
Interaction of light with cometary dust 
particles (2)



The main idea of DDA is to replace a target particle with a set of 
small volumes which reproduce its shape and internal structure.

initial perfect sphere 137,376 small volumes



Q1: What does this replacement give us?

A1: The light scattering by small particles has been studied very 
well and it has quite simple analytical expression.

Therefore, instead of problem of light scattering by a solid 
particle with complex shape and internal structure, we consider 
the scattering by array of coupled dipoles.

Within this approach, electric field induced on each dipole is 
result of a superposition of the incident field and fields induced 
by all other dipoles:

here αi – polarizability of i-th dipole; Ei – the total field induced 
on i-th dipole; Eiinc – field of the incident wave at i-th dipole; Nij
– operator describing scattering from j-th to i-th dipoles.
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Q2: What does “small volume” mean?

A2: In light scattering, all sizes are being measured in 
comparison with wavelength of radiation. Thus, “small volume”
mean that size of volume is significantly smaller than 
wavelength. In terms of size parameter x, this condition is x<1.

Q3: What is the shape of small volume?

A3: Any kind of shape. There is only one restriction – the small 
volume should be a rather compact and has approximately the 
same size in all directions (i.e., being equidimensional).

We will prove this statement. In order to do that, we compare 
light-scattering properties of small spherical and cubical grains.

We assume that grains consist of the same volume of a material 
(in case of sphere x=0.7) with refractive index m=1.5+0.01i.
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We have to find out the operator Nji describing the dipole-dipole 
interaction. We will do that from Mie theory.

Full electric field scattered by a single sphere is defined as 
follows (Lecture 5, page 43):
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r, θ and ϕ – spherical polar coordinates; k – wavenumber; 
Pn1(cosθ)– the associated Legendre functions; 
ξn(kr)=(kr)⋅hn(1)(kr), here hl(1)(kr) – spherical Hankel function;
an and bn – coefficients of scattering.



Coefficients an and bn are being decreased while the index n
increases; it happens faster for smaller x. At x < 1, only a1 is 
enough to describe light-scattering properties.
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One can simplify the expressions for component of the scattered 
field as follows:
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The scattered field is expressed in spherical polar coordinates 
which are not convenient on practice. We have to transform 
these formulae to Cartesian system of coordinates as follows:
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To interpret this result we use two unit vectors:
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The simplified expression for the scattered electric field is:

One can introduce a polarizability α as follows:
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Taking into account the expression for polarizability α, one can 
obtain:

Finally, the electric field scattered by an electric dipole can 
be expressed as follows:
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Now, one can express the system of linear equations describing 
light scattering by array of dipoles:
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Solution of this system gives a set of electric fields induced on 
each dipole in the array.

Then, using the induced fields, one can compute amplitude of 
the scattered field Esc in far zone:
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Formula for the scattered field can be further simplified:
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Taking into account the aforesaid, one can simplify the 
expression for the scattered field in far zone as follows:
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That’s all about formulation of DDA!

Computing light scattering for two incident waves with 
mutually perpendicular polarizations, one can derive the 
amplitude matrix and, then, Mueller matrix. 

In what follows, we will discuss a few tricks significantly 
accelerating and improving accuracy of DDA computations



1. Acceleration of computations with fast Fourier transform (FFT) 

Computation of light scattering with DDA means a finding of  
solution of the system of linear algebraic equations. It is being 
done with some iterative scheme.

In each iteration, at least, one matrix-vector product has to be 
computed, which takes of about N2 operations (N – number of 
unknowns).

However, DDA can be reformulated into the form that the 
matrix-vector product will be a convolution. Computation of this 
convolution can be substantially accelerated with FFT: 
only N logN operations instead of N2.

In order to apply FFT, we have suppose that all the dipoles are 
located in regular cubic lattice. Then, one can reformulate the 
system of equations as follows:
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Operator N3D depends on three integer numbers: (m – i), 
(n – j), and (o – l). Therefore, matrix-vector product takes form 
of a convolution. 

Fourier transform is being computed separately for operator N3D

and vector E. Then, corresponding elements of these two 
Fourier transforms are multiplied to each other and, the result is 
being reconstructed with Fourier inversion.

Though the DDA is dramatically speeded up with FFT, there are 
also some penalties: 

(1) cells have to be located in regular cubic lattice; 

(2) all the sites in the grid have to be treated (even those are
empty).



