
Interaction of light with cometary
 

dust 
particles (1)



In general, interaction of electromagnetic wave with a target 
particle causes two phenomena: scattering and absorption.

However, when describing interaction of light with particle, very 
often, only the term “light scattering” is being used; whereas, it 
includes also absorption properties.

Light-scattering properties of a given target particle depend on 
its morphology, refractive index of the constituent material (it is 
not necessarily homogeneous and isotropic), and size.

Strictly speaking, light scattering depend not on the size but, on 
the ratio of particle size to wavelength of incident radiation λ.
The ratio can be quantified through the size parameter x:

x
 

= 2πr/λ
where r

 
is radius of the particle and λ

 
– wavelength 



Light scattering also depends on features of incident radiation.

Electromagnetic radiation is being characterized by intensity and 
polarization. In general case, it has an elliptical polarization.

The vibrational ellipse for 
the electric vector polarization. 

Elliptically polarized light can 
be expressed as a 
superposition of two waves:

Ex = E1 cos((ωt – (k⋅r))+ δ1 )

Ey = E2 cos((ωt – (k⋅r))+ δ2 )

Parameters of these waves 
E1 , δ1 , E2 , and δ2 are 
connected with the ellipse 
parameters a, b, and  γ.



The principal difficulty of such approach is that the parameters 
E1 , δ1 , E2 , and δ2 are amplitudes and phases of the 
electromagnetic waves; whereas, they are non-measurable.

Instead, the values which are proportional to the energy of 
electromagnetic radiation (i.e., quadratic values of amplitudes, 
and no absolute phases) can be measured.

Therefore, an alternative description of elliptical polarization of 
electromagnetic radiation is highly demanded!
A possible solution is through so called Stokes parameters. 

Stokes parameters are 
grouped in a vector as follows:
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Formalism based on Stokes vectors provides two an extremely 
important advantages:

1. One can express Stokes vector for unpolarized light:
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2. Light scattering can be described through the Stokes vectors 
for incident and scattered light and, also, some matrix (4 ×

 
4):

Ssc
 

= M ⋅
 

Sinc

Matrix M is referred to Muller matrix (or scattering matrix) 
and it does not depend on property of the incident light.



In general case, all sixteen elements of Muller matrix are non- 
zero; though, these elements are not independent:
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However, averaging over sample particles and their orientations 
substantially simplifies the resulting Mueller matrix:
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In application to comets, the incident light is emitted by the Sun, 
which is substantially unpolarized. 

Simultaneously, the dust particles appear in huge ensembles. 

Therefore, Stokes vector of the scattered light consists of only 
two non-zero parameters. Under assumption of I

 
= 1 in Stokes 

vector for the incident wave, Stockes vector for the scattered 
light takes form as follows: 
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The measured values are the intensity of the scattered light I
 

= 
(kR)–2 M11 and its degree of linear polarization P

 
= –M12 /M11 . 

Typically polarization is expressed in percent. 

Taking into account the actual expressions for the Mueller matrix 
elements M11 and M12 , one can reformulate definitions for the 
intensity and degree of linear polarization alternatively as 
follows: I

 
= I⊥

 

+ I||
 

and P
 

= (I⊥
 

– I||)/(I⊥
 

+ I||). 

Here, I⊥
 

denotes the intensity of the component of scattered 
light that is polarized perpendicular to the scattering plane; 
whereas, I||

 

denotes the intensity of the component polarized 
within the scattering plane.

Intensity I
 

takes positive and non-zero values, degree of linear 
polarization P

 
may be positive, negative, and equal to zero.



In general, the parameters describing light scattering by a 
particle can be classified into two groups, sometimes, referred as 
integral and differential parameters. 

Differential parameters are functions of two angles specifying 
the direction of scattered light to a detector. Intensity I

 
and 

degree of linear polarization P
 

are the differential parameters.
However, in the case of azimuthally symmetric targets, the 
angular dependence of differential parameters takes a 
significantly simpler form depending upon only phase angle α

 
or, 

equivalently, the scattering angle θ. 

An essential feature of integral parameters is that they are 
independent of the conditions of observation. Examples for 
integral parameters are the cross sections for absorption Cabs 

and extinction Cext , single-scattering albedo ω, asymmetry 
parameter g, and radiation pressure efficiency Qpr .



Interaction of electromagnetic radiation with particles decreases 
the energy flux of the incident wave. The total loss of the energy 
flux can be quantified in terms of area, which is normal to the 
incident beam and intercepts the lost flux of energy. Such an 
area is referred to as the cross section for extinction Cext . 

In the general case, the interaction of electromagnetic radiation 
with a particle results in absorption and scattering. The part of 
the total area that corresponds to loss due to absorption is 
referred to as the cross section for absorption Cabs ; whereas, the 
rest corresponds to the cross section for scattering Csca . These 
three values are obviously related as follows: Cext = Cabs + Csca . 

