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Suggested solutions for the 7th set of exercises

1. The task is to show that

L = π̂1 − π̂2 − zα/2
√

π̂1(1− π̂1)/n1 + π̂2(1− π̂2)/n2

= π̂1 − π̂2 −
√

(π̂1 − L1)2 + (U2 − π̂2)2 ⇔

z2α/2

[

π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)

n2

]

= (π̂1 − L1)
2 + (U2 − π̂2)

2

and

U = π̂1 − π̂2 + zα/2
√

π̂1(1− π̂1)/n1 + π̂1(1− π̂2)/n2

= π̂1 − π̂2 +
√

(U1 − π̂1)2 + (π̂2 − L2)2 ⇔

z2α/2

[

π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)

n2

]

= (U1 − π̂1)
2 + (π̂2 − L2)

2.

Case of L: Substitution of L1 and U2 into the formula

(π̂1 − L1)
2 + (U2 − π̂2)

2

yields the required result:
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2

= z2α/2

[

π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)

n2

]

.

The U case is proved similarly:

(U1 − π̂1)
2 + (π̂2 − L2)

2
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π̂2 − zα/2

√

π̂2(1− π̂2)
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2

= z2α/2

[

π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)

n2

]

.



2.

a) A number of rules of thumb exist for suggesting that samples are large enough

for the Normal approximation to apply. Such rules include:

• Samples are larger than thirty (n1 > 30 and n2 > 30).1

• niπ̂i ≥ 5 and ni(1− π̂i) ≥ 5 (i = 1, 2).2

• There are at least ten ”successes” and ”failures” in both samples.3

The first two rules are met:

n1 = 1201 > 30 and n1 = 41 > 30

n1π̂1 = 1201× 0.301 ≈ 361 ≥ 5,

n1(1− π̂1) = 1201× 0.699 ≈ 839 ≥ 5

n2π̂2 = 41× 0.171 ≈ 7 ≥ 5

n2(1− π̂2) = 41× 0.829 ≈ 34 ≥ 5.

Such rules give some idea of the required sample sizes but they should not be taken

literally.

The 95% Wald confidence interval for the difference of proportions is

π̂1 − π̂2 ± z0.025 ×

√

π̂1(1− π̂1)

n1
+

π̂2(1− π̂2)

n2

which gives interval (0.011, 0.247). The R code is below.

# Wald

p1 <- 360/1201

p2 <- 7/41

n1 <- 1201

n2 <- 41

se <- sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2)

z <- qnorm(0.975)

p1-p2-z*se

p1-p2+z*se

b) The Agresti–Caffo confidence interval is calculated by adding an observation

to each cell of the observed contingency table and then calculating the Wald confi-

dence interval for the difference of the new proportions. The modified data is below

(frequencies and proportions):

physical contacts with father

(essentially) no yes Σ
mother group 360 + 1 = 361 841 + 1 = 842 1203

father group 7 + 1 = 8 34 + 1 = 35 43

1E.J. Dudewiczin and S.N. Mishra (1988): Modern Mathematical Statistics. Wiley. New York. (P. 570.)
2K.M. Ramachandran and C.P. Tsokos (2009): Mathematical Statistics with Applications. Elsevier. Ams-

terdam. (P. 325.)
3A. Agresti and B. Finlay (2009): Statistical Methods for the Social Sciences. 4th edition. Pearson. Lon-

don. (P. 190.)



physical contacts with father

(essentially) no yes Σ
mother group 361/1203 ≈ 0.3000831 842/1203 ≈ 0.6999169 1

father group 8/43 ≈ 0.1860465 35/43 ≈ 0.8139535 1

The R commands below return 95% Agresti–Caffo confidence interval (−0.005, 0.233):

# Agresti-Caffo

p1a <- 361/1203

p2a <- 8/43

n1a <- 1203

n2a <- 43

sea <- sqrt(p1a*(1-p1a)/n1a+p2a*(1-p2a)/n2a)

z <- qnorm(0.975)

p1a-p2a-z*sea

p1a-p2a+z*sea

c) The square-and-add Wilson confidence interval is calculated as explained in sec-

tion ”Background theory”. The lower and upper bounds for the Wilson confidence in-

terval for a proportion are calculated with the R code in Exercise 2.3. These lower and

upper bounds are next substituted in place of Li and Ui, i = 1, 2, in the formula for

L and U in Exercise 7.1. These steps yield 95% confidence interval (−0.015, 0.219).
The R script is beneath.

