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1. (a) The Coriolis number is expressed as

Co =
2Ωl

u
, (1)

where l and u are the length and velocity scales, and Ω is the angular velocity of
the star, which is related to the rotational period Prot as Ω = 2π/Prot.
Let us assume that the young Sun when reaching the main sequence (MS) was
rotating with Prot = 1 d, and that and towards the end of its MS lifetime it will
rotate with Prot = 50 d. We can approximate the current rotational period of the
Sun as Prot = 27 d.
Let us further choose the convective length and velocity to be lbottom = 50 000 km
and vbottom = 10 m/s at the bottom of the convective zone, and ltop = 100 km
and vtop = 1 km/s at the top of the convective zone. Substituting these numbers
into Eq. 1, we obtain the Coriolis numbers at the bottom and the top at the
convection zone Cobottom, Cotop, for different stages of the solar life cycle. The
Coriolis numbers along with the parameters describing the stellar rotation are
listed in Table 1.

Table 1: Coriolis numbers Co at the bottom and the top at the convection zone for
different stages of the solar life cycle.

Stage Porb (d) Ω (1/s) Cobottom Cotop

Young Sun 1 7.27× 10−5 727.22 1.5× 10−2

Current Sun 27 2.69× 10−6 26.93 5.4× 10−4

Old Sun 50 1.45× 10−6 14.54 2.9× 10−4

(b) The magnetic Prandtl number is (Brandenburg and Subramanian, 2005)

Pm = 1.1× 10−4

(
T

106 K

)4(
ρ

0.1 g cm−3

)−1(
ln Λ

20

)−2

, (2)

where T denotes the temperature, ρ is the density, and ln Λ is the Coulomb log-
arithm of the plasma. To calculate the magnetic Prandtl number of different
spectral type stars, we adapt the effective temperature Teff , radius R, and mass
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M from Pecaut and Mamajek (2013). For the calculation, we use mean stellar
density ρ = M/V where V is the volume of a spherical star. Following Bran-
denburg and Subramanian (2005), we assume ln Λ = 20. The resulting magnetic
Prandtl numbers are listed in Table 2.

Table 2: Magnetic Prandtl numbers Pm for different spectral type stars and relevant
parameters for its calculation.

Spectral type Teff (K) R/R⊙ M/M⊙ ρ (g/cm3) Pm

O5V 41 400 11.45 43.00 0.04 8× 10−10

B5V 15 700 3.36 4.70 0.17 4× 10−12

A5V 8 100 1.78 1.88 0.47 1× 10−13

F5V 6 550 1.47 1.33 0.59 3× 10−14

G5V 5 660 0.98 0.98 1.48 8× 10−15

K5V 4 440 0.70 0.70 2.87 1× 10−15

M5V 3060 0.20 0.16 30.34 3× 10−17

(c) The Reynolds numbers are Rm (magnetic) and Re (fluid):

Rm =
ul

η
, (3)

and

Re =
Rm

Pm
, (4)

where u and l are the velocity and length scales, and η is the resistivity in the
convection zone.
We take η = 0.1 m2/s for all stars. Adopting the l and u values for a Sun-like star
from problem 1a, we get Rmbottom = 5 × 109 and Rmtop = 109 for the magnetic
Reynolds number at the bottom and top of the convection zone.
We assume that in other stars, the length and velocity scales at the top and
bottom of the convection zone may vary by a factor of 10, and that the resistivity
is constant. Using these assumptions, the magnetic Reynolds numbers at the
bottom and top of the convection zone might show variations on the order of 102
from the values calculated for a solar type star.
Taking Rm ∼ 109 and Pm ∼ 10−14 we get

Re ∼ 109

10−14
= 1023

2. The kinetic and magnetic energy spectra (marked as Ek and Em, respectively) are
sketched out on Fig. 1.

At high Pm values and high k values, the magnetic energy Em is higher than the kinetic
energy Ek. Thus, small-scale dynamo action is easiest to occur if Pm > 1. In these
conditions, small scale magnetic structures can develop more easily than with lower
Pm values.
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Figure 1: Upper panel: General scheme of energy injection, cascade and dissipation as
function of wavenumber k. Lower panels: Kinetic Ek and magnetic Em energy as functions
of wavenumber k, with Prandtl numbers (a) Pm = 1, (b) Pm < 1, (c) Pm > 1.

3. The kinetic helicity Hk is calculated by

Hk =

∫
V

u · (∇× u) dV . (5)

where u is the velocity of the cell. We denote w = ∇× u and h = w · u.

Depending on the relative pressure of the cells, and the strength of the stratification,
we can draw a table of conditions, shown in Table 3. Assuming that the conditions
are isothermal, and that a convective cell contains a constant number of particles, the
product of the pressure P and volume V of some cell is constant in time PV = const.

Table 3

Stratification
Weak Strong

Cells have higher P than surroundings (a) (c)
Cells have lower P than surroundings (b) (d)

The time evolution of convective cells with the different conditions listed in Table 3
are sketched out in Fig. 2. The change in cell sizes depend on the stratification (hence
the density gradient). If the stratification is weak (∆ρ ≈ 0), the cells will (more or
less) keep their form. This leads to

w ≈ 0

If the stratification is large (|∆ρ|≫ 0), the form of the cells will change significantly.
Thus
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w ̸= 0.

This leads to the different situations showed in Fig. 2. Note that the sign of h for each
case will be opposite at the North and South poles.

Figure 2: Kinetic helicity of convective cells around the stellar poles.

4. The kinematic alpha effect is

αK = −1

3
τ ⟨w · u⟩ (6)

where τ is the relaxation time, w = ∇ × u and u is the velocity vector. The angle
between w and u is ϑ = θ + 90◦, where θ is the latitude. Thus the dot product in
Eq. 6 is

⟨w · u⟩ = |w||u|cosϑ . (7)

Substituting Eq. 7 into Eq. 6, we get

αK = −1

3
τ |w||u|cosϑ . (8)

From here, we can see that the kinetic alpha effect will scale as αK ∝ − cosϑ. αK is
thus positive at the North pole, 0 at the equator and negative at the South pole.
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