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re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

Suggested solutions for the 3rd set of exercises

1.

a) The number of successes Y ∈ 0, 1, . . . , n follows a Binomial distribution Bin(n, π).
Each observed value y yields a different confidence interval.

b) Coverage probability is the probability that a confidence interval, determined by

y, covers the true π. Cn(π) sums the probabilities of such ks that yield a confidence

interval which include π. The probabilities are determined by the binomial formula
∑n

k=0

(

n
k

)

πk(1− π)n−k.

c) Let us alter π slightly. If the same confidence intervals cover the altered π and

the original π then Cn(π) changes slightly because the associated sum of binomial pro-

babilities changes smoothly with π. If a confidence interval which originally covered π
does not cover the altered π then the coverage probability changes abrubtly as a bino-

mial probability drops out of the sum in Cn(π). A peak in the opposite direction results

results if a confidence interval covers the altered but not the original π resulting in an

extra binomial probability entering Cn(π).

2.

a) The upper limit of a one-sided Clopper–Pearson confidence interval is defined

by π for which
y

∑

k=0

(

n

k

)

πk(1− π)n−k = α

(Agresti 2013, 603). Setting y = 0 yields

(

n

0

)

π0(1− π)n = (1− π)n = α.

Hence
1− π = α1/n

⇔

π = 1− α1/n.

The one-sided 100× (1− α) % Clopper–Pearson confidence interval is

[0, 1− α1/n].

b) The lower limit of a one-sided Clopper–Pearson confidence interval is defined

by π for which
n

∑

k=y

(

n

k

)

πk(1− π)n−k = α

(Agresti 2013, 603). Now y = n or

(

n

n

)

πn(1− π)n−n = πn = α.



Thus

π = α1/n.

The one-sided 100× (1− α) % Clopper–Pearson confidence interval is

[α1/n, 1].

3. Let n∗ = 1/n. The first order Maclaurin approximation for the upper limit 1− αn∗

of the one-sided 95 % Clopper–Pearson confidence interval is

1− αn∗

≈ (1− αn∗

)
∣

∣

n∗=0
+

(

−αn∗

logα
)
∣

∣

n∗=0
× n∗

= 1− 1− logα× n∗

= −
logα

n
.

By substituting α = 0.05 one obtains the upper limit of the rule of three:

−
log 0.05

n
≈ −

−2.995732

n
≈

3

n
.

Extra comments: The approximation is good for n > 30 according to Wikipedia. Jova-

novic (2005) suggests that 3/(n+ 1) is a better approximation.1

4.

a) The 95 % Wald confidence interval

π̂ ± z0,025
√

π̂(1− π̂)/n

is [0, 0] if π̂ = 0. The given R code returns of course the same interval.

b) Command prop.test(0,34, correct=FALSE) gives 95 % score con-

fidence interval [0, 0.1015]. The same interval to four decimal places is obtained with

the code given in the exercise.

c) Formula 1 − 0.0251/34 yields 0.1028. The 95 % Clopper–Pearson confidence

interval is [0, 0.1028].
Command binom.test(0,34) and the script of Agresti at http://www.

stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html produce both exact-

ly the same 95 % Clopper–Pearson confidence interval [0, 0.1028].
d) Typing midPci(0,34,0.05) in R returns mid-p Clopper–Pearson confi-

dence interval [0, 0.0843].
In this special case the upper endpoint of the confidence interval could be solved

analytically explicitly (from ”Background theory”):

1

2
(1− π0)

n = α/2 ⇔

(1− π0)
n = α ⇔

1− π0 = α1/n
⇔

π0 = 1− α1/n.

1Https://en.wikipedia.org/wiki/Rule_of_three_\%28statistics\%29 (read

19.9.2015). B.D. Jovanovic (2005): Confidence Intervals, Binomial, When no Events are Observed.

Encyclopedia of Biostatistics. Wiley.



Evaluating the right hand side of the last equation at α = 0.05 and n = 34 yields

0.0843. It is the same figure as produced by the command midPci(0,34,0.05).

e) The rule of three confidence interval is

[0, 3/34] = [0, 0.0882].

f) The intervals are collected here in descending order:

• [0, 0.1028] (Clopper–Pearson)

• [0, 0.1015] (score)

• [0, 0.0882] (rule of three)

• [0, 0.0843] (mid-p Clopper–Pearson)

• [0, 0] (Wald).

The Clopper–Pearson interval is the widest. It tends to be too wide in general.

The score interval is almost as wide as the Clopper–Pearson interval. The sco-

re interval is typically narrower than it or even the mid-p version of it (Table 5.2 in

Newcombe 2013 and Table 1 in Schilling and Doi 2014)2. Here the score interval is

only slightly narrower than the Clopper–Pearson interval and is wider than the mid-p

Clopper–Pearson interval. Possible explanations are the extremity of the present data

and that the Wilson interval has poor coverage probability for π close to 0 or 1 (e.g.