# Square-and-add Wilson

p1 <- 360/1201

p2 <- 7/41

n1 <- 1201

n2 <- 41

# Wilson confidence intervals:

z <- qnorm(0.975)

Lr1 <- p1*n1/(n1+z^2)+0.5*(z^2)/(n1+z^2)-(z/(n1+z^2))*sqrt(p1*(1-p1)*n1+0.25*(z^2))

Ur1 <- p1*n1/(n1+z^2)+0.5*(z^2)/(n1+z^2)+(z/(n1+z^2))*sqrt(p1*(1-p1)*n1+0.25*(z^2))

Lr2 <- p2*n2/(n2+z^2)+0.5*(z^2)/(n2+z^2)-(z/(n2+z^2))*sqrt(p2*(1-p2)*n2+0.25*(z^2))

Ur2 <- p2*n2/(n2+z^2)+0.5*(z^2)/(n2+z^2)+(z/(n2+z^2))*sqrt(p2*(1-p2)*n2+0.25*(z^2))

# Square-and-add Wilson confidence interval:

p1-p2-sqrt((p1-Lr1)^2+(Ur2-p2)^2)

p1-p2+sqrt((Ur1-p1)^2+(p2-Lr2)^2)

d) The square-and-add Wilson interval is the narrowest (0.234 vs. Wald 0.236 and

Agresti–Caffo 0.238). The Wald interval does not include 0 but the Agresti-Coull and

the Square-and-add Wilson interval do. In this sense it makes a difference which inter-

val is calculated.

In the simulations of Agresti and Caffo, the Wald interval tended to be the shortest

except for some cases of equal length with the Square-and-add Wilson interval. In a

specific sample the general pattern does not always, as with the present data, emerge.

Agresti–Caffo interval is the longest here, though, as it was in the simulations.

The intervals differ despite that the two rules of thumb (introduced in point a))

insinuate that the Wald interval were trustworthy.

Mothers and fathers appear to tell contradictory about contacts between children

and their fathers according to the more trustworthy confidence intervals Agresti–Caffo

and square-and-add Wilson. An explanation might be that the survey has not reached

fathers who do not have contact with their child or that they are not inclined to answer

the survey because the issue is embarrassing or painful to them. Broberg and Hakovirta



(2005, 141–142) suggest that a quarrelsome mother who does not let her child to see

the father is less likely to respond to the survey. Sampling bias may be in action.

Mothers and fathers have given contradictory information about other issues, too,

in research not cited here.

3.4

a) At a given setting of xi the distribution of the number of successes Yi is bino-

mially distributed:

P(Yi = yi) =

(

ni

yi

)

π(xi)
yi [1− π(xi)]

ni−yi .

The settings, indeed the observations, are independent, so the joint probability function

is
N
∏

i=1

P(Yi = yi) =

N
∏

i=1

(

ni

yi

)

π(xi)
yi [1− π(xi)]

ni−yi .

The binomial coefficients do not involve π so they can be ignored which leads to the

likelihood
N
∏

i=1

π(xi)
yi [1− π(xi)]

ni−yi .

b) The alternative formulation of the likelihood function is derived:

N
∏

i=1

π(xi)
yi [1− π(xi)]

ni−yi

=

{

N
∏

i=1

exp

[

log

(

π(xi)

1− π(xi)

)yi
]

}{

N
∏

i=1

[1− π(xi)]
ni

}

=

{

exp

[

N
∑

i=1

yi log
π(xi)

1− π(xi)

]}{

N
∏

i=1

[1− π(xi)]
ni

}

.

c) The following holds:

1− π(xi) = 1−
exp

∑p
j=0 βjxij

1 + exp
∑p

j=0 βjxij

=
1

1 + exp
∑p

j=0 βjxij
.

If it is substituted along with
∑p

j=0 βjxij in place of the ith logit into the log-likelihood

4The derivations are from A. Agresti (2013): Categorical Data Analysis, 3rd edition. CUP. Hoboken, NJ.

(Pages 192–193.)



the result is

L(β) =

N
∑

i=1

yi log
π(xi)

1− π(xi)
+

N
∑

i=1

ni log[1− π(xi)]

=

N
∑

i=1

yi

p
∑

j=0

βjxij +

N
∑

i=1

ni log
1

1 + exp
∑p

j=0 βjxij

=

p
∑

j=0

(

N
∑

i=1

yixij)βj −

N
∑

i=1

ni log[1 + exp(

p
∑

j=0

βjxij)].

d) It is first noted that

∂

∂βj
log[1 + exp(

p
∑

j=0

βjxij)] =
[exp(

∑p
j=0 βjxij)]xij

1 + exp(
∑p

j=0 βjxij)
.

Differentiating the log-likelihood with respect to βj and making use of the above result

and the formula for π(xi) in the introduction to the exercise gives:

∂L(β)

∂βj
=

N
∑

i=1

yixij −

N
∑

i=1

ni

[exp(
∑p

j=0 βjxij)]xij

1 + exp(
∑p

j=0 βjxij)

=

N
∑

i=1

yixij −

N
∑

i=1

niπ(xi)xij , j = 0, . . . p.

Setting the partial derivatives equal to zero yields the likelihood equations:

N
∑

i=1

yixij −

N
∑

i=1

niπ̂ixij = 0, j = 0, . . . p.

