STELLAR MAGNETIC ACTIVITY

(PAP351)

Lecture 5, February 14,2024

Thomas Hackman

6.7 ANALYSES OF PHOTOMETRY

- Photometry => 0-dimensional data => More nonuniqueness problems.
- Still:
 - Rotational phase of minim => longitude of spots
 - Shape of spot induced minima => latitude of spot
- Analyses methods:
 - Time series analyses
 - Parametric spot modelling
 - Physical spot modelling

6.7.1 GROUND-BASED PHOTOMETRY

- Ground based photometry:
 - Very long time series of observations.
 - APT (automated photometric telescopes) and wide field monitoring.
 - Typically, 1 observation/night (weather permitting).
 - Accuracy typically $0.005 < \sigma_{mag} < 0.01$ mag.

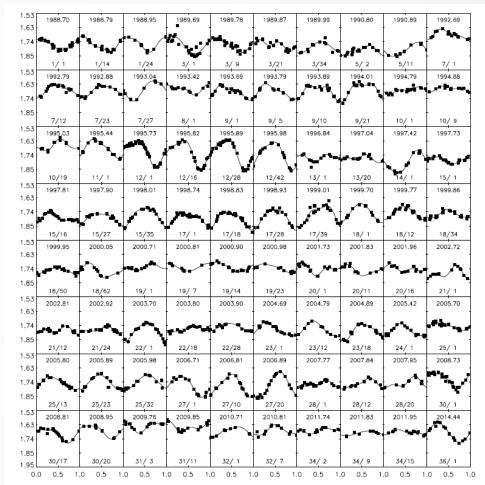
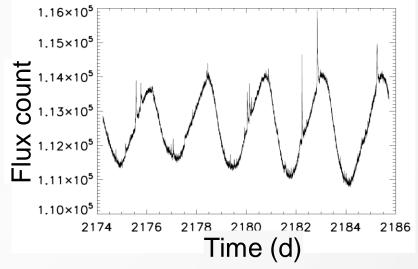


Figure 4.1: CPS fits for the independent datasets of PW And. For each dataset, the mean epoch τ is given in years above the fit and the segment/dataset numbers below the fit.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Lehtinen et al. 2016. the fit.

6.7.2 SATELLITE PHOTOMETRY


• Satellite observations:

. . .

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Small optical space telescopes, mainly intended for other purposes.
- MOST, Kepler, Corot, TESS ...
- Accuracy at least an order of magnitude better than for ground-based observations
- ... but observing not optimised for longterm monitoring.

TESS light curve of EK Dra.

6.7.3 TIME SERIES ANALYSIS

- Parametric methods:
 - A periodic function fit to the data.
 - E.g., Fourier/power-spectrum or fitting of a truncated Fourier series.
- Non-parametric methods:
 - Search for periodicity in certain events, e.g., maximum or minimum of data.
 - E.g., Kuiper- or Swanepoel & De Beer methods.

6.7.4 THE TSPA METHOD

- TSPA = *Three stage period analysis* (Jetsu & Pelt, 1999):
 - Pilot search \mapsto Grid search \mapsto Refined search
- Model:

$$g(t) = M + \sum_{k=1}^{K} B_k \cos(k2\pi ft) + C_k \sin(k2\pi ft) ,$$

where M, B_k, C_k and $f = \frac{1}{P}$ are free parameters.

 The model is non-linear => solution cannot be retrieved directly by the least squares method.

6.7.5 LIGHT CURVE QUANTITIES

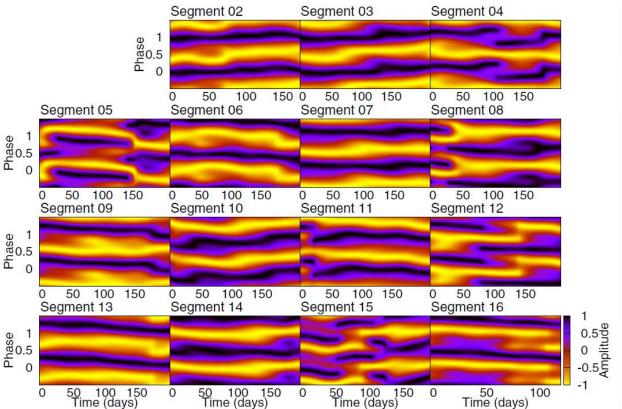
- B_k and C_k are not as such useful descriptions of the light curve
- The light curve is best described by:
 - Mean magnitude M
 - Period P_{phot}
 - Amplitude A
 - Minimum phases $\phi_{\min_{1,2}}$ or epochs of minima $t_{\min_{1,2}}$

6.7.6 CONTINUOUS PERIOD SEARCH (CPS)

The model
$$g(t) = M + \sum_{k=1}^{K} B_k \cos(k2\pi ft) + C_k \sin(k2\pi ft)$$
,
 M, B_k, C_k and $f = \frac{1}{P}$ are free parametres.

is applied with a moving window => better time resolution.