2. Azimuthal averaging 

In many applications to cosmic dust, light-scattering properties 
have to be averaged over orientations of sample particles. At 
that azimuthal averaging can be done without additional 
computations of the induced fields.
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3. Polarizability

So far, we were assuming that the polarizability of dipoles is 
derived directly from a1 scattering coefficient in Mie theory. 

Taking into account small size of sphere, one can also simplify 
expression for coefficient a1. It leads us to an extremely simple 
formula which is also referred to Clausius-Mossotti formula:
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V is volume of the target, N – number of cells, m – refractive 
index.

It is obvious that the practical use of Clausius-Mossotti
formula is limited by condition: kd  → 0. However, it is not 
only option!

, where 



At present, the most frequently used and famous relation is, 
so-called, the Lattice Dispersion Relation (LDR):

As was experimentally found, the LDR provides reasonably 
good accuracy at kd|m| ≤ 1.
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b1 = –1.8915316, b2 = 0.1648469, b3 = –1.7700004,
αCM – polarizability given by Clausius-Mossotti formula.
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Draine & Goodman, ApJ, 405, 685 (1993).



Validity criterion for DDA 

In general, the restriction on dipole size is as follows: 

kd|m| ≤ A. 

At present, it is widely accepted that when

A = 1: DDA provides quite reasonable accuracy in the cross-
sections of absorption and scattering; whereas, the angular 
profile of the intensity may reveal fractional errors exceeding 
30%.

A = 0.5: DDA provides accurate results for the angular profile of 
intensity. 

Though it is not clearly stated, one can suppose that, for 
accurate computations of polarization, it is required A < 0.5.

Draine & Flatau, JOSAA, 11, 1491 (1994)

Draine & Flatau, User Guide for the DDA Code DDSCAT 6.1 (2004)



Generally, there are three sources of errors in DDA computation:

(1) violation of Maxwell equations;

(2) surface roughness caused by discrete presentation;

(3) parasitic interference coming from regular grid.

If Maxwell equations are satisfied, there are only two types of 
errors caused by surface roughness and parasitic interference.

However, the averaging over particle orientations (and/or 
shapes) can efficiently reduce the impact of the parasitic 
interference. Thus, one can estimate the true impact of surface 
roughnesses on accuracy of DDA.



Sample particles at different degree of discretization
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One can quantify the errors in intensity as follows:

In the case of sphere, Iexact obviously corresponds to result of 
Mie theory; whereas, in the case of irregular particle, Iexact can 
be associated with result obtained at the finest discretization.
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An important question: is the difference between the polarization 
profiles corresponding to coarse and fine representations of the
target particle, really caused by surface roughness?

The answer on this question can be found from the study of 
impact of roughnesses on light scattering.
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Summary

When studying realistic irregularly-shaped particles which are 
averaged over orientations, DDA provides highly accurate result
even under condition kd|m| ≤ 1. While this parameter is 
approaching unit, the impact of surface roughness caused by 
discrete cells is getting visible in the angular profile of the 
degree of linear polarization. Nevertheless, in many practical 
applications, that roughness could be even desirable making a 
target more realistic.
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Modeling cometary dust particles 

Within DDA, there are no restrictions on shape and internal 
structure of a target particles. Therefore, you can build up any
kind of shape. However, there are two requirements:

(a) dust particles have to be essentially irregular (non-spherical, 
non-cubical, etc.)

(b) dust particles have agglomerate structure. Packing density 
have to be chosen in order provide range of the measured 
density (from 0.3 to 3 g/cm3).

Refractive indices for cometary spices in visible:

Mg-rich silicate: Re(m) = 1.5 – 1.6 Im(m)=0.00001 – 0.01

Water ice: Re(m) = 1.31 Im(m)=0

Organic material Re(m) = 1.4 – 1.6 Im(m)=0.002 – 0.5



Popular shapes for cometary dust particles 

Two models popular models are ballistic cluster-cluster 
aggregates (BCCA) and ballistic particle-cluster aggregates 
(BPCA). The fractal dimension of BCCA is about 2; whereas, for 
BPCA, it is about 3. The size of constituent sphere is of 0.2 μm.

BCCA

BPCA



Examples of BCCA and BPCA



An example for other models of cometary dust particles is 
agglomerated debris. 

Algorithm for generation of agglomerated debris is as follows:

However, there must be alternative models!



Examples of agglomerated debris particles


