Light scattering laboratories

Jesús Escobar-Cerezo

October-December, 2018

Experimental single scattering matrices from aerosols

Chronological evolution

- A new polarization-modulated light scattering instrument. Hunt & Huffman, 1973.
- Measuring scattering matrices of small particles at optical wavelengths (In Mishchenko *et al.* Light scattering by nonspherical particles) Hovenier, 2000.
- 3. Experimental determination of scattering matrices of dust particles at visible wavelengths: The IAA light scattering apparatus. **Muñoz et al. 2010.**

Scattering matrix

$$\begin{pmatrix} I_{sc} \\ Q_{sc} \\ U_{sc} \\ V_{sc} \end{pmatrix} = \frac{\lambda^2}{4\pi^2 D^2} \begin{pmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \\ F_{41} & F_{42} & F_{43} & F_{44} \end{pmatrix} \begin{pmatrix} I_{in} \\ Q_{in} \\ U_{in} \\ V_{in} \end{pmatrix}$$
Intensity Linear polarization Circular polarization

Scattering matrix depends on:

- Refractive index
- > Shape
- ➤ Size distribution
- > Wavelength

Size parameter

Scattering matrix

$$\begin{pmatrix} I_{sc} \\ Q_{sc} \\ U_{sc} \\ V_{sc} \end{pmatrix} = \frac{\lambda^2}{4\pi^2 D^2} \begin{pmatrix} F_{11} & F_{12} & 0 & 0 \\ F_{12} & F_{22} & 0 & 0 \\ 0 & 0 & F_{33} & F_{34} \\ 0 & 0 & -F_{34} & F_{44} \end{pmatrix} \begin{pmatrix} I_{in} \\ Q_{in} \\ U_{in} \\ V_{in} \end{pmatrix}$$

Scattering matrix depends on:

- Refractive index
- > Shape
- ➤ Size distribution
- > Wavelength

Size parameter

IAA-CODULAB experimental apparatus.

IAA-CODULAB

COsmic DUst LABoratory (IAA-CODULAB)

IAA-CODULAB

 $\Phi_{sca}(\lambda,\theta) = c_1 \mathbf{A}_{\gamma_A} \mathbf{Q}_{\gamma_Q} \mathbf{F}(\theta) \mathbf{M}_{\gamma_M} \mathbf{P}_{\gamma_P} \Phi_{inc}(\lambda,\theta)$

Aerosol generator and single scattering test.

$$\begin{split} \mathbf{\Phi}_{sca}(\lambda,\theta) &= c_1 \mathbf{A}_{\gamma_A} \mathbf{Q}_{\gamma_Q} \mathbf{F}(\theta) \mathbf{M}_{\gamma_M} \mathbf{P}_{\gamma_P} \mathbf{\Phi}_{inc}(\lambda,\theta) \\ \mathbf{A}_{\gamma} &= \mathbf{P}_{\gamma} = \frac{1}{2} \begin{pmatrix} 1 & C & S & 0 \\ C & C^2 & SC & 0 \\ S & SC & S^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{Q}_{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & C^2 & SC & -S \\ 0 & SC & S^2 & C \\ 0 & S & -C & 0 \end{pmatrix} \\ \mathbf{M}_{\gamma_M}(\phi) &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & C^2 + S^2 \cos \phi & SC(1 - \cos \phi) & -S \sin \phi \\ 0 & SC(1 - \cos \phi) & S^2 + C^2 \cos \phi & C \sin \phi \\ 0 & S \sin \phi & -C \sin \phi & \cos \phi \end{pmatrix} \end{split}$$

$$C = \cos 2\gamma$$
 and $S = \sin 2\gamma$ $\phi = \phi_c + \phi_0 \sin \omega t$ ¹⁰

$$M_{\gamma_M}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & C^2 + S^2 \cos \phi & SC(1 - \cos \phi) & -S \sin \phi\\ 0 & SC(1 - \cos \phi) & S^2 + C^2 \cos \phi & C \sin \phi\\ 0 & S \sin \phi & -C \sin \phi & \cos \phi \end{pmatrix}$$

$$\sin \phi = \sin(\phi_0 \sin \omega t) = 2 \sum_{k=1}^{\infty} J_{2k-1}(\phi_0) \sin(2k-1)\omega t$$
$$\cos \phi = \cos(\phi_0 \sin \omega t) = J_0(\phi_0) + 2 \sum_{l=1}^{\infty} J_{2l}(\phi_0) \cos(2l)\omega t$$

