The answers are due on September 28, 2022. Please return them to Anne Virkki via e-mail (anne.virkki@helsinki.fi).

1. Fraunhofer diffraction by a spherical particle ($x=2 \pi a / \lambda$, where a is the radius and λ is the wavelength $)$ can be approximated with

$$
D(x, \theta)=x^{2} \cos \theta\left[\frac{2 J_{1}(x \sin \theta)}{x \sin \theta}\right]^{2} \Theta\left(90^{\circ}-\theta\right)+J_{0}(x)^{2}+J_{1}(x)^{2}
$$

where θ is the scattering angle, J_{1} is a Bessel function of the first kind and of the order 1 , and Θ is the Heaviside step function,

$$
\begin{gathered}
\Theta(s)=1, s \geq 0 \\
\Theta(s)=0, s<0
\end{gathered}
$$

Show that

$$
\begin{equation*}
\int_{(4 \pi)} \frac{d \Omega}{4 \pi} D(x, \theta)=1 \tag{1}
\end{equation*}
$$

What is your interpretation of the term $D(x, \theta) /(4 \pi)$?
The following relationships are valid for the Bessel functions:

$$
\begin{aligned}
J_{0}^{\prime}(y) & =-J_{1}(y) \\
J_{n-1}(y) & =\frac{n}{y} J_{n}(y)+J_{n}^{\prime}(y)
\end{aligned}
$$

(6 p)
2-4. Derive the scattering matrix elements for the particle system in Exercise 2.1 in a fixed orientation. What is the scattering matrix for the specific configurations where the vector \mathbf{d} is
(i) perpendicular to the scattering plane;
(ii) within the scattering plane but perpendicular to the wave vector of the incident field.
(18 points)