Efficiencies for extinction Qext , absorption Qabs , and scattering 
Qsca are defined as ratios of the corresponding cross section to 
the geometric cross section G. 



Single-scattering albedo ω
 

determines efficiency of light 
scattering:

ω
 

= Csca /Cext = (Cext – Cabs )/Cext ;     0 ≤ ω ≤ 1.

Asymmetry parameter g
 

indicates the distribution of the 
scattered electromagnetic energy between forward and 
backward hemispheres with respect to the direction of the 
incident beam propagation: 
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Here,  θ
 

and ϕ
 

are the scattering and azimuthal angles, I(θ,ϕ) is 
the intensity of scattering of unpolarized light. The denominator 
is equal to the scattering cross section Csca . 

;    -1 ≤
 

g
 

≤
 

1.



The radiation-pressure efficiency Qpr determines the motion of 
cosmic dust particles:

Qpr = Cpr /G
 

= (Cext – gCsca )/G.

The motion of cosmic dust particles near a star depends on the 
ratio of the radiation-pressure force to the star’s gravitational 
force, which is designated as  β

 
(e.g., Burns et al., 1979; 

Artymowicz, 1988; Fulle, 2004). Some details on the difference 
between the orbit of the parent body and an ejected dust 
particle caused by radiation pressure acting on the particle can 
be found, e.g., in Augereau and Beust (2006). By definition, the 
ratio β

 
is in direct proportion to radiation pressure: β  ∝ Qpr 

(e.g., Fulle, 2004).



The geometric albedo A
 

describes the ratio of the intensity 
backscattered by the particle to that scattered by a white disk of 
the same geometric cross-section G in accordance with 
Lambert’s law (e.g., Hanner et al., 1981; Hanner, 2003):

Here, M11 (0º) is the corresponding element of the Mueller 
matrix at backscattering α

 
= 0º and k

 
is the wavenumber. 

The geometric albedo A
 

equates to the backscattering efficiency 
of target particles.
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Depending on value of size parameter x, one can distinguish 
three regimes of light scattering:

x
 

<< 1 – light scattering by particles much smaller than 
wavelength (other names: Rayleigh scattering, 
electrostatic approximation)

x
 

≈
 

1 – 100 – light scattering by particles comparable with 
wavelength (other name: resonant scattering)

x
 

>> 100 – light scattering by particles much larger than 
wavelength (other name: geometric optics 
approximation (GOA))

Maxwell equations remain to be valid in all three regimes. 
However, on practice, technique of computation depends on 
regime of light scattering.



The most difficult for the consideration is the case of particles 
comparable with wavelength (i.e., x

 
≈

 
1 – 100).

The number of problems of light scattering by particles 
comparable with wavelength which have been successfully 
resolved is a quite limited. The most famous case is so-called 
Mie theory.

Mie theory describes light scattering by a perfect sphere with 
arbitrary size parameter x

 
and refractive index m. Though 

sphere is a rough approximation for cometary dust particles, it is 
still widely-used in the literature, at least, for approximate 
estimations.

Computation of light scattering by realistic models of cometary 
dust requires a numerical solution of Maxwell equations. 
One famous approach discrete dipole approximation (DDA).



Mie theory

What is it? 
It is an analytical solution of the 
problem of light scattering by a 
sphere.

Why is this solution called as Mie theory?
In honor of Gustav Mie, one of 
scientists who obtained the solution 
(1908).

How was the goal attained?
Through the separation of variables in 
the corresponding wave equation.

Gustav Mie
29·09·1869 – 
13·02·1957



Formulation of the problem

Sphere is described by:
(a) size parameter x

 
(x

 
= 2πr/λ)

(b) permittivity ε, magnetic permeability µ,  
conductivity σ

for simplicity, 
medium 2 – vacuum
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Irradiation of the sphere with some electromagnetic wave 
excites electromagnetic waves in both media (1 and 2). The 
electric and magnetic fields in outer medium E2

 

, H2
 

can be 

expressed as sum of two parts: the incident field and the rest. 
The latter part is referred to the scattered electric field:

Esc
 

= E2
 

–
 

Einc

Hsc
 

= H2
 

–
 

Hinc



Any solution starts from the Maxwell equations: 
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E, H
 

–
 

electric and magnetic fields
D, B

 
–

 
electric displacement field and magnetic induction

ρ, j
 

–
 

free charge and current densities

(CGS) 



Solution of the problem

Maxwell equations need to be simplified: 
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1. Suppose that electromagnetic field oscillates harmonically, 
i.e., each parameter characterizing that field depends on time 
as follows:

A(r,t)=A(r)exp(-iωt)



Solution of the problem

Maxwell equations need to be simplified: 
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2. Suppose that sphere and surrounding medium are 
electrically neutral, i.e., their total electric charge is zero:

ρ= 0.  
However, it does not necessarily mean that j

 
≠

 
0.



