
CATEGORICAL DATA ANALYSIS, 5 credits (intermediate studies), 3.9.–22.10.2015. Literatu-

re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

5th exercise set (9.10.)

Background theory

Independent multinomial sampling (independent binomial sampling being a special

case) and multinomial sampling have been discussed during the lectures. Sample sizes

for the independent samples are fixed in the former; the total sample size is fixed in the

latter. A third possibility is that the frequencies (Ni) in the cells of a contingency table

with c cells each follow a Poisson distribution (Ni ∼ Poi(µi)):

P(Ni = ni) = e−µi
µni

i

ni!
, ni = 0, 1, 2, . . . , i = 1, . . . , c.

The total sample size N = N1 + · · · + Nc is then random. The mean and variance

of Ni equal both µi > 0. Assuming independence of the cell frequencies, the joint

probability mass function for Nis is the product of the probability mass functions for

each frequency:

P(N1 = n1, N2 = n2, . . . , Nc = nc) =
c
∏

i=1

e−µi
µni

i

ni!
.

By the properties of the Poisson distribution, the total count N = N1+· · ·+Nc follows

Poi(
∑c

i=1
µi).

An example might be asylym applicants at Finland 1.1.–31.8.2015 (the most recent

published figures) by nationality1:

nationality count

Iraq 3228

Somalia 1282

Albania 583

Afghanistan 411

Syyria 192

Russia 140

other 1179

total 7015

Each count would be treated as a realisation of an independent Poisson variate with

a (potentially different) mean µi, i = 1, . . . , 7. (The counts need not be in descending

order. The ordering is for illumination of the most important source countries of asylum

seekers.)

1Statistics on asylum and refugees. The Finnish immigration service. (Http://www.migri.fi/

about_us/statistics/statistics_on_asylum_and_refugees (read 5.10.2015)



1. Let the frequencies (Ni) of the table cells (c altogether) follow independent Poi(µi)
distributions, and let the total observed sample size be n = n1 + · · · + nc. Prove that

the joint probability mass function of the Nis, conditional on the observed total sample

size n, is multinomial:
n!

n1!n2! . . . nc!
πn1

1 πn2

2 . . . πnc

c .

Here πi = µi/(
∑c

j=1
µj). (Hint: Agresti 2013, 8.)

2. The contingency table examined is

Y
y1 y2 Σ

X x1 n11 n12 n1+

x2 n21 n22 n2+

Σ n+1 n+2 n

(in obvious notation). Fisher’s exact test is based on the hypergeometric distribution

P(N11 = n11) =

(

n1+

n11

)(

n2+

n21

)

(

n

n+1

) =

(

n1+

n11

)(

n2+

n1+ − n11

)

(

n

n+1

) .

Above N11 is the random frequency of the 1,1-cell and lower case letters denote obser-

ved values. The distribution was derived in the lecture by arguments explicitly emplo-

ying combinatorics. The distribution can be obtained by the reasoning below as well.

Suppose that the table is a result of independent binomial sampling or that the two

rows are independent binomial samples with fixed sample sizes n1+ and n2+. Let the

null hypothesis be equality of proportions (probability of y1 equals π) in the two cor-

responding populations. Prove that the hypergeometric distribution arises as the condi-

tional distribution given the sample sizes n1+ and n2+. (Hint: Formulate the joint pro-

bability mass function of the two samples assuming independent binomial sampling.

Note that n+1 is likewise a binomial random variate. Devide the joint probability mass

function by the conditioning probability mass function.)2

3. The (multivariate) Multinomial distribution

P(N1 = n1, N2 = n2, . . . , Nc = nc) =
n!

n1!n2! . . . nc!
πn1

1 πn2

2 . . . πnc

c

is focused at. Above
∑c

i=1
Ni = n and

∑c

i=1
πi = 1.

a) Prove that the covariance between the frequencies in categories j and k is

cov(Nj , Nk) = −nπjπk.

2This derivation is given e.g. in Y.M. Bishop, S.E. Fienberg and P.W. Holland (1975): Discrete Multiva-

riate Analysis. MIT Press. Cambridge, MA. P. 364.



(Hint: Formulate a Multinomially distributed vector
∑n

i=1
Yi, where Yi = [Yi1 . . . Yic]

′.

