STELLAR MAGNETIC ACTIVITY

(PAP351)

Lecture 11, April 10,2024

Thomas Hackman

8. MAGNETIC ACTIVITY AND EXOPLANETS

- Exoplanet populations and host stars.
- Magnetic activity and detectability of exoplanets.
- Interaction between active stars and exoplanets.
- Magnetic activity and habitability.

Nearby stars with detected planets (Fig. edited by M. Tuomi).

8.1 DETECTION OF EXOPLANETS

Detections Per Year

- 5 653 confirmed exoplanets in 4161 planetary systems by 4/2024.
- Main methods: Transits and radial velocity.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI 29 Mar 2024

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

8.2 SELECTION EFFECTS

- Easiest to detect:
 - Massive/large planets.
 - Nearby orbits.
 - Planets of low mass/small stars.
- Currently impossible targets:
 - Earth-size planets at Earth-like orbits zone around solar analogues.
- Note also real effects: "Neptunian desert".

8.3 DEPENDENCE ON STELLAR PARAMETERS

- Metallicity (e.g., Wang & Fisher 2015):
 - Increased occurrence rate around metal-rich stars.
 - The larger the planet, the greater this increase.
- Mass/spectral class:
 - Most found exoplanets orbit late-type stars (note selection effect!).
 - Smaller stars => more smaller planets.
 - Most Earth-sized planets orbit red dwarfs (note selection effect!).
- Binarity:
 - Suppression of planet formation.
 - Disruption of orbits.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Stellar Mass

From "Handbook of Exoplanets" (G. Mulders, 2018).

8.4 MAGNETIC ACTIVITY AND DETECTABILITY

- Stellar magnetic activity causes:
 - Radial velocity jitter.
 - Brightness changes.
- E.g., the Sun as a star:
 - Radial velocity variations due to spots, bright regions, convection.
 - Observations 2006-2014 => variation amplitude of ~ 5 m/s (Lanza et al. 2016).
 - Correlation with activity.
- Detecting the Earth with RV-method would require a precision of $\sim 0.1~m/s.$

Solar RV vs. Call K-index (Lanza et al. 2016).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Stellar magnetic activity, Spring 2024

8.5 ACTIVITY RELATED INTERACTION

- Interaction directly related to magnetic activity:
 - Magnetic fields.
 - Stellar wind.
- Indirect activity related interaction:
 - Tidal interaction.
 - Radiation.

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Different types of interactions between a planet and its host star (Vidotto 2019).

8.6 WHICH INTERACTION?

- Both tidal and magnetic interaction may lead to spots on the stellar surface:
 - Tidal interaction by raising bulges => anomalous activity.
 - Magnetic interaction => magnetic field lines linking the planet to the star => anomalous activity.
- Tidal interaction => 2 bulges => typically modulation by $P_{\rm orb}/2$.
- Magnetic interaction => typically modulation by P_{orb} .

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Idealized star and planet magnetic interaction (A. Strugarek).

8.7 COROTATING RADIUS

- Tidal interaction => force to synchronize $P_{\rm rot}$ and $P_{\rm orb}$.
- Radius at which the orbital period $P_{\rm orb}$ is the same as the stellar rotation period $P_{\star,\rm rot}$.

$$r_{\rm co} = \left(\frac{GM_{\star}P_{\star,\rm rot}^2}{4\pi^2}\right)^{1/3} = 0.02 \text{ au} \left(\frac{P_{\star,\rm rot}}{1 \text{ day}}\right)^{2/3} \left(\frac{M_{\star}}{M_{\odot}}\right)^{1/3}$$

- E.g., if planets orbital distance is $> r_{co}$:
 - => tidal interaction (if significantly strong) pushes the planet farther from star.
 - => star-planet interaction decreases.

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

8.8 ALFVÉN SURFACE

- The surface at which the stellar wind speed (*u*) equals the Alfvén speed $(v_A = B/\sqrt{4\pi\rho})$.
- Inside the Alfvén surface:
 - The stars magnetic field (and gravity) dominates plasma motions.
 - => Connectivity between magnetic fields of star and planet.
- The Alfvén surface can be estimated (extrapolated) from a stars surface magnetic field (+ stellar wind model).

282 250 218 186 154 122 26 -70 -102

Estimated Alfvén surface for the Mdwarf OT Ser (Vidotto et al. 2014).

