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re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

Suggested solutions for the 4th set of exercises

1. The random variate hits category j (event/success) with probability πj and another

category (any one of them) with probability 1− πj (the other categories are combined

into a single category). This is the circumstance of a Binomial distribution with event

probability πj . The expected value and variance of events can be obtained from the

Binomial distribution to be nπj and nπj(1− πj).

2.

a) The probability of the observations n1, . . . , nc is

P(N1 = n1, N2 = n2, . . . , Nc = nc) =
n!

n1!n2! . . . nc!
πn1

1 πn2

2 . . . πnc

c .

The quotient preceding the product πn1

1 πn2

2 . . . πnc

c is nonconsequential from the point

of view of likelihood analysis (does not involve πi-parameters). The likelihood function

is thus

πn1

1 πn2

2 . . . πnc

c .

Its logarithm is

l(π) =

c
∑

i=1

ni log πi

(π = [π1 . . . πk]
′).

b) Differentiating the logarithm of the likelihood function with respect to πj yields

∂l(π)

∂πj

=
∂
∑c

i=1
ni log πi

∂πj

=
∑c

i=1

∂ni log πi

∂πj

=
nj

πj

+
nc∂ log πc

∂πj

=
nj

πj

+
nc∂ log(1−

∑c−1

i=1
πi)

∂πj

=
nj

πj

+
nc(−1)

1−
∑c−1

i=1
πi

=
nj

πj

−
nc

πc

.



(The ”last” parameter πc is chosen to satisfy the restraint
∑c

i=1
πi = 1. Any of the

parameters — e.g. the kth (k 6= j) — could have been assigned to fulfill the restraint.

One should then replace c by k in the formulae above.) The likelihood function is thus

∂l(π)

∂πj

=
nj

πj

−
nc

πc

= 0,

or the MLE obeys the equality
π̂j

π̂c

=
nj

nc

.

c) The MLEs satisfy the same restrictions as the parameters do. In the present case
∑c

i=1
πi = 1. It must hence be that

1 =
∑c

i=1
π̂i

from above
=

∑c−1

i=1

niπ̂c

nc

+ π̂c

=
∑c

i=1

niπ̂c

nc

=
π̂c

nc

∑c

i=1
ni

=
π̂c

nc

n.

The first MLE can be solved from the formula above:

π̂c =
nc

n
.

It will be substituted to the equation derived in point b):

π̂j

π̂c

=
nj

nc

.

The rest of the MLEs can now be obtained: π̂j (i = 1, . . . , c− 1):

π̂j =
nj

nc

π̂c

=
nj

nc

nc

n

=
nj

n
.

Extra comments: An alternative way to derive the MLE π̂j , j = 1, . . . , c, is the fol-

lowing. The log-likelihood l(π) should be maximised with respect to the parameters



πi under the restriction that
∑c

i=1
πi = 1. The restricted maximisation can be carried

out by the method of Lagrange. The Lagrangian is

L∗(π, λ) =

c
∑

i=1

ni log πi + λ(1−

c
∑

i=1

πi).

It can be maximised with respect to the parameters πi in the usual way.

By differentiating the Lagrangian with respect to the coefficient λ and setting the

partial derivative to equal zero one obtains the original restriction

∂L∗(π, λ)

∂λ
= 1−

c
∑

i=1

πi = 0.

Differentiation of L∗(π) with respect to the parameters πj and setting of the partial

derivatives to equal zero produces

∂L∗(π, λ)

∂πj

=
nj

πj

− λ = 0⇔ nj = λπj , j = 1, . . . , c.

Summing both sides of the equation yields

c
∑

j=1

nj = λ

c
∑

j=1

πj ⇔ n = λ

because of the restrictions
∑c

i=1
ni = n and

∑c

i=1
πi = 1. Substituting n = λ to the

equality nj = λπj one obtains nj/n (j = 1, . . . , c) as the MLE for πj :

nj = nπj ⇔ πj =
nj

n
.

3. The MLE for the probability for category i is ni/n under multinomial sampling. In

this exercise categories are cells which have been indexed with two indeces. This is

just a difference in notation in comparison to the usual notation for the categories of

a multinomial distribution. This being the case the MLEs for the cell probabilities are

π̂ij = nij/n (i, j = 1, 2).

The odds ratio (θ) is a function of the cell probabilities (p. 29 of the book):

θ(π11, . . . , π22) =
π11π22

π12π21

.

By the general properties of MLEs (hint2) the MLE of θ is θ̂ = θ(π̂11, . . . , π̂22) or



θ(π11, . . . , π22) evaluated at the MLEs of the cell probabilities πij :

θ̂ = θ(π̂11, . . . , π̂22)

=
π̂11π̂22

π̂12π̂21

=

n11

n

n22

n
n12

n

n21

n

=
n11n22

n12n21

.

4.

a) The likelihood function is

πn1

1 πn2

2 . . . πnc

c .

The MLE for the jth category probability is π̂j = nj/n.

