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Suggested solutions for the 5th set of exercises

1. The conditional probability mass function is the product of the individual probability

mass functions (by independence) divided by the probability mass function for the total

count:
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where πi = µi/(
∑c

j=1 µj). The required result was obtained.

2. Under the null hypothesis (proportions equal) the joint probability mass function is
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by independence of the two samples. Under the null the marginal frequency n+1 li-

kewise follows a Binomial distribution:
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Conditioning on the probability of the observed marginal frequency n+1 gives the hy-



pergeometric distribution asked for:
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If the column frequencies are not fixed, the same hypergeometric distribution arises, if

the analysis is conditioned on the observed random column frequencies.

3.

a) The multivariate random variate of the exercise can be expressed as a c-vector:
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...
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=

n
∑

i=1

Yi.

Above Yi = [Yi1 . . . Yic]
′ is a multinomially distributed random vector from the ith

(independent) experiment in a sequence of n experiments. The components of Yi are

0s except one which takes value 1 randomly according to the probabilities in the vector

π = [π1 . . . πc]
′. Then

∑c

j=1Yij = 1, YijYik = 0, if j 6= k,

E(Yij) = πj × 1 + (1− πj)× 0 = πj = E(Y 2
ij)

and

E(YijYik) = 0, if j 6= k.

Thus

E(Yi) = π

and

cov(Yi) = Σ.

The jkth component of the covariance matrix above is {Σ}jk = σjk, where

σjj = var(Yij) = E(Y 2
ij)− [E(Yij)]

2 = πj − π2
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(j = k) and

σjk = cov(Yij , Yik) = E(YijYik)− E(Yij)E(Yik) = 0− πjπk = −πjπk

(j 6= k). The covariance matrix of vector
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by independence. Hence the covariance between the frequencies in categories j and k
is

cov(Nj , Nk) = {nΣ}jk = nσjk = −nπjπk.

b) Because of point a) it is the case that

cov(Nj , Nk) = −nπjπk.

From Exercise 4.1:

var(Nj) = nπj(1− πj).

Substituting these to the definition of correlation gives
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c) Here c = 2, π2 = 1−π1 and N2 = n−N1. The correlation between frequencies

N1 and N2 is now −1:
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The intuition is evident: There is a perfect linear relation between the frequencies N2 =
n−N1. If the other increases, the other decreases, and vice versa.

4.

a) The observations are binomially distributed in the two samples. The probability

mass functions of the first and second sample are
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respectively. Due to the independence of the samples, the joint probability mass func-

tion is
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Taking the log of it and deleting additive terms, which do not involve π1 or π2, yields

the log-likelihood function

l(π) = n11 log π1 + n12 log(1− π1) + n21 log π2 + n22 log(1− π2).

b) The partial derivatives of the log-likelihood function with respect to π1 and π2
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respectively. It follows that
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c) Under the null hypothesis of π1 = π2 the restricted MLE for both parameters is

π̂1,0 = π̂2,0 = n+1/n. The partial derivatives evaluated at this restricted MLE are
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e) The Fisher information matrix is

I(π) = E
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The second equality is due to nπ being the expected value of the Binomial distribution

Bin(n, π).
The inverse matrix of the Fisher information matrix is

I(π)−1 =
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Evaluating it at the restricted MLE π̂0 yields
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f) On the grounds of the previous calculations

∇l(π̂0)
′
I(π̂0)

−1∇l(π̂0)
c) and e)
=

[

n
n11n22 − n12n21

n+1n+2
n
n12n21 − n11n22

n+1n+2

]

×






n+1n+2

n2n1+
0

0
n+1n+2

n2n2+













n
n11n22 − n12n21

n+1n+2

n
n12n21 − n11n22

n+1n+2







=

[

n11n22 − n12n21

nn1+

n12n21 − n11n22

nn2+

]

×






n
n11n22 − n12n21

n+1n+2

n
n12n21 − n11n22

n+1n+2







=
(n11n22 − n12n21)

2

n1+n+1n+2
+

(n11n22 − n12n21)
2

n2+n+1n+2

=
(n11n22 − n12n21)

2(n1+ + n2+)

n1+n2+n+1n+2

=
n(n11n22 − n12n21)

2

n1+n2+n+1n+2
.

The formula for the statistic for testing independence derived in Exercise 3.6 was ob-

tained. It equals test statistic z2s according to Exercise 4.5. Test statistics z2s and X2 are

score statistics.

