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Abstract

The decomposition of ensemble-averaged scattering matrices into pure Mueller

matrices allows for radiative-transfer coherent-backscattering (RT-CB) compu-

tations for discrete random media of nonspherical particles. In particular, RT-

CB computations for media composed of a size distribution of spherical particles

can be treated in two ways. First, the computations can be run by incorporat-

ing the speficic set of spherical particles composing the media. Second, the

computations can be run by incorporating the decomposition of the ensemble-

averaged scattering matrix into two pure Mueller matrices. Comparisons of the

two approaches are provided for example ensembles of spherical particles. Fi-

nally, first results are shown for RT-CB computations for discrete random media

of nonspherical particles.
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1. Introduction

2. Scattering phase matrix

Consider the 4×4 block-diagonal, ensemble-averaged scattering phase matrix

P0 = P0(θ), where θ is the scattering angle:

P0 =


a1 b1 0 0

b1 a2 0 0

0 0 a3 b2

0 0 −b2 a4

 , (1)

where we assume the normalization of5 ∫
(4π)

dΩ

4π
a1(θ) = 1, (2)

that is,

1

2

∫ π

0

dθ sin θ a1(θ) = 1. (3)

The scattering phase matrix is subject to a number of symmetry relations (Hov-

enier & van der Mee 2000). For arbitrary scattering angles θ,

|aj | ≤ a1, j = 2, 3, 4,

|bj | ≤ a1, j = 1, 2,

(a3 + a4)
2 + 4b22 ≤ (a1 + a2)

2 − 4b21,

|a3 − a4| ≤ a1 − a2,

|a2 − b1| ≤ a1 − b1,

|a2 + b1| ≤ a1 + b1. (4)

In the forward (θ = 0) and backward scattering directions (θ = π),

a2(0) = a3(0),

a2(π) = −a3(π),

a4(π) = a1(π)− 2a2(π),

b1(0) = b2(0) = b1(π) = b2(π) = 0. (5)
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We model the observed matrix P0 in full detail with a scattering phase10

matrix P = P(θ) that is reconstructed from four matricesU = U(θ), V = V(θ),

W = W(θ), and Z = Z(θ) (Cloude, Savenkov et al.):

P = wU U+ wV V + wW W + wZ Z,

0 ≤ wU ≤ 1, 0 ≤ wV ≤ 1, 0 ≤ wW ≤ 1, 0 ≤ wZ ≤ 1,

wU + wV + wW + wZ = 1, (6)

where wU , wV , wW , and wZ are the normalized weights and where the common

normalization condition holds for the phase functions:∫
(4π)

dΩ

4π
U11(θ) =

∫
(4π)

dΩ

4π
V11(θ) =∫

(4π)

dΩ

4π
W11(θ) =

∫
(4π)

dΩ

4π
Z11(θ) = 1. (7)

The eigenproblem can be solved analytically (Muinonen 2023, in prepara-15

tion). In the notation of Eq. 6, we obtain

U =


U11 U12 0 0

U12 U11 0 0

0 0 U33 U34

0 0 −U34 U33

 ,

V =


V11 V12 0 0

V12 V11 0 0

0 0 V33 V34

0 0 −V34 V33

 ,

W =


W11 0 0 0

0 −W11 0 0

0 0 −W11 0

0 0 0 W11

 ,

Z =


Z11 0 0 0

0 −Z11 0 0

0 0 Z11 0

0 0 0 −Z11

 , (8)
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where

U11 =
1

2wU

[
1

2
(a1 + a2) +

√
b21 + b22 +

1

4
(a3 + a4)2

]
,

V11 =
1

2wV

[
1

2
(a1 + a2)−

√
b21 + b22 +

1

4
(a3 + a4)2

]
,

U12

U11
= −V12

V11
=

b1√
b21 + b22 +

1
4 (a3 + a4)2

,

U33

U11
= −V33

V11
=

1
2 (a3 + a4)√

b21 + b22 +
1
4 (a3 + a4)2

,

U34

U11
= −V34

V11
=

b2√
b21 + b22 +

1
4 (a3 + a4)2

,

W11 =
1

2wW
(a1 − a2 − a3 + a4),

Z11 =
1

2wZ
(a1 − a2 + a3 − a4), (9)

with

wU =
1

4
+

1

8

∫ π

0

dθ sin θ

[
a2(θ) + 2

√
b21 + b22 +

1

4
(a3 + a4)2

]
,

wV =
1

4
+

1

8

∫ π

0

dθ sin θ

[
a2(θ)− 2

√
b21 + b22 +

1

4
(a3 + a4)2

]
,

wW =
1

4
+

1

8

∫ π

0

dθ sin θ [−a2(θ)− a3(θ) + a4(θ)] ,

wZ =
1

4
+

1

8

∫ π

0

dθ sin θ [−a2(θ) + a3(θ)− a4(θ)] . (10)

3. Amplitude matrices

Consider a 2 × 2 Jones amplitude scattering matrix with nonzero diagonal20

elements S1, S2 and vanishing off-diagonal elements S3, S4. The elements are

functions of the scattering angle θ. Consequently, the nonzero 4 × 4 Mueller

scattering matrix elements are

S11 =
1

2

(
|S1|2 + |S2|2

)
= S22,

S12 =
1

2

(
−|S1|2 + |S2|2

)
= S21,
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Figure 1: Mie.

Figure 2: Mie.

S33 = ReS1S
∗
2 = S44,

S34 = −ImS1S
∗
2 = −S43, (11)

which is the form of the common Mie scattering matrix (Bohren & Huffmann

2008).25

If only the relative electromagnetic phase between S1, S2 at each scattering

angle is required, S1 can be assumed real-valued. The inverse relation of the

Jones matrix elements as a function of the Mueller matrix elements can then be

written as

S1 =
√
S11 − S12,

S2 =
1

S1
(S33 + iS34). (12)

The matrices U and V have their corresponding amplitude matrices of the30

form in Eq. 12. The Mueller matrix V (Eq. 9) violates the symmetry relations

required for scattering matrices in the backscattering direction (Hovenier & van

der Mee 2000).

4. Results and discussion

4.1. Phase matrices of spherical particles35

4.2. Phase matrices of Gaussian-random-sphere particles

4.3. Measured phase matrices of feldspar particles

5. Conclusion

References

Figure 3: GRS ice.
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Figure 4: GRS ice.

Figure 5: Feldspar.

Figure 6: Feldspar.
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