



# Research Data Management Advanced

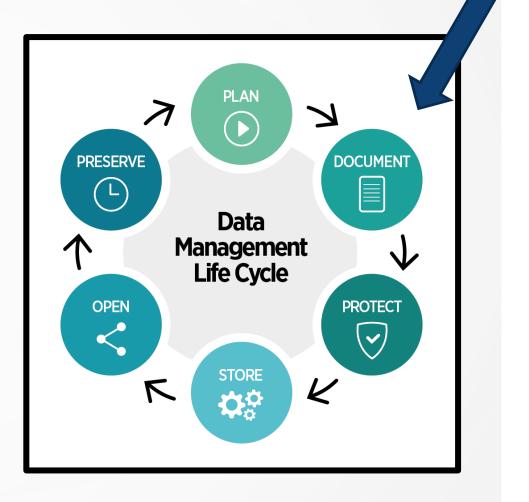


Datatuki datasupport@helsinki.fi Helsingin yliopisto





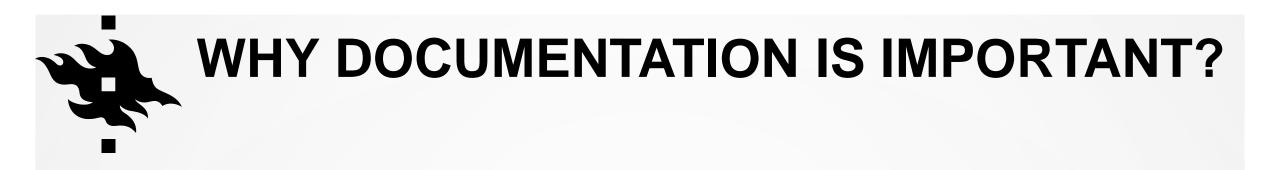
Why Document Your Data?


Know Your Data

Metadata

**Different Ways to Describe Your Data** 

Metadata Standards


Tips for Documentation



# WHY DOCUMENT YOUR DATA?



- Documentation means describing the data, i.e., these documents explain what data the project has and where the data originates from.
- Documentation includes data dictionaries (explaining variables and codes) and readme files.
- Other important issues include file naming conventions, version control, and directory structure.
- There are standard methods available for documentation called metadata standards, which should be used if suitable for the data. These will increase the value of the data by making it easier to reuse.





Other people can understand and use your data

lt is easier to share, open and archive data

It minimizes the risk that your data is misused or misinterpreted

Metadata makes it possible for others to find your data by using different kinds of search criteria

Having invested in documentation during the project, will **save time** upon publishing the dataset.

#### HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



# **KNOW YOUR DATA**



# What data types you will have?

# Where is the data from?

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

# **CATEGORIZATION OF DATASETS**

#### **General descriptions of data**

• What kinds of data are collected or reused? In what file formats will the data be?

#### Describe/list all datasets and material which are discussed later in the plan, e.g.

#### A) Data collected by yourself

various locations; raw, non-catalogued private collections various types

#### B) Data **reused** in your project

ready-made dataset in an archive remember to cite the original creator or collector in your work!

#### C) Data produced during your project

notebooks, research diaries, field notes, comments, annotations, coding, and register a PID for your datasets so others can cite you

D) Managerial documents, agreements, contracts etc.



# DATA SHEET MODEL

|    | Data type | Source of the<br>data | Size<br>estimate | Dorconal data i | Owner / other<br>agreements? | Documentation | Storage during project | Opening | Long term archiving |
|----|-----------|-----------------------|------------------|-----------------|------------------------------|---------------|------------------------|---------|---------------------|
| 1  |           |                       |                  |                 |                              |               |                        |         |                     |
| 2  |           |                       |                  |                 |                              |               |                        |         |                     |
| 3  |           |                       |                  |                 |                              |               |                        |         |                     |
| 4  |           | į į                   |                  |                 |                              |               |                        |         |                     |
| 5  |           |                       |                  |                 |                              |               |                        |         |                     |
| 6  |           |                       |                  |                 | ļ į                          |               |                        |         |                     |
| 7  |           |                       |                  |                 |                              |               |                        |         |                     |
| 8  |           | []                    |                  |                 |                              |               |                        |         |                     |
| 9  |           |                       |                  |                 |                              |               |                        |         |                     |
| 10 |           |                       |                  |                 |                              |               |                        |         |                     |
| 11 |           |                       |                  |                 |                              |               |                        |         |                     |