- Method published in Lehtinen et al. (2011).
- From the model: Light curve mean *M*, amplitude *A*, period *P* and times of photometric minima *t*_{min} as functions of time.

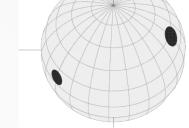


6.8 CARRIER FIT METHOD

• *CF-method* (Pelt et al. 2011):

 $y_{\rm cf}(t) = a_0(t) + \sum_{k=1}^{K} \left(a_k(t) \cos(2\pi k f_0 t) + b_k(t) \sin(2\pi k f_0 t) \right)$

- Carrier frequency f_0 .
- $a_k(t)$ and $b_k(t)$ slowly changing time dependent functions.


CF analysis for FK Com (carrier period $P_0 = 2.^{d} 40$). The amplitudes normalized separately for each segment (Hackman et al. 2013).

6.9 SPOT MODELLING OF STELLAR LIGHT CURVES

- Star spot models => spot positions and P_{rot}.
- Ex. MOST satellite observations (Croll et al. 2006, Walker et al. 2007).

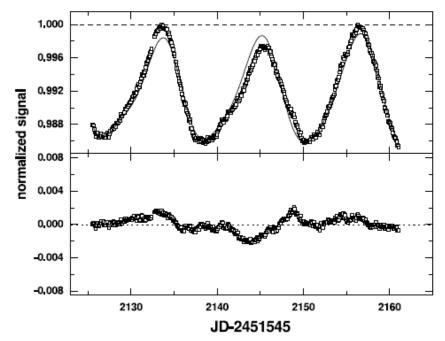
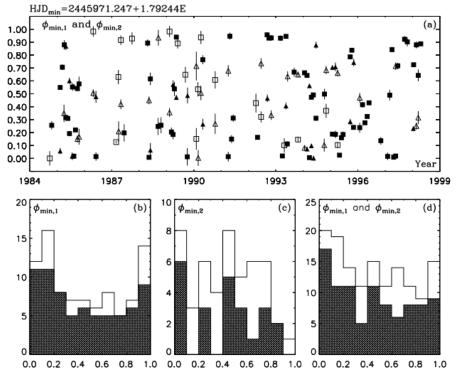


Fig. 2.—Top: e Eri spots (Table 3) as seen from the line of sight (left) and the visible pole (right). Middle: The light curve of Fig. 1, with a linear trend removed. The solid line is the model from Table 3. The dashed line indicates the unspotted intensity of the star (U = 1.0000). Bottom: Residuals from the model on the same scale.

6.10 IMPROVEMENTS OF PHOTOMETRIC TIME SERIES ANALYSIS

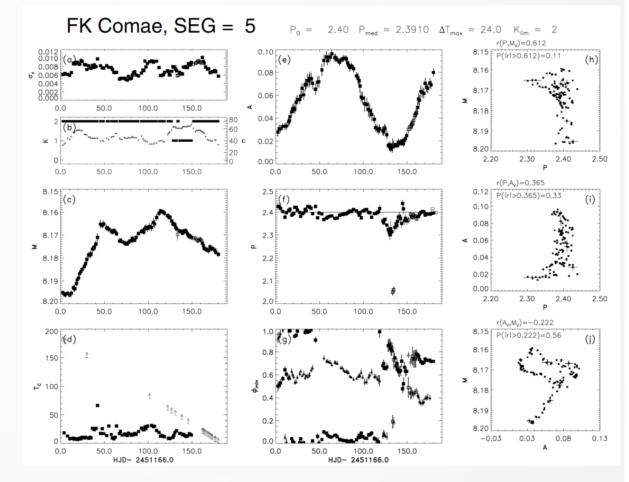

- Multiple periods => differential rotation.
- Changes in spot configuration => spot evolution time scale.
- Visibility of spots => different form of light curve.
- MCMC approach => statistical significance of model.