The likelihood ratio test statistic is two times the logarithm of the ratio of the maxi-

mum of the likelihood function to the maximum of it under the null hypothesis:

G2 = 2 log
π̂n1

1 π̂n2

2 . . . π̂nc

c

πn1

10 π
n2

20 . . . πnc

c0

= 2 log
(n1/n)

n1(n2/n)
n2 . . . (nc/n)

nc

πn1

10 π
n2

20 . . . πnc

c0

= 2 log

[(

n1

nπ10

)n1

· · ·

(

nc

nπc0

)nc
]

= 2
∑c

i=1
ni log

ni

nπi0

= 2
∑c

i=1
ni log

ni

µi

.

On the second and last lines substitutions π̂j = nj/n and µi = nπi0, respectively, are

done.

b) The situation is analogous to point a); only the notation is different. There are

c = IJ categories (ordered one upon the other so that they compose a I × J contin-

gency table). The probabilities are indexed with two indeces instead of one (a change

in notation only). In the present notation the MLE for a cell probability is π̂ij = nij/n.

Summation of the probabilities over the categories is now indicated with a double sum

(again a change in notation only). The likelihood ratio statistic is hence exactly the sa-

me as in point a). The sole difference is change of notation to allow for the double

indexation. The likelihood ratio statistic (2.7) is

G2 = 2

I
∑

i=1

J
∑

j=1

nij log
nij

µij

.



Above µij = nπij0 is the expected frequency in cell ij under the null hypothesis.

c) This is as point b) but it is additionally assumed that πij = πi+π+j under the

null hypothesis. This restriction must be taken account of in the construction of the

MLE for a cell probability πij .

Let the data be categorised with respect to the first variable only. After this cate-

gorisation the data follows the Multinomial distribution with probabilities πi+, i =

1, . . . , I . The MLEs of them are π̂i+ =
∑J

j=1
nij/n = ni+/n.

Let the data be categorised with respect to the second variable only. Now the data

follows the Multinomial distribution with probabilities π+j , j = 1, . . . , J . The corres-

ponding MLEs are π̂+j =
∑I

i=1
nij/n = n+j/n.

The MLEs for the cell probabilities under the null hypothesis πij = πi+π+j are ob-

tained by use of the invariance property of the MLEs: π̂ij = π̂i+π̂+j = (ni+/n)(n+j/n) =
ni+n+j/n

2. The expected frequencies under the null hypothesis are µ̂ij = nπ̂ij =
ni+n+j/n.

In the unrestricted case the MLEs for the cell probabilities are π̂ij = nij/n and the

expected frequencies are nπ̂ij = nij .

The likelihood ratio test statistic is two times the logarithm of the ratio of the maxi-

mum of the likelihood function to the maximum of it under the null hypothesis:

= 2 log
π̂n11

11 . . . π̂nIJ

IJ

π̂n11

110 . . . π̂
nIJ

IJ0

= 2 log
(n11/n)

n11 . . . (nIJ/n)
nIJ

(n1+n+1/n2)n11 . . . (nI+n+J/n2)nIJ

= 2 log
(n11)

n11 . . . (nIJ)
nIJ

(n1+n+1/n)n11 . . . (nI+n+J/n)nIJ

= 2 log

[(

n11

n1+n+1/n

)n11

· · ·

(

nIJ

nI+n+J/n

)nIJ
]

= 2 log

[(

n11

µ̂11

)n11

· · ·

(

nIJ

µ̂IJ

)nIJ
]

= 2
∑I

i=1

∑J

j=1
nij log

nij

µ̂ij

.

This is the requested formulation.

Extra comment or a detailed derivation of the MLEs for the cell probabilities π̂ij =
π̂i+π̂+j = (ni+/n)(n+j/n) = ni+n+j/n

2 under the null hypothesis πij = πi+π+j :

Logarithm of the likelihood function is

l(π) =

I
∑

i=1

J
∑

j=1

nij log πij =

I
∑

i=1

J
∑

j=1

nij log πi+π+j .



Partial derivative of it with respect to πk+ (k = 1, . . . , I − 1) is set to equal zero:

∂l(π)

∂πk+

=
∂
∑I

i=1

∑J

j=1
nij log πi+π+j

∂πk+

=
∑I

i=1

∑J

j=1
nij

∂ log πi+π+j

∂πk+

=
∑I−1

i=1

∑J

j=1
nij

∂ log πi+π+j

∂πk+

+
∑J

j=1
nIj

∂ log πI+π+j

∂πk+

=
∑I−1

i=1

∑J

j=1
nij

∂ log πi+π+j

∂πk+

+
∑J

j=1
nIj

∂ log[(1−
∑I−1

i=1
πi+)π+j ]

∂πk+

=
∑J

j=1
nkj

π+j

πk+π+j

+
∑J

j=1
nIj

−π+j

(1−
∑I−1

i=1
πi+)π+j

=
∑J

j=1

nkj

πk+

−
∑J

j=1

nIj

1−
∑I−1

i=1
πi+

=
nk+

πk+

−
nI+

πI+

= 0.

