
CATEGORICAL DATA ANALYSIS, 5 credits (intermediate studies), 3.9.–22.10.2015. Literatu-

re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

Suggested solutions for the 1st set of exercises

1.

a) Let the number of different arrangements be N . If the a objects could be diffe-

rentiated from one another they could be arranged in k! different orders and there would

be N × k! different arrangements. If in addition the b were distinguishable, too, they

could be arranged in (n− k)! different ways and there would be N × k!× (n− k)! ar-

rangements altogether. In that case all the objects would be identifiable and the number

of arrangements would be n!. Thus it must be the case that

N × k!× (n− k)! = n!

or

N =
n!

k!× (n− k)!
=

(

n

k

)

.

b) By similar reasoning as above the equation

N × n1!× n2!× . . .× nk! = n!,

is obtained. It follows that

N =
n!

n1!× n2!× . . .× nk!
.

2.

a) Let Y be a Bernoulli distributed random variate with success probability π. Sup-

pose that n independent identical Bernoulli experiments (each with probability π) are

carried out. The outcome is y realised successes and n − y failures. For example the

first three experiments turned out as successes, the next experiment was a failure fol-

lowed by two successes and two failures so that the total count of successes is y. The

probability of the observed sequence is

πππ(1− π)× · · · × π(1− π) = πy(1− π)n−y.

The formulation on the right is obtained by combining terms suitably. The formulation

on the right applies regardless of the order of appearances given y.

There are
(

n

y

)

alternative sequences of y successes and n − y failures (exercise 1

a)). Each sequence is a disjoint (combined) event. Probability of disjoint events is the

sum of the probabilities of them:

P(Y = y) = πy(1− π)n−y + · · ·+ πy(1− π)n−y =

(

n

y

)

πy(1− π)n−y .



b) If a multinomial distribution applies then the probability of each sequence is

correspondingly

πn1

1
πn2

2
. . . πnc

c

(using the notation of the book). There are

n!

n1!n2! . . . nc!

alternative sequences (exercise 1 b)). They are disjoint, so the probability for n1 obser-

vations in class 1, n2 observations in class 2 etc., is

P(N1 = n1, N2 = n2, . . . , Nc = nc) =
n!

n1!n2! . . . nc!
πn1

1
πn2

2
. . . πnc

c

(
∑c

i=1
Ni = n).

3.

a) Random variates Yi (i = 1, 2, . . . , n) are independent and follow the Bernoulli

distribution with parameter π. The expected value is simple to calculate:

E(Yi) = π × 1 + (1− π)× 0 = π + 0 = π ≡ µ

(for all i).
The variance is the expected value of squared deviations from the mean derived

above:
var(Yi) = E

[

(Yi − µ)2
]

= π × (1− π)2 + (1− π)× (0− π)2

= π × (1− 2π + π2) + π2 − π3

= π − π2

= π(1− π).

Alternatively the variance can be obtained by Steiner’s rule

var(Yi) = E
(

Y 2

i

)

− µ2.

It is derived below:

var(Yi) = E
[

(Yi − µ)2
]

= E
(

Y 2

i − 2Yiµ+ µ2
)

= E
(

Y 2

i

)

− E (2Yiµ)+E
(

µ2
)

= E
(

Y 2

i

)

− 2µE(Yi) + E
(

µ2
)

= E
(

Y 2

i

)

− 2µ2 + µ2

= E
(

Y 2

i

)

− µ2.

The alternative derivation of the variance of Yi is (µ = π is substituted):



var(Yi) = E(Y 2

i )− µ2

= π × 12 + (1− π)× 02 − π2

= π − π2

= π(1− π).

b) The results above enable derivation of the mean and variance of P =
n
∑

i=1

Yi/n:

E(P ) = E

(

n
∑

i=1

Yi

n

)

=
n

∑

i=1

E

(

Yi

n

)

=
1

n

n
∑

i=1

E(Yi) =
1

n

n
∑

i=1

π

=
1

n
× n× π = π

and

var(P ) = var

(

n
∑

i=1

Yi

n

)

=

n
∑

i=1

var

(

Yi

n

)

=
1

n2

n
∑

i=1

var(Yi) =
1

n2

n
∑

i=1

π(1− π)

=
1

n2
× n× π × (1− π) =

π(1− π)

n
.

The second equality in the calculation of the variance follows from the independence

of the observations.

P is an unbiased estimator of π because E(P ) = π.

c) Random variate P can be expressed as follows:

P =

n
∑

i=1

Yi

n
=

1

n

n
∑

i=1

Yi.