 $\Phi_{sca}(\lambda,\theta) = c[DC(\theta) + 2J_1(\phi_m)S(\theta)\sin\omega t + 2J_2(\phi_m)C(\theta)\cos 2\omega t]$

Configuration	$\gamma_P(deg)$	$\gamma_M(deg)$	$\gamma_Q(deg)$	$\gamma_A(deg)$	$DC(\theta)$	$S(\theta)$	$C(\theta)$
1	45	0	-	-	F_{11}	$-F_{14}$	F_{13}
2	45	0	-	45	$F_{11} + F_{31}$	$-F_{14}-F_{34}$	$F_{13} + F_{33}$
3	45	0	0	45	$F_{11} + F_{41}$	$-F_{14}$ - F_{44}	$F_{13} + F_{43}$
4	0	-45	-	-	F_{11}	$-F_{14}$	F_{12}
5	0	-45	-	0	$F_{11} + F_{21}$	$-F_{14}$ - F_{24}	$F_{12} + F_{22}$

$$\Phi_{sca}(\lambda,\theta) = c_1 A_{\gamma_A} Q_{\gamma_Q} F(\theta) M_{\gamma_M} P_{\gamma_P} \Phi_{inc}(\lambda,\theta)$$

$$\Phi_{sca}(\lambda,\theta) = c[DC(\theta) + 2J_1(\phi_m)S(\theta)\sin\omega t + 2J_2(\phi_m)C(\theta)\cos 2\omega t]$$

Configuration	$\gamma_P(deg)$	$\gamma_M(deg)$	$\gamma_Q(deg)$	$\gamma_A(deg)$	$DC(\theta)$	$S(\theta)$	$C(\theta)$
1	45	0	-	-	F_{11}	$-F_{14}$	F_{13}
2	45	0	-	45	$F_{11} + F_{31}$	$-F_{14}-F_{34}$	$F_{13} + F_{33}$
3	45	0	0	45	$F_{11} + F_{41}$	$-F_{14}-F_{44}$	$F_{13} + F_{43}$
4	0	-45	-	-	F_{11}	$-F_{14}$	F_{12}
5	0	-45	-	0	$F_{11} + F_{21}$	$-F_{14}-F_{24}$	$F_{12} + F_{22}$

$$\Phi_{sca}(\lambda,\theta) = c_1 A_{\gamma_A} Q_{\gamma_Q} F(\theta) M_{\gamma_M} P_{\gamma_P} \Phi_{inc}(\lambda,\theta)$$

Alignment example

Configuration	$\gamma_P(deg)$	$\gamma_M(deg)$	$\gamma_Q(deg)$	$\gamma_A(deg)$	$DC(\theta)$	$S(\theta)$	$C(\theta)$
1	45	0	-	-	F_{11}	$-F_{14}$	F_{13}
2	45	0	-	45	$F_{11} + F_{31}$	$-F_{14}-F_{34}$	$F_{13} + F_{33}$
3	45	0	0	45	$F_{11} + F_{41}$	$-F_{14}$ - F_{44}	$F_{13} + F_{43}$
4	0	-45	-	-	F_{11}	$-F_{14}$	F_{12}
5	0	-45	-	0	$F_{11} + F_{21}$	$-F_{14}$ - F_{24}	$F_{12} + F_{22}$

$$\mathbf{\Phi}_{sca}(\lambda,\theta) = c_1 \mathbf{A}_{\gamma_A} \mathbf{Q}_{\gamma_Q} \mathbf{F}(\theta) \mathbf{M}_{\gamma_M} \mathbf{P}_{\gamma_P} \mathbf{\Phi}_{inc}(\lambda,\theta)$$

