
Stellar magnetic activity, Spring 2024
Models for exercises II

1. Show that the projected rotational velocity v sin i of a star will be constant along
straight parallel lines over the visible stellar disk if the star rotates as a solid body.
How will this change if there is differential rotation? Use the solar surface differential
rotation curve as an example.

Solid body rotation

Let us take a star of radius R showing solid body rotation. The angular velocity vector
of the star is denoted with Ω and is rotated along the yz-plane by an angle i away
from the xz-plane (see Fig. 1).
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Figure 1

Of any stellar surface element with coordinates (x, y, z), the velocity v = (vx, vy, vz) is

v = Ω×R

=

∣∣∣∣∣∣
vx vy vz
0 Ω sin i Ωcos i
x y z

∣∣∣∣∣∣
= (zΩ sin i− yΩcos i)vx + xΩcos ivy − xΩ sin ivz .

(1)

From Fig. 1, we see that the vz-component corresponds to the radial velocity vr. Since
we define the radial velocity as being positive if an object moves away from the observer,
we change the sign of the vz component, so that

vr = xΩ sin i . (2)

For a single, solid body rotating star, Ω and i are constants, therefore the radial velocity
only changes with x, along parallel straight lines.

The plots in Fig. 2 show the radial velocities for the surface elements on a 1000×1000
grid for inclinations i = 90◦, 30◦, 0◦, a solid body rotating star with radius R⊙ and an
angular velocity equal to the equatorial angular velocity of the Sun.
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Figure 2: Radial velocities of the surface elements of a solid body rotating R = R⊙ star
with Ω = 2.972 µ rad s−1 observed at inclinations (a) i = 90◦, (b) i = 30◦, (c) i = 0◦.
Notice the difference in the scale of the images. At i = 0◦, we observe the star pole-on,
so all surface elements have a radial velocity of zero.

Differential rotation

Differential rotation brings in a dependence on the stellar latitude θ∗ to the angular
velocity, which is often modelled as

Ω(θ∗) = A+B sin2 θ∗ + C sin4 θ∗ , (3)

where the last term is sometimes excluded in modelling. Setting θ∗ = 0, we can see
that A is the angular velocity at the equator. For the Sun, A = 2.972 µ rad s−1,
B = −0.484 µ rad s−1, and C = −0.361 µ rad s−1 (Snodgrass and Ulrich, 1990).

The latitude of a surface element can be calculated with the following steps:

(a) We use the coordinate system from Fig. 1, and change it to spherical coordinates,
where the surface element with the highest y-value corresponds to θ = 90◦. For
simplicity’s sake, let us define the system so that λ = 0 corresponds to the zy-
plane with positive z values and R = 1.

(b) The coordinates of some surface element (x, y, z) are to be converted to spherical
coordinates. By choosing r =

√
x2 + y2 + z2 = 1, and keeping in mind the

alignment of axes from Fig. 1, we can convert the coordinates of a surface element
as

z = cosx cos y

λ = arctan
(x
z

)
θ = arccos

(
y√

x2 + y2 + z2

)
.

(4)

(c) From Fig. 1 and the definition in 1a, the coordinates of the stellar pole are

λp = 0

θp = i .
(5)

(d) The angular distance of the surface element of coordinates (λ, θ) from the stellar
pole (λp, θp) is:

∆σ = arccos(sin θ sin θp + cos θ cos θp cos∆λ), (6)
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where ∆λ = λ− λp = λ .
The latitude of each surface element with respect to the stellar pole is

θx,y = π/2−∆σ . (7)

Here θx,y is the same as θ∗ in Eg. 3. The radial velocity of each surface element is then
in an updated form of Eq. 2:

vr = xΩ(θx,y) sin i . (8)

The radial velocities of the surface elements on the Sun, observed at inclinations i =
90◦, 30◦, 0◦ are shown on Fig. 3.
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Figure 3: Radial velocities of the surface elements of a differentially rotating star with
R = R⊙, A = 2.972 µ rad s−1, B = −0.484 µ rad s−1, and C = −0.361 µ rad s−1, observed
at inclinations (a) i = 90◦, (b) i = 30◦, (c) i = 0◦. Similarly as in Fig. 2, at i = 0◦, the
radial velocity of each surface element is zero.

