Please note that your answers are due by April 6, 2023. Send the answers in pdf form by email to the course assistant mikko.vuori@helsinki.fi.
Background literature: C. F. Bohren \& D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 2008, Sect. 2.11 (B\&H).

1. Consider a beam of light with Stokes parameters $(I, Q, U, V)^{T}$ and $\left(I^{\prime}, Q^{\prime}, U^{\prime}, V^{\prime}\right)^{T}$ expressed using the basis vectors $\hat{\mathbf{e}}_{\perp}, \hat{\mathbf{e}}_{\|}$and $\hat{\mathbf{e}}_{\perp}^{\prime}, \hat{\mathbf{e}}_{\|}^{\prime}$, respectively. The angle between $\hat{\mathbf{e}}_{\perp}$ and $\hat{\mathbf{e}}_{\perp}^{\prime}$ is ψ. Show that

$$
\left(\begin{array}{l}
I^{\prime} \\
Q^{\prime} \\
U^{\prime} \\
V^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos 2 \psi & \sin 2 \psi & 0 \\
0 & -\sin 2 \psi & \cos 2 \psi & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right) .
$$

(3 points)
2. Consider an ideal linear polarizer that transmits, without the change of the electric field amplitude, only the field components parallel to a particular axis called the transmission axis. Let ξ is the smallest angle between the basis vector $\hat{\mathbf{e}}_{\|}$and the transmission axis direction $\hat{\mathbf{e}}_{t}$. Show that the Mueller matrix M for the ideal linear polarizer is

$$
M=\frac{1}{2}\left(\begin{array}{cccc}
1 & \cos 2 \xi & \sin 2 \xi & 0 \\
\cos 2 \xi & \cos ^{2} 2 \xi & \cos 2 \xi \sin 2 \xi & 0 \\
\sin 2 \xi & \sin 2 \xi \cos 2 \xi & \sin ^{2} 2 \xi & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(3 points)

3-4. Consider an ideal linear retarder that divides a given incident electric field vector into two linearly polarized, mutually orthogonal components E_{1} and E_{2} in the coordinate system $\hat{\mathbf{e}}_{1}$, $\hat{\mathbf{e}}_{2}$ and introduces an electromagnetic phase difference $\delta_{1}-\delta_{2}$ between the components. The irradiance is conserved. Show that the Mueller matrix M for the ideal linear retarder is

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C^{2}+S^{2} \cos \delta & S C(1-\cos \delta) & -S \sin \delta \\
0 & S C(1-\cos \delta) & S^{2}+C^{2} \cos \delta & C \sin \delta \\
0 & S \sin \delta & -C \sin \delta & \cos \delta
\end{array}\right)
$$

where $C=\cos 2 \beta, S=\sin 2 \beta, \beta$ denotes the angle between $\hat{\mathbf{e}}_{\| \mid}$and $\hat{\mathbf{e}}_{1}$ (notice the handedness in Fig. 2.17 of $\mathrm{B} \& \mathrm{H}$), and the retardance is $\delta=\delta_{1}-\delta_{2}$.
(6 points)
5. Devise an ideal circular polarizer with the help of the ideal linear polarizer and the ideal linear retarder.
(3 points)