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI https://wiki.helsinki.fi/download/attachments/223985293/Meilahti\_RDM\_data\_spring-20.xlsx?version=1&modificationDate=1584953369397&api=v2

## DATASETS TABLE EXAMPLE

| Data type                                    | File format             | Personal or sensitive<br>data          | Storing data and backups<br>during the project       | Documentation and metadata                | Ownership and<br>Agreements                      | Opening or publishing data after the project                                                |
|----------------------------------------------|-------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|
| Measurements                                 | .xls<br>.csv            | No                                     | Personal storage at UH (home folder)                 | readme.txt<br>codebooks                   | UH and LUKE<br>Agreement                         | Opening via publication at<br>DRYAD or Zenodo                                               |
| Gene sequences                               | .txt<br>fasta           | No. Collecting only from plants.       | Group storage space                                  | .FASTA                                    | PI                                               | NCBI Genome                                                                                 |
| Programme codes                              | .xml<br>ASCII<br>R-code | No                                     | GitLab & Shared network drive<br>hosted by UH        | GitLab & readme.txt                       | Co-ownership of the research group               | Via publication and<br>Zenodo                                                               |
| Microscopy images                            | .tiff                   | No                                     | Server storage space                                 | OME-TIFF                                  | PI                                               | Electron Microscopy Public<br>Image Archive (EMPIAR)                                        |
| Lab notes                                    | .doc<br>.txt<br>.pdf    | No<br>Patenting or<br>commercializing? | Electronic lab notebook<br>Scinote<br>Cloud service  | Programme generates<br>metadata by itself | PI and me                                        | No                                                                                          |
| Samples<br>(applying from THL Biobank)       | .xls                    | Anonymization will be done by Biobank  | Freezer at the Institute of Biotechnology (PI's lab) | Unique identifier code                    | THL Biobank-licence<br>Research agreement<br>DMP | Samples discarded one year after publishing the results.                                    |
| Questionnaire forms                          | Paper forms             | Yes<br>Data Controller UH              | Locked filing cabinets in PI office.                 | codebook<br>readme.txt                    | PI<br>Informing participants                     | No, only metadata will be<br>open in FSD.<br>Forms discarded 2 years after<br>project ends. |
| Spatial data about land use and forest stand | .tiff, Coloured         | No, open data                          | Datacloud at UH (service coming soon)                | Supplements at Etsin                      | National land survey of<br>Finland: license CCBY | Processed data at<br>Zenodo                                                                 |

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

V.



# METADATA



# METADATA

Metadata is "data that provides information about other data", but not the content of the data (Merriam Webster Dictionary 2019, Wikipedia 2023)

"DATA ABOUT DATA" DESCRIPTIVE METADATA DATA DOCUMENTATION

Ted Eytan: https://www.flickr.com/photos/taedc/

Makes data...

understandable, findable and

usable



# METADATA TELLS YOU...

Relevant information about the data:

- What kind of data it is (name, description, discipline, format)
- Who created the data (creator, organisation, distributor)
- How the data was created (methods, equipment, software)
- What has been done to the data (processing, editing)
- Where the data locates (storage place, identifiers)
- How the data can be reused (terms of use, licenses)



# **DATA DOCUMENTATION**

Make your data describe itself!

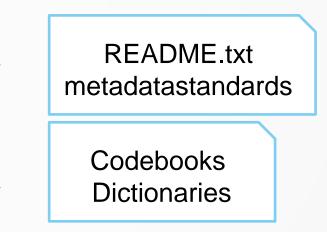
<u>What</u> the data is? <u>Where</u> it came from? <u>How</u> can it be reused?

Understandability "User manual" of the dataset

Makes the dataset self-explanatory and usable for others

File naming conventions, explain variables, codebooks, use tags, readme-files + administrative documents, licenses, etc.

Discoverability "Label" of the dataset


Describes what the dataset contains. Should be available even if you cannot open data itself.

Title, description, creator, persistent identifier, etc.