$$\mathbf{I}_{sca} = \mathbf{F}(\theta) \cdot \mathbf{M}_{0^{0}} \cdot \mathbf{P}_{45^{0}} \mathbf{I}_{in} = \left(\frac{I_{in} + U_{in}}{2}\right) \begin{bmatrix} F_{11} - F_{14} \sin \phi + F_{13} \cos \phi & \mathbf{I} \\ F_{21} - F_{24} \sin \phi + F_{23} \cos \phi & \mathbf{Q} \\ F_{31} - F_{34} \sin \phi + F_{33} \cos \phi & \mathbf{V} \\ F_{41} - F_{44} \sin \phi + F_{43} \cos \phi & \mathbf{U} \end{bmatrix}$$

Experimental measurements of the JSC-1A lunar analog

JSC-1A lunar analog

Apollo landing sites (Smithsonian Institution)

JSC-1A sample (By ArnoldReinhold - Own work, CC BY-SA 3.0)

JSC-1A lunar analog

Constituent oxides	Apollo 14 sample 14163 (Papike et al. 1982)	JSC-1A (Ray et al. 2010)
SiO ₂	47.3 %	45.7 %
Al_2O_3	17.8 %	16.2~%
CaO	11.4 %	10.0~%
FeO	10.5 %	-
$\rm Fe_2O_3$	7	12.4~%
MgO	9.6~%	8.7 %
TiO_2	1.6~%	1.9~%
Na_2O	0.70 %	3.2~%
K_2O	0.55~%	0.8 %
MnO	0.135~%	0.2~%

JSC-1A size distribution

Size distribution

Escobar-Cerezo et al. (ApJSS, 2018)

JSC-1A size distribution

Escobar-Cerezo et al. (ApJSS, 2018)

JSC-1A SEM images

Experimental measurements of the JSC-1A lunar analog

Experimental measurements of the JSC-1A lunar analog

Comparing pristine and recovered sample

Comparing pristine and recovered sample

Extrapolated matrix for JSC-1A lunar analog

Escobar-Cerezo et al. (ApJSS, 2018)

Computed asymmetry parameter and depolarization factor

Mie			
0.74			
0.75			
0.74			
Back-scattering depolarization factor $\delta_L(180^\circ)$			Sterzik et al. assumed th the regolith depolarizes t light by a factor of 3 3 at
Wavelength λ			550nm (i.e. 0.3 as
488 nm			expressed on the table).
520 nm			
647 nm			
	$\begin{tabular}{ c c c c } \hline Mie & & \\ \hline 0.74 & & \\ \hline 0.75 & & \\ \hline 0.74 & & \\ \hline ization factor $\delta_L(180^\circ)$ \\ end{tabular} \\ \end{tabular} \\$	Mie 0.74 0.75 0.75 0.74 ization factor $\delta_L(180^\circ)$ ngth λ Mie nm 0.35 nm 0.31	Mie0.740.750.74ization factor $\delta_L(180^\circ)$ ngth λ Mienm0.35nm0.42nm0.31

Asymmetry parameter g

Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

Fig. 2. Angular scattering functions for large dust grains, showing the relative intensity scattered at a scattering angle θ . The pure reflectance function (long-dashed curve) is given, and diffraction effects are added for 10, 30 and 100 μ m grains (dotted, dashed and solid curves). The empirical scattering function of the Fomalhaut disk grains from Kalas et al. (2005) is also shown (thick grey curve, albedo chosen to match the computations). The grey area indicates the observable range of scattering angles for the Fomalhaut system.

- Very large grains (>100 μm) to explain HST images (Min *et al.* 2010).
- Fomalhaut: Herschel far-IR spectra shows high temperature grains.
- Large (r ~ 15 μm) fluffy aggregates consisting of small monomers to explain far-IR Herschel data. (Acke et al. 2012).

n=1.58 + i2.10⁻⁵

n=1.54 + i0.0

Muñoz et al. (2017)

n=1.59 + i0.01

Etna

Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

Goniophotometers

Fig. 1: Coordinate system

