
CATEGORICAL DATA ANALYSIS, 5 credits (intermediate studies), 3.9.–22.10.2015. Literatu-

re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

3rd exercise set (25.9.)

Background theory

As explained during the lecture, the lower and upper bounds of a 100 × (1 − α) %

two-sided Clopper–Pearson confidence interval for π are defined as the solutions to the

equations
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for y = 1, . . . , n − 1 (lower and upper bound, respectively). If y = 0 then the lower

bound is simply 0, and likewise if y = n then the upper bound is set at 1. The other

limit is still solved from one or the other of the above equations. The bounds have

analytical solutions for all values of y.

100× (1− α) % two-sided mid-p Clopper–Pearson confidence interval endpoints

for π are the solutions to the equations
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for y = 1, . . . , n − 1. If y = 0 then the lower edge is 0, and if y = n then the upper

edge is 1. The other edge is still solved from one or the other of the equations above.

The edges do not have analytical solutions and they have to be solved numerically in

general. Exceptions are cases y = 0 and y = n. The equation to be solved is then
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(lower bound), respectively. These equations can be solved analytically.1
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1. Construction of a Clopper–Pearson confidence interval for a proportion π is explai-

ned on pages 603–605 of Agresti’s 2013 book. The true coverage probability Cn(π) of

a Clopper–Pearson confidence interval is determined by the formula

Cn(π) =

n
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I(k, π)
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πk(1− π)n−k

(Agresti and Coull 1998)2 and is plotted in Figure 16.1 of the book for sample size

n = 25. Above I(k, π) equals 1 if the confidence interval resulting from k successes

covers π but takes value 0 otherwise. The reason for the peakedness of the coverage

probability in the figure is explored. Both n and π are fixed.

a) There are n+1 different possible confidence intervals. Explain why. (Hint: There

are n+ 1 outcomes associated with Binomial distribution Bin(n, π).)
b) Explain why the above formula for the coverage probability holds.

c) Explain the peaks and smooth sections of the coverage probability in Figure 16.1.

(Hint: Alter π slightly. Think what happens when the same confidence intervals cover

the altered π and what happens when they do not.)

2A. Agresti and B.A. Coull (1998): Approximate Is Better than ”Exact” for Interval Estimation of Bino-

mial Proportions. American Statistician, 52, 119–126.



2. 100×(1−α) % Clopper–Pearson confidence intervals can be calculated analytically

by means of the formulae given in Agresti’s 2013 book (p. 603). One-sided Clopper–

Pearson confidence intervals can be calculated especially conveniently if the number

of successes or failures equals the number of independent Bernoulli experiments (n).

a) Derive the one-sided 100× (1− α) % Clopper–Pearson confidence interval

[0, 1− α1/n]

in the case of 0 successes out of n independent Bernoulli experiments. (Hint: Argue

that
(

n
0

)

π0(1− π)n−0 = α and solve π.)

b) Derive the one-sided 100× (1− α) % Clopper–Pearson confidence interval

[α1/n, 1]

in the case of n successes out of n independent Bernoulli experiments. (Hint: Now set
(

n
n

)

πn(1− π)n−n = α and solve π.)

3. Empiricists sometimes use the simple rule of three to calculate the upper limit of a

one-sided 95 % confidence interval for the success probability π in case of no successes

in the data. The upper limit is
3

n

according to the rule. Derive it by calculating a first order Maclaurin approximation

(Taylor approximation around zero) for 1 − α1/n (the upper limit of the one-sided

100 × (1 − α) % Clopper–Pearson confidence interval in case of 0 successes) with

respect to 1/n and evaluate the expansion at α = 0.05. (Hints: ∂ax/∂x = ax ln a for

a > 0. Denote n∗ = 1/n, and calculate the approximation for 1− αn∗

.)

