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Some design-based calibration 

approaches 

 Model-free calibration MFC 

Deville & Särndal (1992) 

Lehtonen & Veijanen (2009) 
 

 Model calibration MC 

Wu & Sitter (2001) 

Lehtonen & Veijanen (2012, 2016) 
 

 Hybrid calibration HC 

Combination of MFC and MC 

Lehtonen & Veijanen (2014, 2015) 
 

 Multiple and ridge model calibration.  

Montanari & Ranalli (2009) 
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TAXONOMY: Statistical calibration methods in survey statistics 
 Model-free calibration 

MFC 
Model calibration  

MC 
Hybrid calibration  

HC 
Weight 
calibration  

Calibration to reproduce 
known population totals 
of auxiliary x-variables  

Calibration to population 
total of y-variable values 
predicted by a model  

Combination of MC and 
MFC, depending on 
modeling and coherence  
requirements 

Typical study 
variable 

Continuous Continuous, binary, polytomous, count 
 

Typical target 
parameters 

Totals, means Totals, means, proportions, cell frequencies  
More complex statistics e.g. poverty indicators 

Model 
specification 

No explicit model 
statement 
Linear relationships 

Explicit model statement. Non-linear relationships  
e.g. Nonlinear regression models 
Generalized linear (mixed) models 

Level of 
auxiliary data 

Aggregate level Unit level Unit level (MC part) 
Aggregate (MFC part) 

Main aims 
& 
properties 

“Multi-purpose” 
weighting 
 

Coherence with published 
statistics 
 

Efficiency improvement 
 

Reduction of coverage 
and non-response biases 

"Single-purpose" 
weighting 
 

Efficiency improvement 
 

Reduction of coverage 
and non-response biases 

"Single-purpose" 
weighting 
 

Efficiency improvement  
 

Coherence with published 
statistics 
 

Reduction of coverage 
and non-response biases 

 

 

 



Calibration estimators for domain totals 
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Calibration for model-free calibration  
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General case 
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Model calibration equation: Semi-direct 
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EXAMPLE of assisting model in MC and HC:  

Linear mixed model 
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EXAMPLE of assisting model in MC and HC: 

Logistic mixed model 

2

2
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Model calibration equation: Semi-indirect 
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Hybrid calibration equation: Semi-direct 
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Two-level hybrid calibration equation - 1 
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Two-level hybrid calibration equation - 2 

16 

 
 

  

  



 
     
 

  

* *

0

* * *

0

2

* * (1)

1

MC part: Define extended predictions and x-variables 

and new z-vector:

ˆ ˆ    and 1, ,  0 otherwise

ˆ   ( , )    

Minimize function

d d d

k k k d

k k k

k k

k k k

k r k r k Uk

y y x k s

x y

w a
f w w

a

z

λ z z
 



 

 
 

 



  

 



 

(2) (2)

2

*

Two-level HC estimator of domain total  is given by:

ˆ      ,  1,...,

d d

d

d d

k k k

k r k R

d k

k U

d k k k k

k r k s

w

t y

t w y w y d D

λ z z



EXAMPLE 1: Domain totals 
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Assisting models in MC and HC 
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Estimators 
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Estimators for domain totals 
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Comparison scenario 1 

 Accuracy comparison of design-based direct 

estimators and semi-direct estimators 
 

 HT against calibration methods 
 

 Model-free calibration MFC against model 

calibration MC 
 

 Effects to hybrid calibration HC? 
 

 NOTE: Information supply 
 MFC and MC: Supply of same auxiliary information 

 HC: Supply of more auxiliary information relative to  

MFC and MC  
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Table 1 Mean relative root mean squared error (RRMSE) (%) of design-
based estimators of domain totals over domain sample size classes. 

 

Estimator 

 

Assisting model & domain-level 
calibration scheme 

Expected domain sample size 

Minor 
13-20 

Medium 
20-50 

Major 
>50 

Direct estimators 

HT None 24.00 13.23 7.59 

Model-free 
calibration 

Calibration: 
1 2(1, , )  k k kx x z    5.90   2.96 1.70 

Semi-direct estimators 

Model: 0 1 1 2 2 ,  , 1,...,40k k k d k dy x x u k U d           

Model 
calibration 

Calibration: ˆ(1, )k ky z    5.66   2.94 1.70 

Hybrid 
calibration 

Calibration: 
3

ˆ(1,x , )k k ky z    4.19   2.08 1.22 

 



Conclusions for Scenario 1 

 Calibration improves accuracy substantially 

over HT 
 

 Under same auxiliary information supply, 

semi-direct model calibration MC outperforms 

direct model-free calibration MFC in minor 

domains 
 

 Under increased information supply for MFC 

part of semi-direct hybrid calibration, HC 

outperforms MFC and MC 
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Comparison scenario 2 

 Does the model & information supply matter in 

calibration? 
 