Derive the covariances of the components of Yi and, on the grounds of independence

of the observations, the covariances of the components of
∑n

i=1
Yi.

b) Prove that the correlation between the frequencies in categories j and k is

cor(Nj , Nk) =
−πjπk

√

πj(1− πj)πk(1− πk)
.

c) Let the number of categories be c = 2. Prove that the correlation between the

frequencies in categories 1 and 2 is

cor(N1, N2) = −1.

Provide intuition for the result.3

4. It will be shown that the statistics z2s and X2

z2s ≡
(π̂1 − π̂2)

2

π̂(1− π̂)/n1+ + π̂(1− π̂)/n2+

=
2

∑

i=1

2
∑

i=j

(nij − µ̂ij)
2

µ̂ij

≡ X2

explored in exercises 3.6 and 4.5 are score statistics. The first two rows of the data

n11 n12 n1+

n21 n22 n2+

n+1 n+2 n

are assumed to compose of two independent binomial samples with (fixed) sample

sizes n1+ and n2+. The probabilities for the cells are as follows:

π1 1− π1 1

π2 1− π2 1

The null hypothesis is that π1 = π2.

In the case of a multivariate parameter π = [π1 . . . πk]
′ the score statistic is

∇l(π̂0)
′
I(π̂0)

−1∇l(π̂0),

if the null hypothesis binds all parameters. Above l(π) is the logarithm of the likelihood

function for the parameters,∇l(π̂0) is the gradient of the logarithm of the likelihood

function
[

∂

∂π1

l(π) . . .
∂

∂πk

l(π)

]

′

evaluated at the restricted (as expressed by the null hypothesis) MLE π̂0 and I(π̂0)
−1

is the inverse of the Fisher information matrix (k× k) evaluated at the restricted MLE.

In the present circumstance k = 2 and π = [π1 π2]
′.

3Points a) and b) are exercise 1.19 in Alan Agresti (2013): Categorical Data Analysis, 3. laitos. Wiley.

Hoboken, New Jersey.



a) Prove that

l(π) = n11 log π1 + n12 log(1− π1) + n21 log π2 + n22 log(1− π2)

b) Prove that

∇l(π) =

[

n11

π1

− n12

1− π1

n21

π2

− n22

1− π2

]

′

.

c) Prove that

∇l(π̂0) =

[

n
n11n22 − n12n21

n+1n+2

n
n12n21 − n11n22

n+1n+2

]

′

.

(Hint: π̂1,0 = π̂2,0 = n+1/n, where π̂1,0 and π̂2,0 are the restricted MLEs of π1 and

π2.)

d) Prove that

−











∂2

∂π2
1

l(π)
∂2

∂π1∂π2

l(π)

∂2
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=









n11

π2
1

+
n12

(1− π1)2
0

0
n21

π2
2

+
n22

(1− π2)2









.

e) Prove that the Fisher information matrix and the inverse of it evaluated at the

restricted MLE π̂0 are

I(π) =







n1+

π1(1− π)
0

0
n2+

π2(1− π2)







and

I(π̂0)
−1 =







n+1n+2

n2n1+

0

0
n+1n+2

n2n2+






.

f) Finally prove that

∇l(π̂0)
′
I(π̂0)

−1∇l(π̂0) =
n(n11n22 − n12n21)

2

n1+n2+n+1n+2

or that the score statistic matches with the statistics z2s and X2 (by exercises 3.6 and

4.5).



5. The tables below relate to matched pairs data (notation obvious):

Y
y1 y2 Σ

X x1 π11 π12 π1+

x2 π21 π22 π2+

Σ π+1 π+2 1

Y
y1 y2 Σ

X x1 n11 n12 n1+

x2 n21 n22 n2+

Σ n+1 n+2 n

a) The interesting question for matched pairs data is, does marginal homogeneity

π1+ = π+1 apply. Prove that π12 = π21 under marginal homogeneity.

b) Does marginal homogeneity imply that π2+ = π+2? State your reasons for your

answer.

c) Does marginal homogeneity imply that π11 = π22 as well? State your reasons

for your answer.

6. McNemar’s test statistic for marginal homogeneity can be written in alternative

ways:

z =
n12 − 0, 5× n∗√
n∗ × 0, 5× 0, 5

=
n12 − n21√
n12 + n21

=
−(n21 − 0, 5× n∗)√

n∗ × 0, 5× 0, 5

(cf. formula (8.1) in the book). Derive the second and third equality above.