4. Palo-Repo (2015) modeled child custody decisions of the Helsinki District Court of

Appeal 2003–2006.3 The social services have often conducted a child custody evalua-

tion and given a recommendation which parent should become the custodial parent at

whose address the child will be registered at. In Palo-Repos’s data the recommendation

was for the mother in 34 cases. The Court decided the custodial dispute accordingly in

favour of the mother in all of these cases. The Court does not follow the recommenda-

tion of the social services always: The father was recommended in 19 disputes but the

decision was in favour of the father in 17 cases only. The 34 cases in which the mother

was the recommended custodial parent are focused.

a) Calculate the 95 % Wald confidence interval for the probability that the Court

does not decide in favour of the mother if the social service has recommended that the

child should be registered to live with the mother. You can use the R code below for

the calculation.

p <- 0

q <- 1-p

3Mari Palo-Repo (2015): Lasten huolto- ja asumisriidat Helsingin hovioikeudessa 2003–2006. Master’s

thesis (statistics). Faculty of Social Sciences. University of Helsinki. Https://helda.helsinki.fi/

handle/10138/155254 (read 19.9.2015).



n <- 34

Wl <- p-1.960*sqrt(p*q/n)

Wu <- p+1.960*sqrt(p*q/n)

Wl

Wu

b) Calculate the 95 % score confidence interval for the same probability. You can

do it with the command prop.test(0,34, correct=FALSE), use the script at

http://www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html

by Alan Agresti or use the code below.

n <- 34

p <- 0

z <- 1.960

Wl <- p*n/(n+z^2)+0.5*(z^2)/(n+z^2)-(z/(n+z^2))

*sqrt(p*(1-p)*n+0.25*(z^2))

Wu <- p*n/(n+z^2)+0.5*(z^2)/(n+z^2)+(z/(n+z^2))

*sqrt(p*(1-p)*n+0.25*(z^2))

Wl

Wu

c) Calculate the 95 % Clopper–Pearson confidence interval for the same probabi-

lity. For the present data it can be obtained from the formula 1 − 0.0251/34. It can be

obtained with the command binom.test(0,34) or with the script at http://

www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html as well.

d) Calculate the 95 % mid-p Clopper–Pearson confidence interval for the same pro-

bability (Agresti 2013, 605). You can use the numerical routine midPci by Anna Got-

tard4 at http://www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.

html:

midPci <- function(x,n,alpha){

pp<-seq(0.0001, 1 , 0.0005)

uplim<-1

lowlim<-0

if (x == 0)

uplim <- 1-alpha^(1/n)

if (x == n)

lowlim <- (alpha)^(1/n)

if (x>0 & x<n){

a2 <- 0.5*pbinom(x-1, n , pp,lower.tail = T) +

0.5*pbinom(x, n , pp, lower.tail = T, log.p = FALSE)

uplim=pp[ max(which(a2>(alpha/2))) ]

lowlim=pp[ min(which(a2<(1-alpha/2))) ]

}

c(lowlim,uplim)

}

(Hint: Read the script in R, and give the command midPci(0,34,0.05).)

e) Calculate the rule of three confidence interval for the same probability.

f) Compare the widths, properties and meaningfulnesses of the intervals for this

particular data.

4A. Agresti and A. Gottard (2007): Nonconservative Exact Small-Sample Inference for Discrete Data.

Computational Statistics & Data Analysis, 51, 6447–6458.



P.S. Confidence intervals for a proportion, derived by the above or other means, can

be calculated also with R packages PropCis by Ralph Scherer and binom by Sun-

dar Dorai-Ra or with the scripts at http://statistics.unl.edu/faculty/

bilder/categorical/programs_and_data.html by Chris Bilder and Tom

Loughin.

5. Let the null hypothesis be that the parameter of the binomial distibution is π = π0

and the sample size is n. The MLE of π is π̂. Rao’s score test statistic is then

zs =
π̂ − π0

√

π0(1− π0)/n
.

a) Prove that the χ2 test statistic for independence

X2 =

2
∑

i=1

(ni − µi)
2

µi

is z2s if X2 is calculated from a 1× 2 table (n1 + n2 = n).

b) What is the asymptotic distribution of z2s and X2?

c) Does it make any difference, if one or the other statistic is used?

6. The χ2 test statistic for independence

X2 =

2
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i=1

2
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(nij − µ̂ij)
2

µ̂ij

is calculated from the 2× 2 table

n11 n12 n1+

n21 n22 n2+

n+1 n+2 n

.

Above µ̂ij = ni+n+j/n.

a) Prove first that

(nij − µ̂ij)
2 =

(n11n22 − n12n21)
2

n2
.

Does the value of (nij − µ̂ij)
2 depend on the indices i or j?! Explain the intuition for

your answer. (Hint: The estimates of the expected frequencies sum row- and columnwi-

se to the marginal frequencies.)

b) Prove next that
2
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2
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1
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n3
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.

c) Reason now that X2 can be expressed conveniently this way:

X2 =
n(n11n22 − n12n21)

2

n1+n2+n+1n+2

.


