Astrophysical light scattering problems (PAP316) Lecture 2c

Microwave scattering in planetary science

Anne Virkki^{1,2}

Academy research fellow

¹Department of Physics, University of Helsinki, Finland

²Finnish Geospatial Research Institute (FGI), Masala, Finland

Radar echo from planetary surfaces

"OC" and "SC" polarizations

Smooth surfaces:

Specular reflection -> All echo in the oppositecircular (OC) polarization than the transmitted signal

 Rough surfaces (wavelengthscale surface roughness or boulders): Quasi-specular + diffuse scattering

 > Echo partly in the OC polarization and partly in the same-circular (SC) polarization

Radar cross section:

$$\sigma_{Pol} = \frac{4\pi R^4 \lambda^2 P_{rx,Pol}}{P_{tx} A_{eff}^2}$$

Radar albedo:

$$\hat{\sigma}_{Pol} = \frac{\sigma_{Pol}}{A_{proj}}$$

One-parameter definitions for surface roughness

- Traditionally used parameters for surface roughness:
 - Circular-polarization ratio (μ_C) , typical values 0-1.0
 - Backscatter gain factor (g), typical values 1.2-1.5
 - Surface slope parameter (*C* or *s*), typical values 0.1-0.8

$$u_C = \frac{\sigma_{SC}}{\sigma_{OC}}$$

$$g = \hat{\sigma}_{OC} / R_F$$

$$[g = 1 \text{ for a smooth surface}]$$

$$g \ge 1$$

$$R_F = \left| \frac{\sqrt{\varepsilon} - 1}{\sqrt{\varepsilon} + 1} \right|^2$$

$$[\varepsilon : \text{electric permittivity}]$$

CPR DEPENDS ON THE TAXONOMIC TYPE?

Understanding radar scattering

- Multi-parameter problem: The size, shape, and material of wavelength-scale particles on/in asteroid surfaces play a role in radar scattering as well as the structure of the sub-surface
- Lunar radar analysis has a long history that can help us to understand also radar scattering in asteroid surfaces
- Multi-wavelength comparative analyses
 can provide constraints
- Modeling work is crucial for understanding how to interpret the radar data

Radar scattering laws

On the left: Backscatter coefficient as a function of the incidence angle

Several radar scattering laws have been developed (with different conditions)

Also: Considering only surface undulations is not enough!

m-chi decomposition

Red =
$$[mS_1(1 + \sin 2\chi)/2]^{1/2}$$
 $m = \frac{\sqrt{S_2^2 + S_3^2 + S_4^2}}{S_1}$ Degree of polarization
Green = $[S_1(1 - m)]^{1/2}$
Blue = $[mS_1(1 - \sin 2\chi)/2]^{1/2}$ $\chi = \frac{1}{2} \arcsin\left(\frac{S_4}{mS_1}\right)$ Degree of ellipticity
 M (Raney et al. 2012, JGR 17]

We denote the ratio of HH- to VVpolarized backscattered power for a dihedral pair, or suite of such features, as $\alpha_{\rm D}$. For an ideal dihedral feature, $\sigma_{\rm HV}^0$ is negligible, and β is -1. Under these conditions,

$$Re[S_{HH}S_{VV}^*] = -\sqrt{\sigma_{HH}^0 \sigma_{VV}^0} = -\sigma_{VV}^0 \sqrt{\alpha_D}$$
(14)

and the CPR can be simplified from equations (7) and (8):

$$\mu_c = \frac{\left(1 + \sqrt{\alpha_D}\right)^2}{\left(1 - \sqrt{\alpha_D}\right)^2} \tag{15}$$

Figure 7. Circular polarization ratio (solid curve) and α_D , the ratio of HH-polarized to VV-polarized backscatter (dotted line), averaged over a distribution of randomly oriented dihedral facet pairs, as a function of the real dielectric constant of the facets.

Is it double scattering?

Figure 6. Diagram showing scattering geometry for a corner reflector. The vertical dashed line is the normal to the background plane surface.

Campbell et al. (2012)

1999 JM8 (P type)

0.0

0.2 0.4 0.6 0.8 Normalized (Fractional) RGB Value (0-1) 1.0

Low CPR all over, OC (blue) dominates [Hickson et al. 2020]

33342 1998 WT24 (E type)

m-chi

High CPR all over, SC (red) dominates: due to the wavelength-scale particles?

[Hickson et al. 2020]

M-chi decomposition of individual particles

Single scattering

Double scattering

Backscattering as a function of size parameter

m = 1.43

m = 2.54

Backscattering as a function of size parameter and refractive index