 $g(t) = g(t, K_1, K_2, K_3) = h(t) + p(t),$ $h(t) = h(t, K_1, K_2) = \sum_{i=1}^{K_1} h_i(t)$ $h_i(t) = \sum_{j=1}^{K_2} B_{i,j} \cos(2\pi j f_i t) + C_{i,j} \sin(2\pi j f_i t)$ $p(t) = p(t, K_3) = \sum_{k=0}^{K_3} p_k(t)$ $p_k(t) = M_k \left[\frac{2t}{\Delta T}\right]^k.$

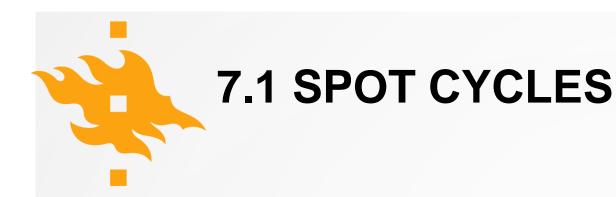
Direct χ^2 -method (DCM; Jetsu 2020).

6.11 NON-PARAMETRIC METHODS

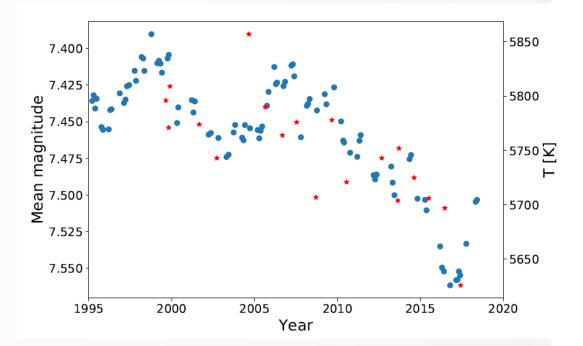
- No model fit, search for periodicity in e.g. light curve minima.
- For circular data one can use e.g., *Kuiper* test (1960).
- Time points transformed into circular data by folding the points with a period.
- Can be used to detect active longitudes:
 - Test distribution of minimum phases: Significant difference from a random distribution => sign of active longitudes.


Fig. 6. a The phases of the primary and secondary minima with $HJD_{min} = 2445971.247 + 1.79244E$: $\phi_{min,1}$ (filled squares $\equiv T_A$; open squares $\equiv T_B$) and $\phi_{min,2}$ (filled triangles $\equiv T_A$; open triangles $\equiv T_B$) **b** The $\phi_{min,1}$ distribution (dark $\equiv T_A$; white $\equiv T_B$) **c** The $\phi_{min,2}$ distribution (dark $\equiv T_A$; white $\equiv T_B$) **d** The combined $\phi_{min,1}$ and $\phi_{min,2}$ distributions

Search for active longitudes in V815 Her (Jetsu et al. 1999).

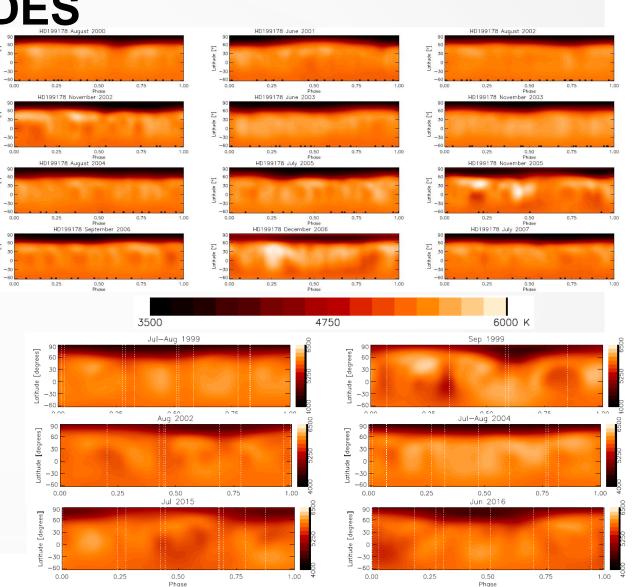


7. OBSERVATIONAL RESULTS


- Active latitudes.
- Active longitudes, "flip-flops" and possible dynamo waves.
- Spot cycles.
- Magnetic polarity reversals.
- Differential rotation.

CPS-results for FK Comae (Hackman et al. 2013).

- Spot cycles for active stars are usually quasi periodic.
- Cycles can be seen from both longterm photometric and DI monitoring.



Mean magnitudes (blue dots) vs. mean temperature of DI maps (red stars) for V889 Her (Willamo et al. 2018).

