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Model solutions for exercise IV

1. The dependence of the kinematic alpha effect α scales with ϑ as

α ∝ − cosϑ , (1)

where ϑ relates to the latitude θ through ϑ = θ + 90◦. The kinematic alpha effect is
positive in the northern and negative in the southern hemisphere.

The magnetic field will migrate in the direction

s = α∇Ω× ŷ , (2)

where Ω is the angular velocity vector, and ŷ is an azimuthal unit vector. The cross
product in Eq. 2 is the radial gradient of differential rotation:

∇Ω× ŷ =
∂Ω

∂r
. (3)

Let us take the rotation profile of the Sun within the convective zone (CZ, Figure 1).
The radial gradient of the angular velocity is positive between the tachocline and
bottom of the leptocline (at r ≈ 0.7 R⊙ and r ≈ 0.95 R⊙, respectively) for latitudes
below 45◦. Above 45◦ the radial gradient of the angular velocity is almost continuously
around or below zero.

Table 1 shows the migration direction of the latitudinal dynamo wave for positive and
negative α and ∂Ω/∂r values.

Table 1: Direction of shear s for positive and negative α and ∂Ω/∂r values.

∂Ω/∂r > 0 ∂Ω/∂r < 0
α > 0 s > 0 s < 0
α < 0 s < 0 s > 0

Comparing Table 1 and Fig. 1 we see that:

• Between the tachocline and bottom of the leptocline, at low latitudes the dynamo
wave migrates towards the poles, and at high latitudes it migrates towards the
equator.

• From the bottom of the leptocline upwards the dynamo wave migrates towards
the equator. This is the same that is recovered in observations.
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Figure 1: Rotation profile of the Sun within the convective zone for different latitudes
(Figure from Lecture Notes).

2. An axisymmetric magnetic field B can be decomposed to poloidal-toroidal components
as

B = BP +BT = ∇× (Aŷ) +Bŷ , (4)

where BP and BT are the poloidal and toroidal components of the magnetic field, A
and B are the vector potentials for the poloidal and toroidal fields, and ŷ is a unit
vector, in the same plane as the stellar equator.

The mean field induction equation without the α effect is

∂B

∂t
= ∇× (u×B− η∇×B) , (5)

where u = Ω×r, where Ω is the angular velocity vector of the star, and r is a position
vector, and η is the magnetic diffusivity. Looking at Eq. 4, we see that the toroidal
(B) and poloidal (A) components of the mean field induction equation can be given as
the y-component, and the uncurled y-component of Eq. 5:

∂B

∂t
= [∇× (u×B)− η∇×B]y

∂A

∂t
= [u×B− η∇×B]y .

(6)

Cowling’s antidynamo argument states that a steady, axisymmetric poloidal field can-
not be maintained by motional induction (Hide and Palmer, 1982). Looking at Eq. 6,
we see that motional induction (a gradient of u) only takes place in the generation of
the toroidal field. This means that the poloidal field decays over time, in accordance
with Cowling’s antidynamo argument.

If we re-instate the α effect term, ∂A/∂t will have a non-axisymmetric term, which
allows the regeneration of the poloidal field.

3. The diffusion time is

τD =
R2

⊙

ηt
, (7)
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where the solar radius is R⊙ ≈ 7× 108 m, and ηt is the magnetic diffusivity.

The turnover time of the meridional circulation, i.e., the time that it takes for the flow
to make a full revolution can be estimated by dividing the travelled distance of the
flow by the velocity of the flow along its trajectory

τT = tt + tb + 2ts

=
st
vt

+
sb
vb

+ 2
ss
vs

=
π
2
R⊙

vt
+

π
2
rbR⊙

vb
+ 2

(1− rb)R⊙

vs

=
π

2
R⊙

(
1

vt
+

rb
vb

)
+ 2

(1− rb)R⊙

vs
,

(8)

where tt, tb, and ts are the times spent on the top of the CZ, the bottom of the CZ,
and moving vertically between the two layers, st, sb and ss are the distances travelled
at the top and the bottom of the CZ and between the two layers, vt, vb and vs are
the speed of the flow at the top and the bottom of the CZ and moving between the
two layers (here we assume that vs = (vt + vb)/2), and rb = 0.7 is a scale factor that
determines how deep the meridional circulation reaches within the Sun.

Using 10 m/s and 1 m/s for flow speed at the top and bottom of the CZ, we get
τT = 30.29 yr.

The diffusion times for different ηt values are given in Table 2. From this we see, that
these are

Table 2

Dynamo type ηt (m2/s) τD (yr)

Turbulent dynamo 5× 108 31.05
Flux-transport dynamo 5× 106 3105.50

Thus we can conclude:

• When diffusion dominates over advection, the diffusion determines the cycle.

• When advection by meridional circulation dominates, the meridional speed deter-
mines the cycle.

4. There are several possible studies to refer to. There are some contradictions between
these in details, but the general notion is that the relative differential rotation α = ∆Ω

Ω

decreases with the angular velocity Ω, while the absolute differential rotation ∆Ω is
constant or slightly increases with Ω. As for the temperature dependence, some results
indicate and increase of α with temperature among main-sequence stars of F and G-
types. In the following we refer to the study by Reinhold et al. (2013).

Using Kepler observations, Reinhold et al. (2013) estimated the rotation periods P
and the absolute shear, which serves as a proxy for differential rotation, for over 20 000
field stars. Absolute shear is defined as ∆Ω = Ωeq−Ωpol, where Ωeq and Ωpol represent
the angular velocity of a star at its equator and poles, respectively.

Reinhold et al. (2013) found that:
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• The differential rotation shows a temperature dependency. Between effective
temperatures Teff = 3500 K and Teff = 6000 K, ∆Ω slightly increases from
∆Ω = 0.079 rad/d to ∆Ω = 0.096 rad/d. This is consistent with the calcula-
tions of Küker and Rüdiger (2011), who found that ∆Ω only slightly increases
with temperature for stars below Teff ≈ 5800 K.

• Hotter, F-type stars with thinner convective envelopes show stronger differential
rotation than cooler G and K-type stars with deeper convective zones.

• The dependency of absolute differential rotation (= shear) on the rotation period
of the star is weak over a large period range.
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