Agresti 2013, 33).

The rule of three interval lies close to the mid-p Clopper–Pearson interval but be-

longs in a sense to another league: It is the sole interval calculated as a one-sided inter-

val. The Clopper–Pearson interval, say, is calculated by inverting two one-sided tests at

the level α = 0.05/2 = 0.025. The rule of three interval is based on a single one-sided

test at level α = 0.05.

The mid-p Clopper–Pearson interval is the shortest of the comparable and mea-

ningful intervals. Indeed, its width is taken as the reference point in the simulations of

Newcombe (op. cit., Table 5.2).

The Wald interval is senseless reflecting the problems it faces near the boundaries

of the parameter space [0, 1].

2R.G. Newcombe (2013): Confidence Intervals for Proportions and Related Measures of Effect Size.

CRC. Boca Raton, FL. M.F. Schilling and J.A. Doi (2014): A Coverage Probability Approach to Finding an

Optimal Binomial Confidence Procedure. The American Statistician, 68, 133–145.



5.

a) Let µ1 = nπ10 = nπ0, µ2 = nπ20 = n(1 − π0), and π̂ = n1/n. It is proved

below that X2 = z2s :

X2 =
∑2

i=1

(ni − µi)
2

µi

=
(n1 − nπ10)

2

nπ10

+
(n2 − nπ20)

2

nπ20

=
(n1 − nπ0)

2(1− π0) + [n− n1 − n(1− π0)]
2π0

nπ0(1− π0)

=
(n1 − nπ0)

2(1− π0) + (n1 − nπ0)
2π0

nπ0(1− π0)

=
(n1 − nπ0)

2

nπ0(1− π0)

=
(n1/n− π0)

2

π0(1− π0)/n

=
(π̂ − π0)

2

π0(1− π0)/n

= z2s .

b) Test statistic zs follows asymptotically the Standard Normal distribution so the

square of it follows asymptotically χ2 distribution with 1 degrees of freedom (χ2(1)).
In the present circumstance X2 = z2s . Hence χ2(1) must be the asymptotic distribution

of X2.

c) The two test statistics and associated tests yield the same inferences in two-sided

testing. χ2 test is two-sided, but test statistics zs can be used for one-sided testing as

well. It matters which test statistic one chooses if one wants to carry out a one-sided

test.



6.

a) First the squared difference in the numerator of the X2 test statistic is calculated:

n11 − µ̂11 = n11 −
n1+n+1

n

=
n11n− (n11 + n12)(n11 + n21)

n

=
n11(n11 + n12 + n21 + n22)− n2

11 − n11n21 − n11n12 − n12n21

n

=
n11n22 − n12n21

n
.

Accordingly

n12 − µ̂12 =
n12n21 − n11n22

n
,

n21 − µ̂21 =
n12n21 − n11n22

n
and

n22 − µ̂22 =
n11n22 − n12n21

n
.

It is the case that

(nij − µ̂ij)
2 =

(n11n22 − n12n21)
2

n2
.

Indices i or j do not affect the value of (nij − µ̂ij)
2! Intuition: The estimated expected

frequencies sum to the marginal frequencies (check it as well!). The departure of the

observed from the estimated expected frequency nij − µ̂ij must cancel in the neigh-

bouring cell in the 2× 2 table. The squared differences thus equal.

b)

2
∑

i=1

2
∑

j=1

1

µ̂ij
=

2
∑

i=1

2
∑

j=1

n

ni+n+j

= n

(

1

n1+n+1

+
1

n1+n+2

+
1

n2+n+1

+
1

n2+n+2

)

= n
n2+n+2 + n2+n+1 + n1+n+2 + n1+n+1

n1+n2+n+1n+2

= n
n2+(n+1 + n+2) + n1+(n+1 + n+2)

n1+n2+n+1n+2

= n
n2+n+ n1+n

n1+n2+n+1n+2

=
n2(n1+ + n2+)

n1+n2+n+1n+2

=
n3

n1+n2+n+1n+2

.



c) The numerator is fixed from the point of view of the i,j indexing, so the test

statistic X2 can be calculated this way because of the points a) and b):

X2 =
2

∑

i=1

2
∑

j=1

(nij − µ̂ij)
2

µ̂ij

a)
=

(n11n22 − n12n21)
2

n2

2
∑

i=1

2
∑

j=1

1

µ̂ij

b)
=

(n11n22 − n12n21)
2

n2

n3

n1+n2+n+1n+2

=
n(n11n22 − n12n21)

2

n1+n2+n+1n+2

.

The requested formulation is obtained.3

3The proof is from J. Wu and S. Coggeshall (2012): Foundations of Predictive Analytics. CRC Press.

Boca Raton, FL. (Page 23.)


