STELLAR MAGNETIC ACTIVITY

(PAP351)

Lecture 2, 23.1.2024

Thomas Hackman

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

2.4 CAUSE OF MAGNETIC ACTIVITY

- Late type stars cannot have significant fossil magnetic fields.
- \mapsto Dynamo-model:

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Convective turbulence
- (Differential)rotation
- Stars with spectral class F2 or later have convective envelopes.
- Activity increases with decreasing Rossby number (Noyes et al. 1984):

$$R_o = \frac{P_{\rm rot}}{\tau_{\rm conv}}$$

2.5 STELLAR CONVECTION

 Convection starts, when displaced "bubble" does not return.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Original gas bubble-

 P_1, ρ_1, T_1

 P_2, ρ_2, T_2 **Risen bubble** P₂'=P₂

 ho_2 T_2

"Mixing

"Scale

height

length", Λ

2.5.1 DIFFERENT TEMPERATURE GRADIENTS

Fig. 6.2. Temperature-pressure diagram with a schematic sketch of the different gradients $\nabla (\equiv \partial \ln T / \partial \ln P)$ in a convective layer. Starting at a common point with P_0 and T_0 , the different types of changes (adiabatic, in a rising element, in the surroundings, for radiative stratification) lead to different temperatures at a slightly higher point with $P_0 + \Delta P$ (< P_0 , since P decreases outwards)

Figure 6.2 (KW)

2.6 STELLAR CONVECTION CONT.

Schwarzshcild criterion for convection:

Usual reason for convective envelope

• Solar convection \mapsto granulation

• T decreases outwards \mapsto stronger absorption

• Ledoux's criterion: where $\delta = -\frac{\partial ln\rho}{\partial lnT}$ $\varphi = \frac{\partial ln\rho}{\partial ln\mu}$

$$abla_{\mathrm{rad}} <
abla_{\mathrm{ad}} + rac{arphi}{\delta}
abla_{\mu}$$

$$abla_{
m rad} <
abla_{
m ad} => \left[rac{d \log q}{d \log q}
ight]$$
 $\gamma = C_P / C$

$$\left. \frac{d \log P}{d \log T} \right|_{\text{radiat}} < \frac{\gamma}{\gamma - 1}$$

Solar granulation (Swed. Solar Telescope/ V. Henriques & A. Drews)

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

2.7 CONVECTIVE TURNOVER TIME

- $\tau_{\rm conv}$ is the typical timescale for a convective cell to rise in the stellar plasma
- Estimated, e.g., through mixing length theory:
- $\tau_{conv} = \frac{\Lambda}{v_{conv}}$, where Λ is the mixing length and v_{conv} the convective velocity.
- $au_{\rm conv}$ varies strongly in the convection zone
- At the base of the solar convection zone $\tau_{\rm conv} \sim 25 {\rm ~d}$

log $\tau_{c,days} = 1.362 - 0.166x + 0.025 x^2 - 5.323 x^3$ for x > 0, and log $\tau_{c,days} = 1.362 - 0.14 x$ for x < 0, with x being defined as x = 1 - (B - V).

Empirical formula for τ_{conv} (Noyes et al. 1984).

2.8 STELLAR ROTATION

- Star forming clouds rotate slowly
- Contraction → increased rotation
- → Young stars rotate fast: Strong activity
- Magnetic breaking → old late type stars rotate^{⁸/₁₅} slowly
 - E.g., solar rotation period ~ 30 days
- Close binaries → tidal forces → synchronised rotation maintains fast rotation
- Convection => differential rotation

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3. SUNSPOTS

- Structure
 - Umbra ~ 4000 K
 - Penumbra ~ 5500 K
 - "Wilson depression" <= optical depth)
- Sunspot groups:
 - Leading and trailing spots
- Magnetic field:
 - Radial in umbra
 - Turns towards horisontal in penumbra

Sunspots in 430.5 nm by Swedish Solar Telescope (Sharmer & Langhans / Royal Swed. Acad. of Sciences)

3.1 SUNSPOT EVOLUTION

Spot eveolution ~ 2 h (30 April, 2007 Hinode SOT, G-band)

3.2 SUNSPOTS AS A INDICATORS OF SOLAR ACTIVITY

- Link with magnetic fields:
 - Magnetic fields penetrate the solar surface \mapsto convection is locally inhibited \mapsto cool spot
- Sunspots are easy to observe => cycle is clearly visible
- The Wolf (or Zürich) relative sunspot number:

 $R_{\rm z} = k(10g + n),$

k = "observer factor"

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- g = number of sunspot groups
- *n* = number of sunspots

Zeeman effect in sunspot

(NSO/AURA/NSF)

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3.3 SUNSPOT CYCLES

- Schwabe cycle ~ 11 years, Hale cycle: ~ 22 years:
 - Rise 3-6 years, decline 5-8 years
 - Cycle numbers: No 1 Starting 1755
 - Magnetic polarity reversal each cycle
- Gleissberg cycle: ~ 80-120 years
- Suess cycle: ~ 210 years
- Hallstatt cycle: ~ 2100 years

Figure: Wikipedia

3.4 LONG TERM VARIABILITY

- Long-term cycles known through abundances of radioisotopes:
 - ¹⁰Be (ice)
 - ¹⁴C (three rings)
 - ⁴⁴Ti (meteorites)

Sunspot reconstruction from ¹⁴C data (Solanki et al. 2004, Nature 431, 1084)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3.5 GRAND MINIMA

- Long term periods of minimum activity:
 - Dalton minimum ~ 1795 1823 ullet
 - Maunder minimum ~1645 1715 \bullet
 - Spörer minimum ~ 1420 1530
 - Wolf minimum ~ 1280 1340 ullet
 - Oort minimum ~ 1010 1050 •

3.6 REGULARITIES OF SUNSPOT CYCLES

• Spörer 's law:

UNIVERSITY OF HELSINKI

- In the beginning of cycle spots appear at around solar latitude $\phi\sim 30^{\rm o}$, end the end at $\phi\sim 7^{\rm o}$
- \mapsto butterfly diagram
- Waldmeier's rule:
 - Duration of rise anticorrelated with amplitude
- Gnevyshev-Ohl –rule:
- The amplitude of an odd-numbered cycle usually exceeds that of the proceeding even-numbered cycle: North – South asymmetry

3.7 BUTTERFLY DIAGRAM

3.8 MORE SUNSPOT REGULARITIES

- Hale-Nicholson polarity rules:
 - The polarities of "leading" and "trailing" spots:
 - Opposite polarities of leading and trailing spots
 - Reversed polarities at northern and southern hemispheres
 - Polarity reverses after the sunspot minimum
- Joy's rule:
 - Axis of bipolar sunspots tilted, the leading spot is nearer to the solar equator
- Overlap of cycles:
 - New cycle begins on higher latitudes before old cycle ends at lower latitudes

3.9 JOY'S RULE

Joy's rule (McClintock, 2016, Univ. of South Queensland)

3.10 MAGNETIC POLARITY CHANGES

3.11 OVERLAPPING CYCLES

Start of cycle 24 8.1.2008: Spots of two cycles visible simultaneously (NOAA)

3.12 ACTIVE LONGITUDES

- Active longitudes: Active regions concentrated to certain longitudes in a rotation frame
- Complication: Differential rotation
- Active regions certainly exist, but lifetime of active longitudes is under dispute.

Figure: MPS/Taylan Ayık

3.13 IRREGULARITIES IN SUNSPOT CYCLES

- E.g. reconstruction of sunspot data from 18th century shows irregularities near grand minima
 - No clear "butterfly diagram"
 - "Lost cycle" within cycle 4

Reconstructed butterfly diagrams (Arlt, 2009; Usoskin et al. 2009)

3.14 NORTH – SOUTH ASYMMETRY IN SUNSPSOTS AND ACTIVE REGIONS

Nikbakhsh et al. 2019 and Xu et al. 2021

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3.15 SOLAR SURFACE DIFFERENTIAL ROTATION

- Angular rotation vs. latitude (36708 sunspot groups, Howard 1994)
- Differential rotation model:

$$\Omega(\phi) = \Omega_{eq} + \beta \sin^2 \phi + \gamma \sin^4 \phi \Longrightarrow$$
$$\Omega(\phi) \approx \Omega_{eq} (1 - \alpha \sin^2 \phi)$$

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3.16 DIFFERENTIAL ROTATION IN DEPTH

- Differential rotation as function of depth → new spots show different rotation from old spots
- Torsional oscillations => Differential rotation not constant, changes during the solar cycle
 - See e.g., Covas, E. et al., 2001, A&A 371, 718