Random variates Yi are independent and identically distributed so the assumptions of

the Central limit theorem apply. As calculated in a), E(Yi) = π and var(Yi) = π(1−π).
Thus P follows approximately the Normal distribution N(π, π(1− π)/n):

P
a
∼ N(π, π(1− π)/n).

Above ”
a
∼” stands for ”follows in large samples” or ”follows asymptotically”.



4. The interpretation below is based on Figures 1–3 in A. Buse (1982): The Likelihood

Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. American Statis-

tician, 36, 153–157. The standard assumptions, which guarantee the usual asymptotic

properties of likelihood based statistics, are assumed.

The likelihood ratio test statistic (LR) is based on the vertical distance between l(θ̂)

and l(θ0), the Wald statistic is based on the horizontal distance between θ̂ and θ0, and

the score statistic (S) is based on the slope of the likelihood function evaluated at the

null value of l(θ) or θ0 (Figures 1–3). The larger the distances or the absolute value

of the slope the larger the statistics tend to be. The Wald and score statistics depend

explicitly on the Fisher information for θ.

The Wald and score statistics kind of try to assess the difference l(θ̂) − l(θ0) by

exploiting knowledge of the difference θ̂ − θ0 or of the slope l′(θ0) and the observed

information

j(θ) = −
∂2l(θ)

∂θ2

or the curvature around the peak of l(θ):

• The magnitude of the difference l(θ̂) − l(θ0) cannot be reasoned from the dif-

ference θ̂ − θ0 alone. The former difference can increase even though the latter

difference remains unchanged if the peak of l(θ) steepens (Figure 2). In the close

relative
√

j(θ̂)(θ̂ − θ0)

of the Wald statistic based on the observed information the difference θ̂ − θ0 is

multiplied by

√

j(θ̂). The statistic increases if the peak steepens or the observed

information and the LR statistic increase. In large samples j(θ̂) ≈ i(θ̂) and the

close relative statistic and the Wald statistic merge.

• The magnitude of the difference l(θ̂) − l(θ0) cannot be assessed by the slope

l′(θ0) alone either (Figure 3). A sharp peak or large observed information j(θ0)
at the null value θ0 lessens the value of

l′(θ0)
√

j(θ0)

which is a close relative of the score statistic. The difference l(θ̂) − l(θ0) must

be smaller and the peak must be closer to θ0 the sharper the peak. Under the null

for larges samples i(θ0) ≈ j(θ0) and hence the score and its relative statistic are

essentially the same.

Extra comments. The following presupposes that the model parameter θ is vector va-

lued (multidimensional).

The LR statistic is often regarded as the most difficult to compute because one has

to evaluate the likelihood function at both θ̂ and θ0 to calculate it. Cases exist where the

computation is laborious or leads to theoretical problems. Examples: If the hypothesis



is nonlinear then the Wald statistic may depend on the parameterization chosen. For

example denote the odds ratio by θ. Then the Wald statistic takes in general a different

value if the null hypothesis is θ = 1 or is log θ = 0 despite that the null hypotheses

are equivalent. In principle for a given data any value of the Wald test statistic and

any test outcome is possible by a suitable choice of parametrization.1 Agresti (2013,

pages 174–175)2 addresses a case in point in the context of logistic regression. If the

parameter under test is not identified under the null hypothesis then the score statistic

is problematic to evaluate.

The facts below are from R.F. Engle (1984): Wald, Likelihood Ratio, and Lagrange

Multiplier Tests in Econometrics. In Z. Griliches and M.D. Intriligator: Handbook of

Econometrics II, 775–826. North-Holland. Amsterdam.

• The asymptotic χ2 distribution of the LR test statistic was apparently derived

first by Wilks 1938.3

• The Wald test dates to 1943.4

• Rao suggested the score test 1948. The test is often called — in the econometric

literature especially — the Lagrange multiplier test. The name derives from a

way of deriving the test statistic by solving a restricted maximisation problem

by the method of Lagrange multipliers (Aitcheson and Silvey 1958 and Silvey

1959).5

• If l(θ) is a quadratic function (with respect to θ) then W = LR = S.

• Under the null hypothesis θ can be approximated (in standard situations) in the

neighbourhood of θ0 by a quadratic function (a Taylor approximation). This is

the intuition for the common asymptotic distribution of the three test statistics

under the null hypothesis. (In the case under study in the exercise χ2(1) or the

χ2 distribution with 1 degrees of freedom.)