 Increased auxiliary information for model-free 

calibration MFC (added one x-variable) 
 

 More powerful model for model calibration MC (all 

three x-variables in the model) 
 

 Less powerful model in MC part of HC and inclusion of 

MFC part with a single x-variable - Effects to hybrid 

calibration? 
 

 NOTE: The same auxiliary information is supplied to 

each estimator 
 MFC: Via the calibration x-data 

 MC: Via the model  

 HC: Via the model and the calibration x-data 
24 
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Table 2 Mean RRMSE (%) of design-based calibration estimators of domain 
totals over domain sample size classes. 

 

Estimator 

 

Assisting model & domain-level 
calibration scheme 

Expected domain sample size 

Minor 
13-20 

Medium 
20-50 

Major 
>50 

Direct estimator 

Model-free 
calibration 

Calibration: 
1 2 3(1, , , )  k k k kx x x z  4.27 1.97 1.16 

Semi-direct estimators 

Model: 0 1 1 2 2 3 3 ,  ,  1,...,40k k k k d k dy x x x u k U d             

Model 
calibration 

Calibration: ˆ(1, )k ky z  3.86 1.95 1.15 

Model: 0 1 1 2 2 ,  , 1,...,40k k k d k dy x x u k U d           

Hybrid 
calibration 

Calibration: 
3

ˆ(1, , )k k kx y z  4.19 2.08 1.22 

 



Conclusions for Scenario 2 

 Direct model-free calibration MFC with increased auxiliary 

information supply outperforms MFC with less information 

supply (ref: Table 1) 
 

 Semi-direct model calibration MC with stronger assisting model 

outperforms MC with less powerful model (ref: Table 1) 
 

 Under same information supply, MC outperforms MFC 
 

 MC can offer a safe choice over MFC 
 protection against instability of model-free calibration due to small 

domain sample size and implicit model misspecification 
 

 Hybrid calibration HC offers a realistic compromise between 

MFC and MC especially under coherence requirements 
 

 Efficiency gain w.r.t MFC but loss when compared with MC 
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EXAMPLE 2: Poverty rate for regions 

 Design-based simulation experiment with real data 
 

 Fixed finite population of 1,000,000 persons 

 Western Finland 

 Register data of Statistics Finland 
 

 Regional hierarchy: NUTS4 regions within NUTS3 

regions 

 Domains of interest: 36 NUTS4 regions 

 Higher level regions: 7 NUTS3 regions 
 

 

 SRSWOR sampling 

 Sample size n = 2000 persons 
 

 1000 independent samples drawn from the population 
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Variables and models 

 Binary indicator variable Y with values: 

1=in poverty 

0=not in poverty 
 European Union definition, one of the AROPE indicators 

 The poverty indicator shows when a person’s equivalized 

income is smaller than or equal to the poverty threshold,  

60% of the median equivalized income in the population 
 

 Model 
 Logistic mixed model with domain-level random intercepts 

 

 Auxiliary data from register (known at the unit level) 
 Equivalized income (for construction of  poverty variable) 

 X-variables 

Labour force status (3 classes) for MC part 

Gender and age group (5 classes) for MFC part 
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Estimators 

 Target parameters: At-risk-of poverty rate in domains  
 

  

 Estimators  
 

 where calibration weights w are method specific 
 

 MC part in hybrid calibration and two-level HC estimators 

assisted by logistic mixed model 
 

 

 

 where x-variables are dummy variables generated from the 

original categorical variables 

 x-vector for model fitting in MC:  

  

 x-vector in MFC:  
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Table 3 Mean RRMSE (%) of design-based hybrid calibration estimators of poverty 
rate by domain sample size class in an experiment of 1000 simulated SRSWOR 
samples of size 2000 elements from a real population 
 

