1.3 1.2 0.6 1.2 

Model: ( ) exp( ) / (1 exp( ))
m k k d k dd

E y u u u    x β x β , 
3 4 5(1, , , )  k k k kx x x x  

Hybrid HC 
calibration 

NUTS4 1 2
ˆ(1, , , )k k k ky x x z  1.3 1.3 0.5 1.2 

Hybrid HC2 
calibration 

NUTS4 
(1) ˆ(1, )k ky z  

1.5 1.5 0.6 1.4 
NUTS3 

(2)

1 2( , )k k kx x z  
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Table 2 Average relative root mean squared error (RRMSE) (%) of HT type 
calibration estimators of poverty rate in domains in three domain sample size 
classes 

 

Estimator 
Assisting model & calibration 

scheme 

Expected domain sample size 

All Minor 
<25 

Medium 
25-50 

Major 
>50 

Direct estimators 

Model-free 
calibration 

NUTS4  1 5(1, ,..., )  k k kx x z  61.1 40.4 20.1 47.3 

Indirect (Semi-direct) estimators 

Model: ( ) exp( ) / (1 exp( ))
m k k d k dd

E y u u u    x β x β , 
1 2 3 4 5(1, , , , , )  k k k k k kx x x x x x  

Model MC 
calibration 

NUTS4 ˆ(1, )k ky z  54.1 37.6 19.8 43.0 

Model: ( ) exp( ) / (1 exp( ))
m k k d k dd

E y u u u    x β x β , 
3 4 5(1, , , )  k k k kx x x x  

Hybrid HC 
calibration 

NUTS4 1 2
ˆ(1, , , )k k k ky x x z  58.0 39.1 20.1 45.4 

Hybrid HC2 
calibration 

NUTS4 
(1) ˆ(1, )k ky z  

54.2 38.1 20.2 43.3 
NUTS3 

(2)

1 2( , )k k kx x z  

 



Summary of results on calibration 

Design bias: All estimators are nearly design unbiased 

Design accuracy 

Major domains: All estimators show pretty similar accuracy 

 Minor and medium-sized domains: 

Model-assisted methods outperform direct model-free calibration 

 Model-assisted calibration shows best accuracy and is preferred 

 Hybrid calibration offers coherence property for selected  

x-variables but can suffer from instability in small areas  

 Two-level hybrid calibration accounts for the instability and can 

provide a good compromise if coherence is required for some x-

variables 

NOTE: Preliminary results on Hájek type estimators (12) indicate that 

accuracy differences to HT type methods are small and exist in 

small domains and are systematically in favour of Hájek methods 
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Distributional properties of calibrated weights 

Problems of practical concern in model-free calibration: 

 Possible large variation of weights 

 Weights smaller than one 

 Positive but extremely small weights 

 Negative weights 

To what extent model-assisted calibration methods can help? 

Small simulation experiment: 

 100 SRSWOR samples of size 2,000 elements from U  

Reporting: 

 Distribution of weights by domain size (log scale) - Figure 1 

 Medians of maximum interdecile range of calibrated weights in 

 domain sample size classes - Table 3 
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Fig. 1. Distribution of weights by domain size 
100 simulated SRSWOR samples, n=2000 
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Table 3. Median of maximum interdecile range of calibrated weights 
over 100 simulations in three domain sample size classes. 

Method 
Expected domain sample size 

Minor 

<25 

Medium 

25-50 

Major 

>50 

Model-free calibration MFC 1620 673 210 

Model-assisted calibration MC 984 418 172 

Single-level hybrid calibration HC 1415 665 245 

Two-level hybrid calibration HC2 780 430 214 

 

NOTE: Maximum of interdecile range over the 100 simulations is first computed 

for each domain and the median of these is then computed in each domain 

sample size class.  

 



Summary of distributional properties 

Model-free calibration MFC shows worst performance 

Model-assisted calibration MC stabilizes substantially the distribution 

of weights, in small domains in particular 

Model-assisted calibration MC and two-level hybrid calibration HC2 

indicate best weight performance 

But: negative weights still remain 

Can we live with that? 

Rather use other solutions?  

-- 

Wu C. and Lu W.W. (2016) Calibration weighting methods for complex 

surveys. International Statistical Review 84, 79-98. 

Gelman A. (2007) Struggles with survey weighting and regression modeling. 

Statistical Science 22, 153-164. 

Gelman: “Survey weighting is a mess.”   
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Table 4 Average absolute relative bias (ARB) (%) and average relative 
root mean squared error (RRMSE) (%) of model-assisted calibration 
estimator MC and model-based EB predictor of poverty rate in domains 
in three domain sample size classes 

 Bias: ARB (%) Accuracy: RRMSE (%) 

 

Estimator 

Expected domain sample size Expected domain sample size 

Minor 
<25 

Medium 
25-50 

Major 
>50 

Minor 
<25 

Medium 
25-50 

Major 
>50 

Model: 
exp( )

( )
1 exp( )

k d
m k d

k d

u
E y u

u

 


 

x β

x β
, 

1 2 3 4 5(1, , , , , )  k k k k k kx x x x x x  

Design-based calibration estimator 

Model MC 
calibration 

1.3 1.2 0.56 54.1 37.6 19.8 

Model-based small area estimator 

EB estimator 16.2 11.1 9.0 21.7 18.4 16.3 

 



Relative error of MC and EB estimators  

in a certain large domain 

Distribution of relative error 

 

of design-based model assisted 

calibration MC estimator of poverty 

rate in large domain 64 

 

NOTE  

Nearly design unbiased 

Outperforms EB in design bias  

 

 

Distribution of relative error  

 

of model-based EB estimator of poverty 

rate in large domain 64 

 

NOTE 

Design biased 

Outperforms MC in design accuracy 
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