
CATEGORICAL DATA ANALYSIS, 5 credits (intermediate studies), 3.9.–22.10.2015. Literatu-

re: Alan Agresti. An Introduction to Categorical Data Analysis, 2. edition. Lecturer: Pekka Pere.

1st exercise set (11.9.)

1. Let there be n > 0 elements in set A.

a) Explain why
(

n

k

)

(0 ≤ k ≤ n) is the number of different arrangements of the objects when A is com-

posed of k objects of one kind and n − k of another kind (”a” and ”b”). (Hint: Mark

by N the number of different arrangements. Reason the number of arrangements if the

a-objects could be differentiated. Reason next the number of arrangements if also the

b-objects could be differentiated. Set the number of arrangements you have reasoned

equal to n! (explain this as well) and solve N .)

b) Explain why
n!

n1!n2! . . . nk!

(i = 1, . . . , k; n1 + · · · + nk = n) is the number of different arrangements of the

objects when A is composed of k subsets each with ni similar objects in the subset but

different from the other objects.

2.

a) Explain carefully the symbols in the binomial formula

P(Y = y) =

(

n

k

)

πy(1− π)n−y

and the justification of it.

b) Explain carefully the symbols in the multinomial formula

P(N1 = n1, N2 = n2, . . . , Nc = nc) =
n!

n1!n2! . . . nc!
πn1

1
πn2

2
. . . πnc

c

and the justification of it.

3. Let Yi:t (i = 1, . . . , n) be independently distributed Bernoulli random variates. Yi

equals 1 with probability π and 0 with probability 1− π (π ∈ (0, 1)).
a) Derive the mean and variance of Yi.

b) Derive the mean and variance of P =
∑n

i=1
Yi/n. Is P an unbiased estimator

for π?

c) Explain carefully why P follows (approximatively) the Normal distibution when

n is large. What are the mean and variance of this Normal distribution? (Hint: Central

limit theorem.)



4. Let the log-likelihood function depend on a single parameter θ:

l(θ;y) ≡ l(θ).

Here y is the vector of observations. Explain the geometric intuition of the likelihood

ratio

2[l(θ̂)− l(θ0)],

Wald
√

i(θ)
∣

∣

∣

θ=θ̂
(θ̂ − θ0) =

√

i(θ̂)(θ̂ − θ0),

and Rao’s score

l′(θ)
√

i(θ)

∣

∣

∣

∣

∣

θ=θ0

=
l′(θ0)
√

i(θ0)

test statistics. Above θ0 is the value of θ under the null hypothesis, θ̂ is the maximum

likelihood estimator (MLE) of θ, l′(θ) is the derivative of the log-likelihood function

with respect to θ and

i(θ) = E

[

−
∂2l(θ)

∂θ2

]

is the Fisher or expected information for θ. (Hint: Figures 1–3 in A. Buse (1982): The

Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. American

Statistician, 36, 153–157.)

5.

Let us see how the previous results relate to likelihood inference in the present

context. Let yi (1 or 0) be observed values of a Bernoulli distributed random variate Yi

(i = 1, . . . , n) and y =
∑n

i=1
yi.

a) Derive the log of the likelihood function for π:

l(π) = y log(π) + (n− y) log(1− π).

b) Derive the first derivative of it:

l′(π) =
y − nπ

π(1− π)
.

c) Derive the MLE for π:

π̂ = p =
y

n
= n−1

n
∑

i=1

yi.

d) In the single parameter case the asymptotic variance of the MLE is (under stan-

dard conditions) the inverse of the Fisher information for the parameter:

i(π) = E

[

−
∂2l(π)

∂π2

]

.

Calculate [i(π)]−1 and compare the result with the variance of P derived above.