Extra comments:

• Cox and Hinkley (1978, 133–134) give an alternative proof.1 They additionally

prove that the Wald statistic is approximately

2
∑

i=1

2
∑

i=j

(nij − µ̂ij)
2

nij

1D.R. Cox ja D. Hinkley (1978): Problems and Solutions in Theoretical Statistics. Chapman and Hall.

Lontoo.



in the present circumstance.

• The likelihood ratio statistic could be calculated as in Exercise 4.4 (the likelihood

ratio statistic is the same despite that the method of sampling is different).

• The outcome of the exercise can be generalised:

1. The score statistic and Pearson’s test statistic for independence X2 or

J
∑

i=1

K
∑

i=j

(nij − µ̂ij)
2

µ̂ij

equal also in the case of a J × K (J ≥ 2 and K ≥ 2) contingency table

(op. cit.). Above µ̂ij = ni+n+j/n (in obvious notation). The Wald statistic

generalises correspondingly (op. cit.).

2. According to Silvey (1975, 120)2 the score statistic and X2

c
∑

i=1

(ni − µ̂i)
2

µ̂i

match in general in the context of testing of the parameters of a c dimen-

sional multinomial distibution. Here µ̂i is estimated under the restrictions

which apply under the null hypothesis. Cox and Hinkley (1974, 315–316

and 325–327)3 point out related results.

3. Agresti (2013, 22)4 proves that in the case of a multinomial distribution

with c-categories

n(π̂ − π0)
′
Σ
−1
0 (π̂ − π0) =

c
∑
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(ni − µi)
2
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.

Here π̂ = [π̂1 . . . π̂c−1]
′ is the (unrestricted) MLE for the parameter vector

π which is π0 under the null hypothesis, Σ0 is the asymptotic covariance

matrix of
√
nπ̂ under the null hypothesis and µi is the expected frequency

of the ith cell under the null hypothesis.

4. Agresti (op. cit., 78–80) discusses construction of score confidence inter-

vals for the differences of two proportions and points out R code for it

(http://www.stat.ufl.edu/~aa/cda/R_web.pdf; read 8.10.2015).

2S.D. Silvey (1975): Statistical Inference. Chapman and Hall. London.
3D.R. Cox and D.V. Hinkley (1974): Theoretical Statistics. Chapman and Hall. London.
4A. Agresti (2013): Categorical Data Analysis, 3rd edition. Wiley. Hoboken, NJ.



5.

a) If marginal homogeneity applies then π1+ = π+1. It is then also the case that

π12 = π21:
0 = π1+ − π+1

= π11 + π12 − (π11 + π21)

= π12 − π21.

b) If π1+ = π+1 then also π2+ = π+2:

π2+ − π+2 = π21 + π22 − (π12 + π22)

= π21 − π12

a)
= −(π1+ − π+1)

= 0.

The last equality follows from the assumption of marginal homogeneity.

c) Marginal homogeneity (π1+ = π+1 ja π2+ = π+2) does not imply π11 = π22.

The counter examples below make the point.

Y
y1 y2 Σ

X x1 0 0,1 0,1

x2 0,1 0,8 0,9

Σ 0,1 0,9 1

Y
y1 y2 Σ

X x1 0 0,1 0,1

x2 0,1 0,8 0,9

Σ 0,1 0,9 1

Y
y1 y2 Σ

X x1 0,3 0,15 0,45

x2 0,15 0,4 0,55

Σ 0,45 0,55 1

Y
y1 y2 Σ

X x1 0,30 0,25 0,55

x2 0,25 0,20 0,45

Σ 0,55 0,45 1



Y
y1 y2 Σ

X x1 0,15 0,40 0,55

x2 0,40 0,05 0,45

Σ 0,55 0,45 1

6. The alternative formulations of McNemar’s test statistic can be derived easily:

n12 − 0, 5× n∗√
n∗ × 0, 5× 0, 5

=
n12 − 0, 5× (n12 + n21)
√

(n12 + n21)× 0, 5× 0, 5

=
0, 5(n12 − n21)

0, 5
√
n12 + n21

=
n12 − n21√
n12 + n21

=
0, 5(n12 − n21)

0, 5
√
n12 + n21

=
−[n21 − 0, 5(n12 + n21)]
√

(n12 + n21)× 0, 5× 0, 5

=
−(n21 − 0, 5n∗)√
n∗ × 0, 5× 0, 5

.

McNemar’s test statistic can be calculated by means of the frequency n12 or n21.


