STELLAR MAGNETIC ACTIVITY

(PAP351)

Lecture 3, January 31,2024

Thomas Hackman

4. MANIFESTATIONS OF STELLAR MAGNETIC ACTIVITY

- Spots
- Bright surface phenomena: Faculae ...
- Ca II H&K, Hα -emission (chromosphere)
- UV-radiation (transition region, corona)
- X-rays (corona)
- Eruptions: Prominences, flare, CMEs

- Believed to be analogues to sunspots
- Two regimes depending on effect on total brightness 51150
 - Spot dominated <= more active stars (e.g. young solar-type stars)
 - Faculae dominated <= less active stars (e.g. the Sun)
- Spot dominated case => as star rotates spots will cause the light to change:
 - Brightness => periodic light curve
 - Spectral lines => periodic "bump"

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

8.15 8.20 5.1150 51200 51250 HJD-2400000.0 51300 51350 Light curve of FK Com

Animation by O.

Kochukhov

4.1.1 STELLAR EVOLUTION IN TERMS OF SPOTS

- Young active stars have large spot structures often at high latitudes.
- Magnetic breaking => older stars have smaller spots and nearer equator
- Post-main sequence subgiants and giants => surface inhomogeneities caused by convection.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

4.1.2 LATITUDINAL TENDENCIES OF SPOTS

- Rapid rotation => high latitude/polar spots.
- Explanations:
 - Coriolis force acts on rising magnetic flux tubes
 - Meridional flow transports magnetic field towards poles
 - Dynamo generates high latitude spots
- Exceptions: Rapidly rotating stars with both high and mid latitude spots.

Surface temperature maps of V889 Her (Willamo et al. 2019) and LQ Hya (Kochukhov et al. 2023).

Stellar magnetic activity, Spring 2024

4.2 CHROMOSPHERIC ACTIVITY

- Chromosphere: Thin hot layer above the photosphere.
- Heating mechanism under debate.

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Useful indicators of chromospheric activity: Ca II H&K lines (3968.5 & 3933.7 Å).
- Other possible lines: Mg II h&k (2802.7 & 2795.5 Å), Hα (6564.6 Å), Ca II triplet (~8500 Å).

QUIET SUN EUV BRIGHTNESS COMPONENTS

Stellar magnetic activity, Spring 2024

4.2.1 CHROMOSPHERIC *S* **INDEX**

Mount Wilson S-index (Vaughan et al. 1978)

 $S = \alpha \, \frac{H + K}{R + V}$

- *H*, *K*, *R* and *V* are fluxes measured at the cores of the Ca II H&K lines and continuums on both sides
- α instrumental calibration constant.

Ca II H&K lines of the stars V383 Lac and V774 Tau (Lehtinen 2016).

4.2.2 MEASURING *S***-INDEX**

R н 1.0 0.8 0.6 0.4 0.2 0.0 388 390 392 394 396 398 400 402 $\lambda \, [{\sf nm}]$ 1.0 Ca K Ca H 0.8 0.6 0.4 0.2 0.0 0.0 0.2 -0.2 0.0 -0.10.1 -0.10.1 0.2 $\Delta\lambda\,[{\rm nm}]$ $\Delta\lambda \,[\text{nm}]$

The spectral integration windows *H*, *K*, *V*, and *R* displayed on the spectrum of DX Leo (Lehtinen 2015).

4.2.3 LONG-TERM VARIATION OF S-INDEX

S-index measurements of the Sun and HD 81809 (Baliunas et al. 1995).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

4.2.4 FRACTIONAL EMISSION FLUX R'_{HK}

- Usually, the level of chromospheric activity is given as fractional emission flux R'_{HK} .
- Transformation from S to R'_{HK} for main sequence stars (Middlekoop 1982; Noyes 1984; Rutten 1984):

• We define $R_{
m HK}=F_{
m HK}/\sigma T_{
m eff}^4$, where $R_{
m HK}=1.34\cdot 10^{-4}\,C_{
m cf}S$

 $\log C_{\rm cf} = 0.25 \left(B - V \right)^3 - 1.33 \left(B - V \right)^2 + 0.43 \left(B - V \right) + 0.24, \text{ when } 0.3 \le B - V \le 1.6$

• To get R'_{HK} the photospheric contribution R_{phot} has to be subtracted:

$$R'_{\rm HK} = R_{\rm HK} - R_{\rm phot}$$
 , where $\log R_{\rm phot} = -4.898 + 1.918 \, (B-V)^2 - 2.893 \, (B-V)^3$

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

4.3 TRANSITION REGION UV RADIATION

UV-spectra of α Cen A (blue) and B (red). Most emission lines are from the transition region (Ayres 2020).