Solution of the problem

Maxwell equations need to be simplified: 

3. Because sphere and surrounding medium are 
homogeneous (i.e., within each of them ε

 
= const, µ

 
= 

const), the Maxwell equations can be replaced with two wave 
equations and boundary conditions.
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Solution of the wave equation

However, their solutions have to satisfy the Maxwell equations 
as well; in particular, the pair:

Thus, the solution of light scattering problem can be find from 
the wave equations: 

0k22 =+∇ EE 0k22 =+∇ HH

0=⋅∇ E 0=⋅∇ Η

But, the divergence of some vector is always equal to zero 
only if this vector, in turn, is a curl of a vector:

∇· (∇
 

×
 

A) ≡
 

0



Solution of the wave equation

Obviously, such a function satisfies equation: 

Using a scalar function ψ
 

and constant vector c, we construct 
a vector function M: 

)ψ(cM ×∇=

0=⋅∇ M

On the other hand, the vector function M will satisfy the 
vector wave equation if ψ

 
is a solution to the scalar wave 

equation:

0ψkψ 22 =+∇



Solution of the wave equation

So far, we were considering only one vector function M. But, 
in the electromagnetic theory, we have two different vectors 
E

 
and H. 

Each of these vectors satisfies the wave equation and, 
simultaneously, their divergence is equal to zero. Therefore, 
M is related to either E

 
or H.

It means that we need to define a complimentary vector 
function to the function M. We can do that with help of one 
of the Maxwell equations.



Solution of the wave equation

We suppose that the function M is associated with electric 
field E. Then, the complimentary vector function N

 
can be 

constructed with help of equation: 

HE μω
c
i=×∇

NM k=×∇

Let us define the relationship between the vector functions M
 and N

 
as follows:



Solution of the wave equation

NM k=×∇

Such a relationship is completely symmetric for the  functions 
M and N. Indeed:
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Solution of the wave equation

Now, we can return to the scalar function ψ, which  has to 
satisfy to the scalar wave equation:
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Scalar wave equation in spherical polar coordinates is

Solution of such an equation has form 

)( )( )(),,ψ( φθφθ ΦΘ= rRr

0k22 =ψ+ψ∇



Solution of the wave equation

Then, initial scalar wave equation can be separated in three 
equations:
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Here, m
 

and n
 

– the separation constants.



Solution of the wave equation

Solving these three equations, we can construct the function 
ψ. There are two types of ψ: 
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m
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Here, Pnm(cos θ) – the associated Legendre functions, zn
 

(kr) 
– any of four spherical Bessel functions jn

 

, yn
 

, hn(1), and hn(2).
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m
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The choice is not obvious, so, let us do it in the way which 
will, at least, simplify M.

Solution of the wave equation

Before construction of the vector function M and N
 

we have 
to decide what is the arbitrary vector c

 
in the defintion of M:

)ψ(cM ×∇=

0)( =⋅cM

ccM ×∇=×∇= ψ)ψ(

In other words, M is perpendicular to the vector c:



Note that the functions M and N
 

are called as vector 
spherical harmonics. Using functions ψemn

 

and ψomn, we can 
express M and N

 
as follows:

Solution of the wave equation

Therefore, choosing radius vector r
 

instead of c, we make a 
transverse the vector functions M and N.
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Expansion of the incident field

where the unit vector ex
 

in spherical system of coordinates 
takes form:

xi riE eE ˆ)coskexp(0 θ=

In Cartesian system of coordinates, the incident electric field 
can be written as follows:

φφθφθ φθ sinˆcoscosˆcossinˆˆ eeee −+= rx

In general case, electric and magnetic fields have to be 
expanded into series of four sets of vector spherical harmonic: 
Memn

 

, Momn
 

, Nemn
 

,
 

and Nomn
 

. 



Expansion of the incident field
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When expanding such an incident electric field into series of 
vector spherical harmonics, we obtain the following result:

Corresponding magnetic field takes form:
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Vector spherical harmonics Mo1n
 

and Ne1n

In order to reduce number of formulae, we will focus on 
electric field only.
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As it was mentioned, zn
 

(ρ) denotes any of four spherical 
Bessel functions jn

 

(ρ), yn
 

(ρ), hn(1)(ρ), and hn(2)(ρ).



The choice of spherical Bessel function depends on their 
behavior. For instance, near the center of sphere (i.e., at ρ →

 0), only jn
 

(ρ) takes finite values. Therefore, only this function 
contributes to spherical harmonics Mo1n

 

and Ne1n, forming the 
incident and internal electric fields Einc

 
and E1

 

. Such a choice 
we denote with superscript (1).