MC part: X-variable in logistic mixed model: labor force status indicator 
MFC part: Calibration variables: gender and age class indicators 
 

 
 
Method 

 
Level of calibration 

 
Expected domain sample size 

 

MC part 
 

MFC part 
Minor 
<25 

Medium 
25-50 

Major 
>50 

All 

Hybrid  
calibration 

NUTS4 NUTS4 57.8 39.1 20.1 45.3 

 

2-level 
hybrid  
calibration 

NUTS4 NUTS3 54.2 38.1 20.3 43.3 

 



Conclusions for Example 2 

 Two-level hybrid calibration can outperform single-

level HC in accuracy for small domains in particular 
 

 This may happen if estimation in model-free part at the 

domain level is unstable in single-level HC because of 

small domain sample size 
 

 Calibration to higher regional level in MFC part can 

provide better stability because of larger domain 

sample sizes 
 

 In this case, the new two-level hybrid calibration 

method may offer a safe choice 
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Basic literature 1 

 Model-free calibration 

No model statement 

Prevailing paradigm in official 

statistics 
  

 Deville J.-C. & Särndal C.-E. (1992) 

Calibration estimators in survey 

sampling. JASA 87, 376–382. 
 

 Särndal C.-E. (2007) The calibration 

approach in survey theory and 

practice. Survey Methodology 33, 99–

119. 
 

 Powerful computational tools 
 

 CBS, SCB, Statistics Canada, INSEE 

  

 ISTAT: R package ReGenesees 

 http://www.istat.it/it/files/2014/05/Zard

etto-jos-2015-0013.pdf 

 Model-free calibration for 

domain estimation 

 
 Estevao V.M. & Särndal C.-E. (1999) 

The use of auxiliary information in 

design-based estimation for domains. 

Survey Methodology  2, 213–221. 
 

 Estevao V.M. & Särndal C.-E. (2004) 

Borrowing strength is not the best 

technique within a wide class of 

design-consistent domain estimators. 

JOS 20, 645–669 
 

 Lehtonen R. & Veijanen A. (2009) 

Design-based methods of estimation 

for domains and small areas. Chapter 

31 in Rao C. R. and Pfeffermann D. 

(Eds.) Handbook of Statistics Vol. 

29B. Sample Surveys. Inference and 

Analysis. Amsterdam: Elsevier, 219–

249. 
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Basic literature 2 

 Model calibration 

Explicit model specification 
 

 Wu C. and Sitter R.R. (2001) A model-

calibration approach to using complete 

auxiliary information from survey data. 

JASA 96, 185–193. (with corrigenda) 
 

 Wu C. (2003) Optimal calibration 

estimators in survey sampling. 

Biometrika 90, 937–9 
 

 Kim J.K. & Park M. (2009) Calibration 

estimation in survey sampling 

 . 

Extensions 
 

 Nonparametric model calibration:  

 Montanari & Ranalli (2005) JASA 100 
  

 Ridge calibration: 

 Beaumont & Bocci (2008) METRON 

LXVI 

 Model calibration for 

domain estimation 

 
 Lehtonen R. and Veijanen A. (2016) 

Design-based methods to small area 

estimation and calibration approach. 

In: Pratesi M. (Ed.) Analysis of 

Poverty Data by Small Area 

Estimation. Chichester: Wiley.  

 

 Lehtonen R. and Veijanen A. (2016) 

Estimation of poverty rate and quintile 

share ratio for domains and small 

areas. In:  Alleva G. and Giommi A. 

(Eds.) Topics in Theoretical and 

Applied Statistics. New York: 

Springer.  

 

 R tools for computation are 

available 
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Basic literature 3 

 Hybrid calibration 

Explicit model specification 

 
 Combination of model-free calibration 

and model calibration 

 

 Lehtonen & Veijanen (2014) Small 

area estimation of poverty rate by 

model calibration and "hybrid" 

calibration. NORDSTAT 2014, Turku. 

 

 Lehtonen & Veijanen (2015) Small 

area estimation by calibration 

methods. WSC 2015 of the ISI, Rio de 

Janeiro. 

 

 Extension 
 

 Two-level hybrid calibration 

 

 Related papers 

 
 Montanari G.E. and Ranalli M.G. 

(2009) Multiple and ridge model 

calibration. Proceedings of Workshop 

on Calibration and Estimation in 

Surveys 2009. Statistics Canada. 
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