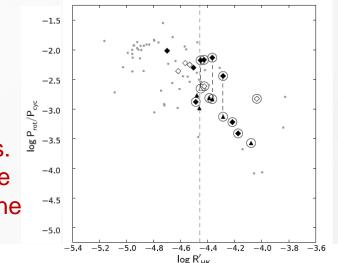
7.2 ACTIVE LATITUDES

- Long-term DI monitoring of HD 199178 (G2III-IV) and V889 Her (G2 V):
 - Persistent high-latitude spot activity.
- Different evolutionary stages, but similar spot distribution.

Figs. from Hackman et al. (2019) & Willamo et al. (2019).



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

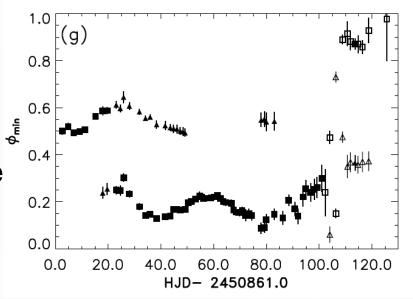

Stellar magnetic activity, Spring 2024

7.3 ACTIVE LONGITUDES

- Persistent photometric minima at certain rotation phases <=> active longitudes.
- Often 2 active longitudes separated by $\Delta \varphi \sim 0.5$.

Active longitudes of HD 116956 (G9V, age ~100 Myr; Lehtinen et al. 2011).

Circles => stars with detected active longitudes. Grey vertical dashed line => approximate divide between stars with active longitudes and the one without them (Lehtinen et al. 2016).

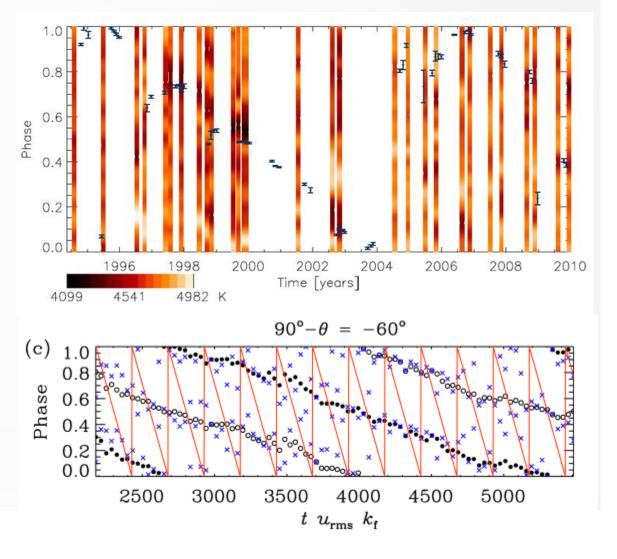


HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET **UNIVERSITY OF HELSINKI**

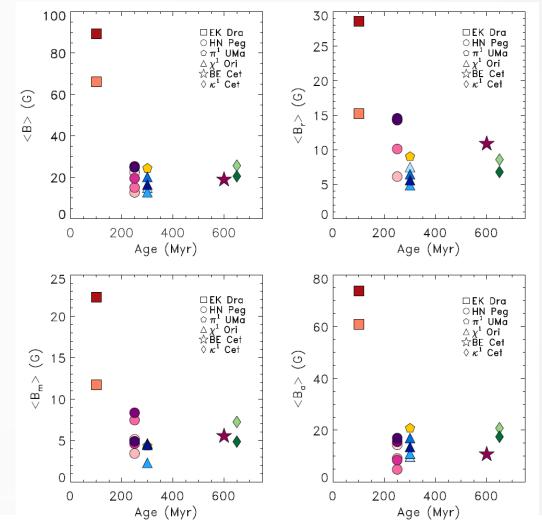
7.4 FLIP-FLOPS

- Concept of "flip-flop" introduced by Jetsu et al. (1993).
- A sudden phase jump of the photometric minimum by ۲ $\Delta \varphi \sim 0.5$.
- => implies that the main spot activity has shifted to the ulletopposite side of the star.
- In reality a more complicated phenomenon: ٠
 - Photometric minima can be caused by complicated spot structures.
 - Both sudden phase jumps and gradual migration may look like "flip-flops" (Hackman et al. 2013).


Claimed flip-flop in FK Com (Hackman et al. 2013).