The MLE π̂k+ fulfills the equation

π̂k+

π̂I+

=
nk+

nI+

.

Correspondingly
π̂+k

π̂+J

=
n+k

n+J

.

The MLEs obey the same restrictions as the parameters
∑I

i=1
πi+ = 1 ja

∑J

j=1
π+j =

1. Additionally it is the case that
∑I

i=1
ni+ = n ja

∑J

j=1
n+j = n. Hence

1 =
∑I

i=1
π̂i+

=
∑I−1

i=1
π̂i+ + π̂I+

from above
=

∑I−1

i=1

ni+

nI+

π̂I+ + π̂I+

=
∑I

i=1

ni+

nI+

π̂I+

=
n

nI+

π̂I+

or

π̂I+ =
nI+

n
.



Substituting this estimator to the equation above gives:

π̂k+ =
nk+

nI+

π̂I+

=
nk+

nI+

nI+

n

=
nk+

n
.

Derivation of the MLE π̂+k proceeds in a similar fashion:

1 =
∑J

j=1
π̂+j

=
∑J−1

j=1
π̂+j + π̂+J

from above
=

∑J−1

j=1

n+k

n+J

π̂+J + π̂+J

=
∑J

j=1

n+k

n+J

π̂+J

=
n

n+J

π̂+J ,

or

π̂+J =
n+J

n
,

and

π̂+k
from above

=
n+k

n+J

π̂+J

=
n+k

n+J

n+J

n

=
n+k

n
.

Due to the invariance property of MLEs

π̂ij = π̂i+π̂+j =
ni+

n

n+j

n
=

ni+n+j

n2
,

where i = 1, . . . , I and j = 1, . . . J .

5. The difference in the numerator of the test statistic z2s is

π̂1 − π̂2 =
n11

n1+

−
n21

n2+

=
n11n2+ − n21n1+

n1+n2+

=
n11(n21 + n22)− n21(n11 + n12)

n1+n2+

=
n11n22 − n12n21

n1+n2+

.

The denominator of the test statistic z2s is

π̂(1− π̂)

n1+

+
π̂(1− π̂)

n2+

= π̂(1− π̂)

(

1

n1+

+
1

n2+

)

=
n+1

n

(

1−
n+1

n

) n2+ + n1+

n1+n2+

=
n+1

n

(

n− n+1

n

)

n

n1+n2+

=
1

n

n+1nn+2

n1+n2+

.



It can be oberved that

(π̂1 − π̂2)
2

π̂(1− π̂)/n1+ + π̂(1− π̂)/n2+

=
[(n11n22 − n12n21)/(n1+n2+)]

2

n−1(n+1nn+2)/(n1+n2+)

=
n(n11n22 − n12n21)

2

n1+n2+n+1n+2

.

The last ratio is the X2 test statistic according to Exercise 3.6. Thus z2s = X2.

6. The LR test statistic is not superior to the other two test statistics in general even if

the yard stick were statistical properties as claimed by Harrell.

Pearson’s χ2 test statistic X2 is a score test statistic (e.g. the quotation of Harrell in

the exercise). Agresti (2007, 40) instructs that X2 converges more quickly than LR (G2

in Agresti’s notation) to the asymptotic χ2 distribution when independence is tested for

from a contingency table. The score test is hence better than the LR test in this sense

according to Agresti.

There are circumstances in which the score test is in finite samples locally (for

small deviations from the null) the most powerful test.1 The score test can be better

than the LR test in this way, too.

Harrell draws attention to the test for comparing two proportions in two binomial

samples and claims that the LR test should be employed ”routinely” in place of Pear-

son’s χ2 test in this context.

Agresti (2007, 26) considers Pearson’s χ2 test alone in the context of comparison

of two proportions. Agresti has not excluded the case of comparing proportions from

his recommendation (above) to apply Pearson’s χ2 test instead of the LR test when

studying independence (here equivalent to two equal proportions). Agresti’s text hence

contradicts that of Harrell’s as regards to this specific case, too.

Preference of Pearson’s χ2 test over the LR test in the context of comparing two

proportions is explicit in the text book of Bilder and Loughin (2015, 35)2:

In small samples – – the three test statistics can have distributions under the null

hypothesis that are quite different from their approximations. Larntz (1978) compa-

red the score, the LRT, [likelihood ratio test] and three other tests – – and found that

the score test clearly maintains its size better than the others. Thus, the score test is

recommended here, as it was for testing the probability from a single group.

Boos and Stefanski (2013, 142)3 likewise explicitly favour the score statistic in this

context:

Testing equality of binomial probabilities: Independent samples – – Ts [the score

statistic] is the same as the chi-squared test statistic for homogeneity of independence

in 2-by-2 contingency tables. – – For this problem Ts is usually the preferred statistic.
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