8.9 STELLAR WINDS

- Stellar winds are often quantified in units of the current solar mass loss rate: $\dot{M_{\odot}} = 2 \times 10^{-14} M_{\odot} {
 m yr}^{-1}$
- Stellar wind speeds can be estimated using the Alfvén speed $v_A = B/\sqrt{4\pi\rho}$ at the transition region.
- Magnetic activity decrease with age (t)
 => decrease in stellar wind, e.g. (Vidotto 2021):

$$\dot{M} \propto t^{-0.99}$$

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Stellar astrosphere (O´Fionnagaín (2020) and mass-loss rates in late-type stars (Cranmer & Winebarger 2019).

Stellar magnetic activity, Spring 2024

8.10 STELLAR CME:S AND EXOPLANETS

- Solar analogy: CME:s should be related to strong flares.
- Not always the case in active stars: Confinement of plasma by strong fields?
- Stellar CME:s => fast moving plasma => observable as Doppler shift in e.g., Hα-emission. (Why not use, e.g., Lyα λ ≈ 1215 Å?)
- Also X-ray and UV-observations used.
- Stellar flares are much easier to observe. (Why?)
- Stellar CME:s will strongly affect nearby planets => possible destruction of atmosphere.

Solar CME in white light (ESA & NASA)

Dynamic Hα spectra of V374 Peg (M4V): Strong flare events and CMEs (Vida et al. 2016).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Stellar magnetic activity, Spring 2024

8.11 MAGNETIC ACTIVITY OF THE YOUNG SUN

- Stripping of Venus', Earth's and Mars' early atmospheres by solar wind and eruptions.
- Destruction of H₂O on Venus by solar UV => reduced capture of C0₂ => runaway greenhouse effect.
- Stronger UV-radiation on Earth => facilitated emergence of life.
- Possible extra heating of Earth to compensate for young faint Sun.
- Scattering and expulsion of interplanetary gas and dust by strong solar wind.

Young faint Sun: Evolution of solar luminosity over the four geologic eons (Fig. from Feulner 2014).

8.12 SPACE WEATHER OF GJ 436B

- GJ 436: M2.5V, $P_{\rm rot} \approx 44$ d.
- GJ 436b: $M=25M_{\oplus}$, $R=4.1R_{\oplus}$, $P_{\text{orb}}=2.1$ d.
- Planet orbit is (probably) partly inside the Alfvén surface of GJ 436.
- => Triggering of flares.
- => Anomalous flare energy distribution.

Flare energy distribution (Lloyd et al. 2023), Alfvén surface and stellar wind for GJ 436 (Vidotto et al. 2023).

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

8.13 POSSIBLE AURORA DETECTION

- GJ 1151: M4.5V, $P_{\rm ro}t \approx 125 \pm 23$ d.
- Observations from Low Frequency Array (LOFAR, $\nu \le 150$ MHz) Two-Metre Sky Survey (LoTSS).
- Source visible on June 16, but not May 28, 2014.
- The emission consistent with sub-Alfvénic interaction with an Earthsize planet with $P_{\rm orb} \sim 1-5$ d.

Temporal and spectral variability of the of the radio source in GJ 1151 (Vedantham et al. 2020).

Stellar magnetic activity, Spring 2024

+48° 23' 30

48° 23' 00

+48° 22' 30'

+48° 22' 00"

+48° 21' 30"

8.14 HABITABLE ZONE (HZ) FOR EXOPLANETS

- Usual definition: Distance region from host star, where water based life is possible.
- Kepler data estimates for Milky Way:
 - ~ 10 billion Earth-sized planets orbiting in HZ of Sun-like stars.
 - ~30 billion red dwarfs in the Milky Way.

8.15 MAGNETIC ACTIVITY AND HABITABILITY

- Position of HZ changes as stars evolve.
- Most Earth size planets within HZ are hosted by M-dwarfs. (Why?)
- Less luminous star ⇔ HZ closer to host star.
- Close distance:
 - Tidal effects (tidal locking).
 - Possible magnetic interaction.
 - Strong effects from flares, CME:s and stellar wind.
- For G and K-type stars, magnetic activity may also help emergence of life.

Evolution of the inner (red) and outer (black) limits of solar HZ (Gallet et al. 2017).