(10⁻⁷ Å⁻¹) f_{\lambda}/f_{BOL} 10³ 10² Wavelength (Å)

Stellar magnetic activity, Spring 2024

4.4 X-RAY RADIATION FROM THE CORONA

Emission measure distributions of the coronal plasma of the quiet Sun (G2V), ξ Bootis (G7V), EK Dra (G5V), 31 Com (G0III) and HD 283572 (G5IV) from Scelsi et al. (2005).

4.5 STELLAR FLARES

- Flares arise from magnetic reconnection.
- In the Sun often asociated with coronal mass ejections (CME).
- Flares seem to follow a general power

Flare model (GB, Fig. 4.12).

4.5.1 FLARES IN DIFFERENT WAVELENGTHS

Large flare of Proxima Centauri: X-ray (red), its time derivative (black) and the optical (green) light curve (Fuhrmeister et al. 2011).

4.5.2 WHITE-LIGHT FLARE

- Heating of photosphere => white-light flare.
- Significant increase in visual fluxes.
- Characteristic fast rise and slow exponential decay.

TESS light curve of EK Dra showing flares (Korhonen 2022).

Same

cycles

4.6 STELLAR CYCLES

- Spot cycles.
- Cycles of chromospheric activity.
- Cycles of coronal activity.
- Magnetic cycles.

4.7 BRANCHES OF ACTIVITY

- Stellar activity branches:
 - I = inactive
 - A = active
 - S = superactive

Saar & Brandenburg (1999), Metcalfe et al. (2016) and Boro Saikia et al. (2018).

4.8 VAUGHAN-PRESTON GAP

Gap in the magnetic activity between active and inactive stars (Vaughan & Preston 1980).

5. CLASSIFICATION OF ACTIVE STARS

- In general:
 - Classification by prototypes \mapsto not accurate
 - Often original classification → later revised/expanded definition
 - Depending on the observation method, the same star can be classified differently
 - Each star has individual peculiarities

5.1 CLASSIFICATION BY D.S. HALL

• Hall (1991) lists the following classes of stars with dynamo action:

- RS CVn binaries
- BY Draconis variables (single and binary stars)
- FK Comae stars (single)
- Other rapidly rotating G-K single giants
- UV Ceti type flare stars (single and binary)
- Solar type single main sequence stars
- T Tauri variables
- W Uma binaries
- Cool secondaries of Algol type contact binaries
- Cool secondaries of cataclysmic variables

5.2 RS CVn BINARIES

- Detached binaries
- Primary component F-G V-IV (later extended to III)
- 2:ndary can also be magn. active
- Rotation period 1 d < P < 30 d
- Strong Ca II H&K emission
- Original definition by Hall (1976)

5.3 BY DRACONIS STARS

- Spectral class: K-M V (later extended to G V)
- Rotation period ~ 1 d "a few" days
- Low amplitude light curve
- Ca II H&K emission
- Definition by Bopp & Fekel (1977)

5.4 FK COMAE STARS

- Spectral class: G-K III-IV
- Single
- Rapid rotation: $v \sin i > 40$ km/s
- Possibly coalesced W UMa -binaries
- Strong Ca II H&K emission
- Strong chromospheric and transition region UV-emission
- Definition by Bopp & Rucinski (1981)

UNIVERSITY OF HELSINKI

5.5 T TAURI STARS

- Rapid & irregular changes in brightness
- Spectral class F5 G5, low luminosity
- Ca II H&K emission + other chromospheric emission lines
- Strong Li absorption lines \mapsto young stars
- Connected to interstellar clouds
- Sub-groups: Classical = CTTS, weak emission = WTTS, naked = NTTS
- Original definition: Joy 1945
- Newer review article: Petrov 2003 (Astrophysics 46, 506)