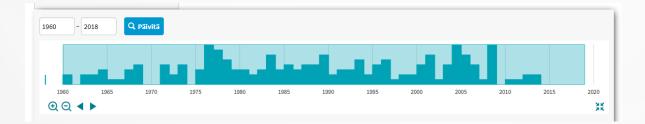


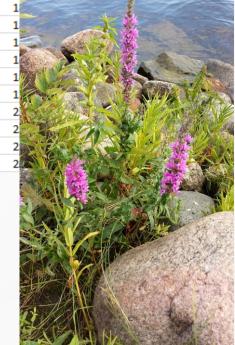
On what level do you have to describe your data?

- Whole project
- Documents
- Datasets
- Files
- Variables
- Abbreviations






### **DO YOU STILL REMEMBER...**


Do you yourself remember the meaning of all the markers or variables after six months? AMC, GHD34, GFP ...

Think of all the different datatypes without metadata...

Data without description is unusable.

| Н    | 1    | J  | K  | L    | М                                                                                                              |
|------|------|----|----|------|----------------------------------------------------------------------------------------------------------------|
| 3,25 | 2,25 | 19 | 20 | 18   | 15                                                                                                             |
| 3,25 | 2,25 | 19 | 20 | 18   | 15                                                                                                             |
| 3,25 | 2,25 | 19 | 20 | 18   | 15                                                                                                             |
| 3,25 | 2,25 | 19 | 20 | 18   | 15                                                                                                             |
| 3,25 | 2,25 | 19 | 20 | 18   | 15                                                                                                             |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    |                                                                                                                |
| 3,25 | 2,25 | 19 | 20 | 1    | Court The                                                                                                      |
| 3    | 4,13 | 24 | 25 | 2    | See Ser                                                                                                        |
| 3    | 4,13 | 24 | 25 | 2    | , The All                                                                                                      |
| 3    | 4,13 | 24 | 25 | 2    | N VENS                                                                                                         |
| 3    | 4,13 | 24 | 25 | 2    |                                                                                                                |
|      |      |    |    | 2.00 | Statement of the second se |





# DIFFERENT WAYS TO DESCRIBE YOUR DATA



# **ELEMENTS OF DATA DOCUMENTATION**



#### **Documentation methods**

Naming of the files

**Directory structure** 

Version control

Data dictionaries and codebooks

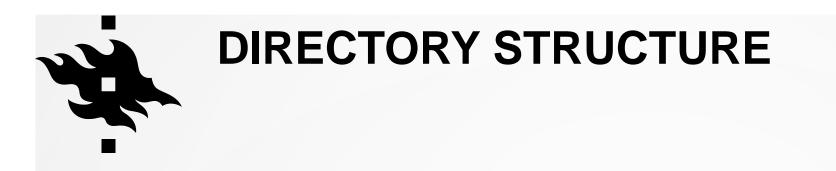
Readme files

Laboratory notebooks

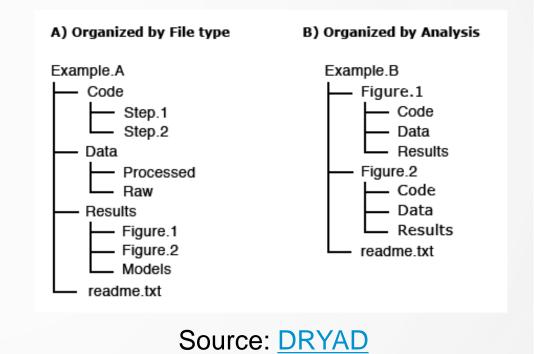
Metadata standards

Siiri Fuchs, & Mari Elisa Kuusniemi. (2018, December 4)
Making a research project understandable
Guide for data documentation (Version 1.2).
Zenodo. <u>http://doi.org/10.5281/zenodo.1914401</u>

#### Making a research project understandable


#### Guide for data documentation




Siiri Fuchs & Mari Elisa Kuusniemi Helsinki University Library, Data Support



- Plan naming at the beginning of the project.
- Guiding principles: consistency and clarity
- Good file names are constructed logically (e.g. by date) and they inform on the content of the files (<u>Purdue University</u>)
- The date is always in the same form: yyyy-mm-dd -> files are organized chronologically
- <u>https://www.fsd.uta.fi/aineistonhallinta/en/processing-qualitative-data-files.html#naming</u>
- File naming convention helps you stay organized, contain quickly information from the title, and assists others in navigating in your directories.
- Use unique file names so that files can be recognized without folder name