Note, that the argument ρ
 

= kr
 

is different for the incident 
and internal electric fields because the wavenumber k is 
different for a material of sphere and surrounding space.

Vector spherical harmonics Mo1n
 

and Ne1n



Vector spherical harmonics Mo1n
 

and Ne1n

For scattered field Esc, we could use one of two linear 
combinations hn(1)(ρ)=jn

 

(ρ)+i yn
 

(ρ) or hn(2)(ρ)=jn
 

(ρ)–i yn
 

(ρ).
The choice will be clear if we consider an asymptotic behavior 
of these functions at ρ → 0:

hn(1)(ρ)  ~  exp(ikr)     
hn(2)(ρ)  ~  exp( –

 
ikr)

For time dependence ~ exp(–iωt), hn(1)(ρ) presents the wave 
propagating from sphere to outer space. 

Such a choice we denote with superscript (3).



Expansion of the internal and scattered fields

We have found that the incident electric wave is based on 
only spherical harmonics Mo1n

 

and Ne1n.

However, it means that this incident electric wave will induce 
only electric waves which are based on the same vector 
spherical harmonics. Thus, the internal and scattered fields E1

 and Esc
 

are as follows:
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Coefficient of the scattered and internal fields

In order to find the coefficients of the scattered and internal 
fields, we need to consider boundary conditions at the surface 
of sphere: 

nEEnE ×+=× )(1
scinc nHHnH ×+=× )(1

scinc

These boundary conditions are expressed in spherical 
coordinate system in four equations:

scinc EEE θθθ +=1

scinc EEE φφφ +=1

scinc HHH θθθ +=1

scinc HHH φφφ +=1



Coefficient of the scattered fields an
 

and bn

After exhausting mathematical exercises we obtain the 
coefficients of the scattering as follows:
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ψn
 

(ρ) and ξn
 

(ρ) – Riccati–Bessel functions
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Recurrence relations of spherical Bessel functions
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Some values of the coefficients an and bn

Sphere with x
 

= 5 and m
 

= 1.5 + 0.01i
 

gives the first five 
coefficients an

 

and bn
 

as follows:

nn aann bbnn
11 0.517973+0.4372190.517973+0.437219ii 0.357583+0.4449090.357583+0.444909ii
22 0.585369+0.4596390.585369+0.459639ii 0.538009+0.4272480.538009+0.427248ii
33 0.663224+0.4223610.663224+0.422361ii 0.874567+0.2915330.874567+0.291533ii
44 0.940888+0.1075490.940888+0.107549ii 0.769533+0.3863140.769533+0.386314ii
55 0.4614180.461418--0.4652290.465229ii 0.7229040.722904--0.3363540.336354ii



r, θ and ϕ – spherical polar coordinates; k – wavenumber; 
Pn1(cosθ)  – the associated Legendre functions; 
ξn

 

(kr)=(kr)⋅hn(1)(kr), here hl(1)(kr) – spherical Hankel function; 
an

 

and bn
 

– coefficients of scattering.
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Recurrence relations of the associated Legendre functions 

Legendre functions:
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At large distance from the sphere, full scattered electric 
field can be simplified as follows:

(a)
 

Omitting of radial component of the field, i.e., 
Ersc=0;

(b) The function ξn
 

(kr) takes very simple 
form at very large values of (kr).

The scattered electric field in far zone
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The scattered electric field in far zone
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The problem of light scattering by an arbitrary sphere has 
been solved.



Mueller matrix

In order to study light scattering by sphere, we have to 
construct the corresponding Mueller matrix. 

Therefore, we need to study a scattering of two independent 
beams having mutually perpendicular states of polarization.

So far, we have result for only one polarization of the incident 
wave. However, the symmetry of  sphere allows us to derive 
result for another incident wave (which is perpendicularly 
polarized in respect to the first one) without an additional 
computation.



Mueller matrix

Indeed, at azimuth angle φ = 0, the total scattering field in far 
zone is defined by only one component Esc

 
= Eθ

sc
 

because 
Eφ

sc
 

= 0. At that, light scattering of the X-polarized incident 
wave happens in the plane XOZ. 

At azimuth angle φ = 90º, the total scattering field in far zone 
is defined by only component Esc

 
= Eφ

sc
 

because Eθ
sc

 
= 0. At 

that, light scattering of the X-polarized incident wave happens 
in the plane YOZ. Due to symmetry, it is equal to the 
scattering the Y-polarized incident wave in the plane XOZ.



One can rewrite the solution on far zone
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as follows:

Mueller matrix



Mueller matrix

Using functions S1
 

(cosθ) and S2
 

(cosθ), we can construct 
amplitude scattering matrix (also known as Jones matrix) as 
follows:
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Now, one can obtain Mueller matrix:
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As one can see, number of independent non-zero elements in 
Mueller matrix is only four.
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