(The very second the equations are set to equal zero, hats arise on top of the parameters

on the left-hand side of the equation.) Specifically:

∂L(β)

∂β0
=

N
∑

i=1

yi −

N
∑

i=1

niπ̂i = 0.

4.

a)

∂

∂βa

exp (
∑p

j=0 βjxij)

1 + exp(
∑p

j=0 βjxij)

=
[exp (

∑p
j=0 βjxij)]xia[1 + exp (

∑p
j=0 βjxij)]− [exp (

∑p
j=0 βjxij)]xia[exp (

∑p
j=0 βjxij)]

[1 + exp (
∑p

j=0 βjxij)]2

=
exp (

∑p
j=0 βjxij)

[1 + exp (
∑p

j=0 βjxij)]2
xia.



b) From the formula for the probability (in the introduction to the exercise):

π(xi)[1− π(xi)]
prev. exc. c)

=
exp

∑p
j=0 βjxij

1 + exp
∑p

j=0 βjxij
×

1

1 + exp
∑p

j=0 βjxij

=
exp (

∑p
j=0 βjxij)

[1 + exp (
∑p

j=0 βjxij)]2
.

c) These results enable calculation for (a, b)th element of the information matrix

−
∂2L(β)

∂βa∂βb
= −

∂

∂βb

[

N
∑

i=1

yixia −

N
∑

i=1

nixia

exp(
∑p

j=0 βjxia)

1 + exp(
∑p

j=0 βjxia)

]

=

N
∑

i=1

nixiaxib

exp (
∑p

j=0 βjxij)

[1 + exp (
∑p

j=0 βjxij)]2

=

N
∑

i=1

xiaxibniπ(xi)[1− π(xi)].

Evaluation at the MLEs submits the (a, b)th element of the observed information matrix

N
∑

i=1

xiaxibniπ̂i(1− π̂i).

5∗–6∗.

a)

cov(p1+, p+1) = cov(p11 + p12, p11 + p21)

= cov(p11, p11 + p21) + cov(p12, p11 + p21)

= cov(p11, p11) + cov(p11, p21) + cov(p12, p11) + cov(p12, p21)

= cov(
n11

n
,
n11

n
) + cov(

n11

n
,
n21

n
) + cov(

n12

n
,
n11

n
) + cov(

n12

n
,
n21

n
)

= n−2[cov(n11, n11) + cov(n11, n21) + cov(n12, n11) + cov(n12, n21)]

= n−2[nπ11(1− π11)− nπ11π21 − nπ12π11 − nπ12π21]

= n−1[π11(π12 + π21 + π22)− π11π21 − π12π11 − π12π21]

= (π11π22 − π12π21)/n.

The sixth line above follows from the formulae for the covariances of a multinomially

distributed random variable.

b)

var(p1+ − p+1) = var(p1+) + var(p+1)− 2cov(p1+, p+1)

a)
= var(

n1+

n
) + var(

n+1

n
)− 2(π11π22 − π12π21)/n

= n−2[var(n1+) + var(n+1)− 2n(π11π22 − π12π21)]

= n−2[nπ1+(1− π1+) + nπ+1(1− π+1)− 2n(π11π22 − π12π21)]

= [π1+(1− π1+) + π+1(1− π+1)− 2(π11π22 − π12π21)]/n.



The fourth line above is due to the formula for the variance of a Binomial random

variate.

c) Formula

[p1+(1− p1+) + p+1(1− p+1)− 2(p11p22 − p12p21)]/n

is sample counterpart for var(p1+ − p+1) or (SE)2. The shorter form for it given in

the exercise is now derived. It holds if

p1+(1− p1+) + p+1(1− p+1)− 2(p11p22 − p12p21)

= p12 + p21 − (p12 − p21)
2.

That is the case:

p1+(1− p1+) + p+1(1− p+1)− 2(p11p22 − p12p21)

= (p11 + p12)[1− (p11 + p12)] + (p11 + p21)[1− (p11 + p21)]

−2(p11p22 − p12p21)

= p11 − p211 − p11p12 + p12 − p11p12 − p212 + p11 − p211 − p11p21

+p21 − p11p21 − p221 − 2(p11p22 − p12p21)

= p12 + p21 − (p12 − p21)
2 + 2p11(1− p11 − p12 − p21 − p22)

= p12 + p21 − (p12 − p21)
2.

Thus the statement of the exercise is true.

d) According to the previous point

SE =
√

[p12 + p21 − (p12 − p21)2]/n.

Formula pij = nij/n is substituted in it:

√

[p12 + p21 − (p12 − p21)2]/n =

√

[n12

n
+

n21

n
− (

n12

n
−

n21

n
)2
]

/n

=
√

n12 + n21 − (n12 − n21)2/n/n.

The requested equality is obtained.