- Folder structure should be based on the needs of the project
- Clear folder structure helps with access control (e.g. when you have sensitive data)
- Right balance with shallow and deep folder hierarchy helps with finding the correct file
- Key words and tags help with finding the correct files





**VERSION CONTROL** 

Favour automatic version control:

- Wiki •
- GitHub, GitLab
- OneDrive for UH
- Google Docs (on US server!)

Name different versions clearly:

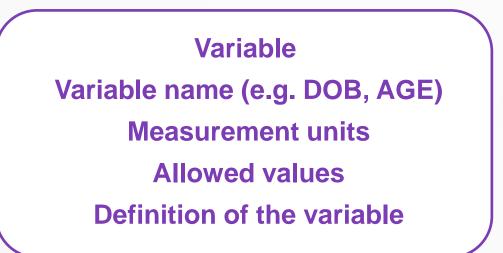
- Good practice: \_V02-03.doc
- Avoid: \_draft, \_final, \_final3, \_finalfinal

Generate an archive folder for old versions.

Keep the original raw data separate and safe.

- Makes it possible to return to an older version of data.
- Can save you from losing the data.
- Version control can be done automatically or manually.




- GitLab based version control system for projects
- Internal and shared projects
- Ideal for research collaboration
- Check out: https://version.helsinki.fi/
- Instructions: <u>https://wiki.helsinki.fi/x/tASBDQ</u>
- A blog post (only in Finnish): <u>https://blogs.helsinki.fi/thinkopen/versionhallinta-on-valttamaton-tyokalu-tutkimukselle/</u>



| University Account          | Standard | Register |  |  |  |  |  |
|-----------------------------|----------|----------|--|--|--|--|--|
| University Account Username |          |          |  |  |  |  |  |
|                             |          |          |  |  |  |  |  |
| Password                    |          |          |  |  |  |  |  |
|                             |          |          |  |  |  |  |  |
| Remember me                 |          |          |  |  |  |  |  |
| Sign in                     |          |          |  |  |  |  |  |
|                             |          |          |  |  |  |  |  |
| Sign in with                |          |          |  |  |  |  |  |
| HAKA Login                  |          |          |  |  |  |  |  |
| Remember me                 |          |          |  |  |  |  |  |



- Dictionaries explain variables used in a dataset
- A data dictionary explains all the variable names and values in your spreadsheet.





# **HOW TO MAKE A DATA DICTIONARY?**

#### Sheet\_1

| Variable                        | Variable name | Measurement unit | Allowed values                        | Description                                          |
|---------------------------------|---------------|------------------|---------------------------------------|------------------------------------------------------|
| Participant ID number           | ID            | Numeric          | 001-999                               | ID number assigned to participant in sequential orde |
| Group number                    | GROUP         | Numeric          | 1-30                                  | Group assigned to participant based on ID number     |
| Age in years                    | AGE           | Numeric          | 18.0-65.0                             | Age of participant in years                          |
| Date of birth                   | DOB           | mm/dd/yyyy       | 1-12/1-31/1951-1998                   | Participant's date of birth                          |
| Gender                          | SEX           | Numeric          | 1 = male 2 = female                   | Participant's gender                                 |
| Date of survey                  | SURVEY        | mm/dd/yyyy       | 01/01/2015 - 01/01/2016               | When the participant completed the survey            |
| Self-reported consumer spending | SPEND         | Numeric          | 0-100,000,000                         | Self-reported average yearly expenditure             |
| Market sentiment                | SENTIMENT     | Numeric          | 1 = negative 2 = neutral 3 = positive | Sentiment towards US domestic economy                |
| Actual GDP growth               | GDP           | Numeric          | -5.0-5.0                              | Average US yearly GDP growth                         |

Source: How to Make a Data Dictionary, <u>https://help.osf.io/m/bestpractices/I/618767-how-to-make-a-data-dictionary</u>, <u>OSF</u> Guides