2. The v sin i, the photometric period Prot, the parallax p and the UBV-magnitudes of an
active star are known. Describe how you could estimate its radius R∗ and inclination
i of rotation axis.

To estimate the radius, we can use the Barnes-Evans relation between the stellar an-
gular diameter and visual surface brightness Barnes et al. (1978). They estimate the
surface brightness of a star FV as

FV = 4.2207− 0.1V0 − 0.2 log ϕ′ , (9)

where V0 is the unreddened apparent magnitude in Johnson’s UBV photometric system
and ϕ′ is the stellar angular diameter in milliarcseconds. FV can be estimated from
the (B − V )0 (unreddened) color index of a star as

FV =

{
3.897− 1.010(B − V )0 , −0.32 ≤ (B − V )0 ≤ −0.10

3.964− 0.333(B − V )0 , −0.10 ≤ (B − V )0 ≤ 1.35 .
(10)

Combining Eqs. 9 and 10, we obtain the stellar angular diameter ϕ′, which, if the
parallax p of the star is known, can be converted to the stellar radius:

R∗ =
1

p
tan

(
ϕ′

2

)
au . (11)

3



A multiplication with an astronomical unit (au = 1.496× 1011 m) is necessary due to
the way parallaxes are defined:

tan p =
1 au

d
, (12)

where d is the distance of the star.

The stellar radius can also be estimated using Stefan-Boltzmann’s law for black body
radiation combined with the absolute magnitude and the colour dependent bolometric
correction of the star.

The rotation period and rotation velocity v are connected by v = 2π
Prot

R∗.

Given the known stellar radius R∗, the rotational period Prot, and the projected rota-
tional velocity v sin i, the inclination i has to fulfil

sin i =
Protv sin i

2πR∗
. (13)

3. In the lecture slides (lecture 4, slide 6.4.5) additional constraints for Doppler imaging
are discussed. Make a suggestion for a "penalty function", which would prevent too
high and too low values (eg. surface temperatures) in the solution.

In order to constrain the solution between two values, any solution with values outside
this range should be penalised. Taking temperatures as an example, we want a function
that is 0 when the temperature of each surface element Ti ∈ [Tmin, Tmax] and increases
with the "distance" on both sides when Ti is outside this range. Since the inversion is
based on numerical minimisation methods, it is preferable to have a smooth transition
at the minimum and maximum values of the range. An example of such a function is

fp(T ) =


cΣi(Ti − Tmin)

2 , T < Tmin

0 , Tmin ≤ T ≤ Tmax

cΣi(Ti − Tmax)
2 , T > Tmax ,

(14)

where c is a coefficient to weight the penalty function and Σi signifies the summing
over all surface elements. The transition could also be bridged with a more linear
growth/decline, or an integral of a double-sided Heaviside step function (Arfken, 1985)
as suggested by (Hackman et al., 2001), but the latter may lead to numerical instabil-
ities because of multiplication of very high numbers with numbers close to 0.

4. Why do ground based photometric light curves of stars with strong spot activity usually
show a maximum of two clear minima?

If we assume a star with uneven spot distribution, the observer can often divide its
surface to two halves: a brighter (less spotted) and a dimmer (more strongly spotted)
hemisphere. As the dimmer hemisphere rotates into view towards the observer, the
star’s brightness decreases. This results in one clear dip in brightness for every rotation
of the star.

If the spot structure of the star is more complex, the light curve of the star may show
more than one dip per rotation. But the recovery of more than two clear minima would
be challenging for ground based light curves, since the accuracy and resolution usually
does not allow for the detection of smaller brightness changes. The only way a spot
structure would influence the light curve for only a short phase interval, is if it is on
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the hemisphere of the non-visible rotation pole and near to the stellar limb. In this
case, even a large spot structure will not cause a major dip in the light curve because
of two reasons: Its projected size will still be small and the limb darkening will reduce
its effect.

A fast spot evolution, where spots appear and disappear within the time they are on
the visible hemisphere may result in more than two clear minima, but the average
lifetime of spot groups is generally longer than one stellar rotation.

An analytical estimate for the minimum phase separation of two minima is presented
by (Lehtinen et al., 2011). The result is that for typical ground based photometry,
spots have to be separated by at least ∆ϕ ∼ 0.3 to cause separate minima in the light
curve. Thus three light curve minima are in theory possible, but unlikely.
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