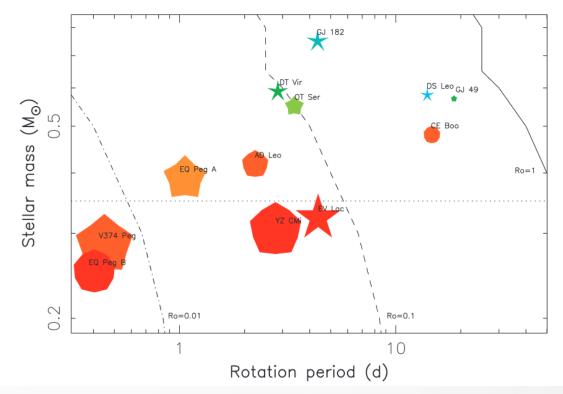
7.5 DYNAMO WAVES?

- The photmetric minimum may migrate in the stellar rotational frame.
- Easiest to discover in tidally locked binaries $=> P_{rot}$ is accurately known.
- Theoretical interpretation: Azimuthal dynamo wave.


Possible dynamo wave in II Peg (RS CVntype; Hackman et al. 2011) and MHD simulation (Cole et al. 2014).

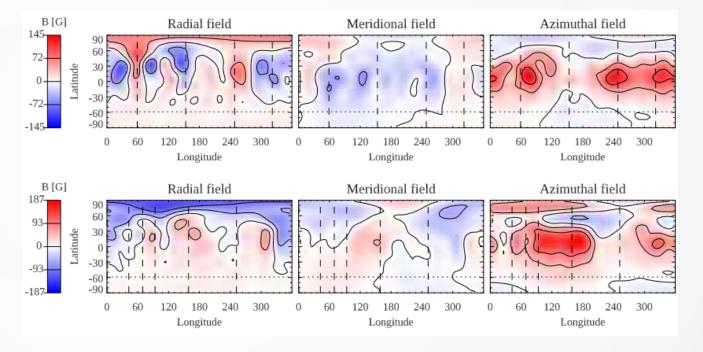
7.6 MAGNETIC FIELD STRENGTH WITH AGE

- A clear tendency compatible with magnetic breaking:
 - *B* strength decreasing with age.
- Note 1: Only large-scale *B* detectable by ZDI.
- Note 2: Insufficient recovery of $B_{\rm m}$ and $B_{\rm a}$ with only Stokes V.


Mean of total (**), radial *<B*_r>, meridional *<B*_m> and azimuthal *<B*_a> field strengths as a function of age for some young solar analogues (Rosen et al. 2016).

7.7 MAGNETIC FIELD TOPOLOGY

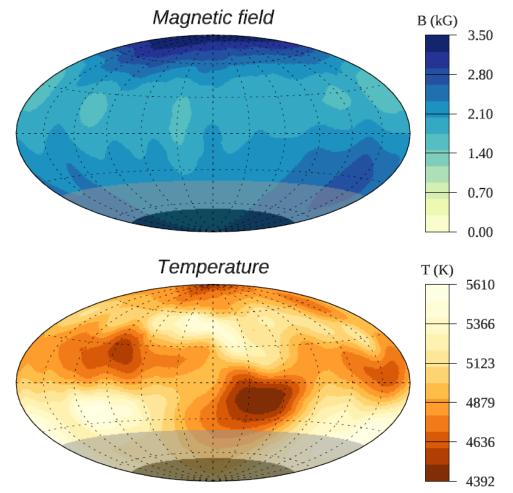
- Magnetic field energy is usually described in terms of:
 - Axisymmetric vs. non-axisymmetric.
 - Poloidal vs. toroidal.
 - Also, the energies of different spherical harmonics coefficients (ℓ , m) are reported.
- Plots often called *confusograms* (= confusingly much information).



Magnetic topologies of early M dwarfs: Size of symbol $\Leftrightarrow B$; Shape \Leftrightarrow axisymmetry; colour blue – red \Leftrightarrow toroidal – poloidal (Donati et al. 2008).

7.8 MAGNETIC FIELD POLARITY

- ZDI images covering longer periods are used to track changes in the magnetic field.
- Reversals of the radial field around the stellar pole are observed in many stars.
- Indications of connections to spot activity cycles for some stars.



ZDI images of V1358 Ori (F9V) in 2013 and 2017 (Willamo et al. 2022).

7.9 CONNECTION BETWEEN B AND SPOTS

- Zeeman broadening and intensification of spectral lines => total *B* can be estimated.
- For the Sun the connection is clear...
- ... but for other stars not clear.

Distribution of magnetic field strength (upper panel) and temperature (lower panel) for LQ Hya 2011 data (Kochukhov et al. 2023).