# SOFTWARES THAT CREATES METADATA

- REDCap is an example of software that creates metadata
  - <u>https://redcap.helsinki.fi/redcap/</u>
- Note: many manufacturers have software that produces its metadata or formats, making the data incompatible with other programs.
- However, usually manufacturers do have the standard metadata version/format available.

| - This page                      |                                                                           |                       | E Data Dictionary codebook                                                                     |                                                                                |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                                  |                                                                           |                       |                                                                                                | Collapse all instruments                                                       |  |  |  |  |
|                                  | #                                                                         | Variable / Field Name | Field Label<br>Field Note                                                                      | Field Attributes (Field Type, Validation, Choices, Calculations, etc.)         |  |  |  |  |
| Inst                             | Instrument: My First Instrument (my_first_instrument) 🗗 Enabled as survey |                       |                                                                                                |                                                                                |  |  |  |  |
| P                                | 1                                                                         | record_id             | Record ID                                                                                      | text                                                                           |  |  |  |  |
| ✓                                | 2                                                                         | flavor_favorite       | What is your favorite ice cream flavor?                                                        | radio 1 vanilla 2 strawberry 3 chocolate 4 other                               |  |  |  |  |
| <ul> <li>✓</li> <li>✓</li> </ul> | з                                                                         | name                  | Section Header: This begins a new section.<br>What is your name?<br>Tāmā an pakollinen kenttā. | text, Required, Identifier                                                     |  |  |  |  |
| <i>⊘</i><br><del>7</del>         | 4                                                                         | age                   | What is your age?                                                                              | text (number, Min: 1, Max: 100)                                                |  |  |  |  |
| <i>⊘</i><br>∓                    | 5                                                                         | date                  | Today's date                                                                                   | text (date_dmy)                                                                |  |  |  |  |
| <i>⊘</i><br>∓                    | 6                                                                         | feel_today            | How do you feel today?<br>Valinnat saa nallattua klikkaamalla 'reset'                          | slider, Required<br>Slider labels: sad, neutral, happy<br>Custom alignment: RH |  |  |  |  |
| <i>⊘</i><br>∓                    | 7                                                                         | file                  | You can upload your file here.                                                                 | file                                                                           |  |  |  |  |
| 1 - 1                            | 1                                                                         |                       | 1                                                                                              |                                                                                |  |  |  |  |



Application for building and managing online *surveys and database*: <u>https://projectredcap.org/</u>

- For collecting sensitive and personal data
- Compliant with GDPR requirements when used properly

University of Helsinki REDCap:

- Anyone with UH credentials can access and use it
- Installed on the UH's servers  $\rightarrow$  data stored on the UH's servers



- Readme-files are text documents (e.g. README.txt)
- Provide information about data files to ensure they are interpreted correctly.
- These become especially important when sharing and publishing data
- They are also helpful to your future self.



## **README FILES**

Write down everything related to your project:

- Names of the files and file formats
- How the data is organized (directory structure)
- How the data is produced (containing equipment used and software)
- How the data has changed or how it's been processed/edited
- Explain the codes, abbreviations or variables used in the naming of the files
- At a minimum, save this information in a README.txt file and save it with the actual data.

# **EXAMPLE OF README CONTENT**

What you should include in the documentation of your data

TITLE: Name of the dataset or research project that produced it

CREATOR: Names and addresses of the organization or people who created the data

IDENTIFIER: Number used to identify the data, even if it is just an internal project reference number (e.g. URN:123abc)

DATES: Key dates associated with the data, including project start and end date, data modification, data release date, and period covered by the data

SUBJECT: Keywords or phrases describing the subject or content of the data

FUNDERS: Organizations or agencies that funded the research

RIGHTS: Any known intellectual property rights held for the data

LANGUAGE: Language(s) of the intellectual content of the resource, when applicable

LOCATION: Where the data relates to a physical location, record information about its spatial coverage

METHODOLOGY: How the data was generated, including equipment or software used, experimental protocol, other things you might include in a lab notebook



# LABORATORY NOTEBOOKS

- For specific disciplines, the most important method for documenting research (sometimes data itself)
- Usually, physical notebooks kept in labs
- Clear rules on how to keep a notebook
- Handwritten notebooks are often chaotic and always unsearchable. <u>Source:</u> Nature

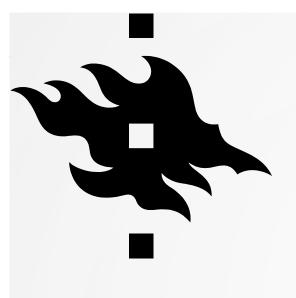
"Experiments and sample metadata will be documented in detail in laboratory notebooks (in paper and in electronic format)."