1E.g. A.W. Gregory and M.R. Veall (1985): Formulating Wald Tests of Nonlinear Restrictions. Econo-

metrica, 53, 1465–1468. T.S. Breusch and P. Schmidt (1988): Alternative Forms of the Wald Test: How

Long Is a Piece of String?. Communications in Statistics – Theory and Methods, 17, 2789–2795. F. Lafon-

taine and K.J. White (1986): Obtaining Any Wald Statistic You Want. Economics Letters, 21, 35–40. M.D.

Dagenais and J.-M. Dufour (1991): Invariance, Nonlinear Models, and Asymptotic Tests. Econometrica, 59,

1601–1615. T.R. Fears, J. Benichou and M.H. Gail (1996): A Reminder of the Fallibility of the Wald Sta-

tistic. The American Statistician, 50, 226–227. G.C.R. Kemp (2001): Invariance and the Wald Test. Journal

of Econometrics, 104, 209–217. N.K. Dastoor (2008): A Simple Explanation for the Non-invariance of a

Wald Statistic to a Reformulation of a Null Hypothesis. Economics Bulletin, 3, 1–10. D.D. Boos and L.A.

Stefanski (2013): Essential Statistical Inference. Theory and Methods. Springer. New York. Section 3.2.8.
2A. Agresti (2013): Categorical Data Analysis, 3rd edition. CUP. Hoboken, NJ.
3S.S. Wilks (1938): The Large Sample Distribution of the Likelihood Ratio for Testing Composite Hy-

potheses. Annals of Mathematical Statistics, 9, 60–62.
4A. Wald (1943): Tests of Statistical Hypothesis Concerning Several Parameters when the Number of

Observations is Large. Transactions of the Mathematical Society, 54, 426–482.
5C.R. Rao (1948): Large Sample Tests of Statistical Hypotheses Concerning Several Parameters with

Applications to Problems of Estimation. Proceedings of the Cambridge Philosophical Society, 44, 150–157.

J. Aitcheson and S.D. Silvey (1958): Maximum Likelihood Estimation of Parameters Subject to Restraints.

Annals of Mathematical Statistics, 29, 813–828. D.S. Silvey (1959): The Lagrangean Multiplier Test. Annals

of Mathematical Statistics, 30, 389–407.



• If the model is the classical linear regression then the likelihood function for θ is

quadratic if the variance of the error term is known. The three test statistics then

equal.

• If the error variance of the classical linear regression model needs to be estimated

(by the method of maximum likelihood) then the distributions of the three test

statistics depend monotonically on the F distribution. Hence exact critical values

are (in principle) definable and the associated tests based on proper exact critical

values yield identical inferences. If the asymptotic distribution is used as the

reference distribution then the test outcomes may differ in finite samples. (The

test statistics and their distributions are not the same.)

• In the case of the classical linear regression model — including models in which

the errors are autocorrelated — it is always the case that

W ≥ LR ≥ S.

The composer of the exercise adds: Compare the above inequalities with the

geometrical interpretation of the Wald and score statistics as approximations of

the LR statistic!

5.

a) The probability mass function of a binomially distributed random variable is

(

n

k

)

πy(1− π)n−y.

The coefficient of the product πy(1 − π)n−y is irrelevant from the point of view of

maximising of the function with respect to π. The likelihood function can hence be

defined as

πy(1− π)n−y.

The logarithm of it is

l(π) = ylog(π) + (n− y)log(1− π).

b) The first derivative of the log-likelihood function is

l′(π) =
y

π
−

n− y

1− π
=

y − yπ − nπ + πy

π(1− π)
=

y − nπ

π(1− π)
.

c) The maximum likelihood estimator (MLE) is obtained by differentiating the log-

likelihood function with respect to π and by solving the root of the equation obtained

by setting the derivative equal to zero:

y − nπ

π(1− π)
= 0⇔ y − nπ = 0⇔ π =

y

n
= n−1

n
∑

i=1

yi.



The MLE of π is

π̂ = p = n−1

n
∑

i=1

yi.

d) The observed information is

−
∂2l(π)

∂π2
= −

∂

∂π

[

y

π
−

n− y

1− π

]

=
y

π2
+

n− y

(1− π)2
.

The expected information is

i(π) = E[−
∂2l(π)

∂π2
]

= E

[

y

π2
+

n− y

(1− π)2

]

=
nπ

π2
+

n− nπ

(1− π)2

=
n

π(1− π)
.

The mean E(y) = nπ of a binomial random variate is substituted above. The inver-

se of the expected information is

[i(π)]−1 =
π(1− π)

n
.

It matches with the variance of π̂ derived earlier.