# ELECTRONIC LABORATORY NOTEBOOKS (ELN)

- A documentation method
- The program creates metadata automatically
- Notes stay up to date
- Safe data storage and access control
- Makes data sharing and cooperation possible
- Reporting is easy










# WHICH ELN PROGRAM?

- At the moment, there are over <u>100 different</u> programs available
- <u>Splice-bio</u> has listed all the best ELN programs

• UH hasn't acquired (yet) any specific program



# **METADATA STANDARDS**



# **METADATA STANDARDS**

- Metadata standard is a format for describing a dataset in a controlled way.
- There are general or disciplinary-specific formats and standards.
- Favor metadata standards instead of an uncontrolled description if possible



- Many open data archives require a specific data description format.
- If you want to deposit your data, you should find out the required format already at the beginning of your project.
- Choosing a repository makes it easier to select a metadata schema.
- Are you collecting all the necessary information?
- Using standards and coherency in documentation will make data more understandable, facilitate its reuse and make combining datasets possible.
- By using metadata standards, you improve the interoperability, findability and also machine readability of your research data.



# **FINDING METADATA STANDARDS**





EML

OGS

- Disciplinary Metadata / Digital Curation Centre DCC
- Metadata Standards by Subject / Research Data Alliance RDA
- <u>General Research Data</u> / Digital Curation Centre DCC.



- FAIRsharing.org search for metadata standards by repositories
- Metadata Tools / Standford University Library

ISO TC/211



Controlled vocabularies to describe your data and to make data machine readable and searchable

#### EMBL-EBI Ontology

•Lookup service for biomedical ontologies that aims to provide a single point of access to the latest ontology versions.

• Data vocabularies (Tietomallit),

•A service for managing and publishing data vocabularies.

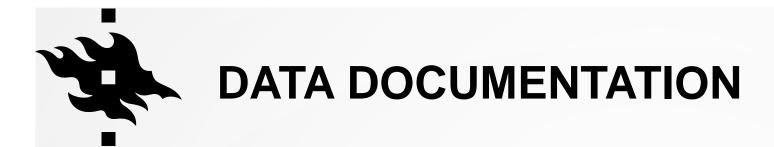
•It contains data component libraries, i.e. data specifications for harmonizing information used jointly by different actors.



- A long-lasting reference to a digital resource. An identifier is a label which gives a unique name to an entity: a person, place, organization. (ORCID Support, 2019)
- Unlike URLs, which may break, a persistent identifier reliably points to a digital entity as long as possible.
- For an individual researcher: <a href="https://orcid.org/">https://orcid.org/</a>
- For organizations: <u>https://ror.org/</u>
  - University of Helsinki: <a href="https://ror.org/040af2s02">https://ror.org/040af2s02</a>
  - ror-identifier is linked to other identifiers also



# DESCRIBE YOUR DATA DOCUMENTATION


In your DMP:

"Metadata will be collected according to minimum Information About a Microarray Experiment (MIAME)."

"We will deposit sequencing reads from putative commercial cell lines in standard formats to the Gene Expression Omnibus (GEO, NIH, USA)."

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions.

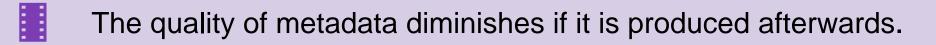
# TIPS FOR DOCUMENTATION



If possible, use <u>metadata standards</u> and controlled vocabularies.

If available, use <u>data management software</u>, to make documenting easier.




At minimum, store this documentation in a readme.txt file or the equivalent, together with the data.





Make a plan about documentation as early as possible when the project starts





For data that cannot be freely shared, at least metadata will be publicly provided.

# THANK YOU!

University of Helsinki Data Support

