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Analysis of radiative scattering for multiple
sphere configurations

By DanierL W. MACKOWSKI
Department of Mechanical Engineering, Auburn University, Alabama 36849, U.S.A.

An analysis of radiative scattering for an arbitrary configuration of neighbouring
spheres is presented. The analysis builds upon the previously developed superposition
solution, in which the scattered field is expressed as a superposition of vector
spherical harmonic expansions written about each sphere in the ensemble. The
addition theorems for vector spherical harmonics, which transform harmonies from
one coordinate system into another, are rederived, and simple recurrence relations
for the addition coefficients are developed. The relations allow for a very efficient
implementation of the ‘order of scattering’ solution technique for determining the
scattered field coefficients for each sphere.

1. Introduction

Prediction of the radiative absorption and scattering characteristics of small
particles is important to researchers in a number of fields, e.g. atmospheric
modelling, analysis of radiative transfer from flames, and development of non-
intrusive laser-based optical diagnostic methods. Computation of the radiative
characteristics of spherical particles from Lorenz—Mie theory is practically a trivial
matter due to the existence of efficient computer codes (Bohren & Huffman 1983).
However, it is not unusual to encounter situations in which the individual particles,
while spherical in shape, are so close together that the ‘isolated sphere’ assumption
inherent in Lorenz—Mie theory is questionable. A common example is soot formed in
combustion processes. Electron micrographs of the individual soot particles reveal
them to be agglomerates of a large number of primary, spherical particles (Dobbins
& Megaridis 1987).

Several investigations have been conducted into the radiative scattering behaviour
of such ‘neighbouring sphere’ particles. Liang & Lo (1967) and Brunning & Lo (1971)
were the first to formulate the general solution to Maxwell’'s wave equations for
neighbouring spheres. Their analysis basically involves a superposition technique, in
that the total solution for the field external to the particle is constructed from a
superposition of individual solutions, in the form of vector spherical harmonic
expansions, written about each sphere. To satisfy the boundary conditions on each
sphere, addition theorems are used to transform a spherical harmonic from one
coordinate origin to another. Ultimately, their formulation leads to a set of linear
equations for the expansion coefficients of the individual solutions. Fuller &
Kattawar (1988a, b) refined the superposition formulation, and investigated an
‘order of scattering’ technique for solving the system of equations. A superposition
solution to the neighbouring sphere scattering problem has also been independently
formulated by Borghese et al. (1979, 1984).
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A different approach to the problem was presented by Jones (1979a, b), who
started with the integral formulation of the wave equations (Saxon 1955). By
assuming the electric field to be uniform within each of the primary spheres (i.e. the
Rayleigh approximation), his analysis also leads to a system of linear equations for
the cartesian components of the field within each sphere. His solution, however, is
completely equivalent to that obtained from the superposition technique for similar
Rayleigh-limit conditions, since it begins with the same governing equations and
boundary conditions.

Presented here is a further refinement of the superposition solution method. The
contribution of this work to the multiple sphere scattering problem is that the
formulation and computational aspects of the addition theorems have been greatly
simplified, and enables an efficient implementation of the order-of-scattering solution
technique.

2. Formulation
2.1. The superposition solution

The basic framework for the multiple sphere scattering problem follows directly
from Lorenz—Mie theory for an isolated sphere (Stratton 1941; Bohren & Huffman
1983), and this theory is outlined here. Assuming time-harmonic dependence with
factor exp (—iwt), expressions for the incident, scattered, and internal electric fields,
denoted E, E;, and E,, respectively, satisfying Maxwell’s wave equations are given
as

Ey=3 S [Py Nour, 0.0)+ dpy Mip,(r,0,8)], S
n=1m=—n

E;= % 3 [ty N (r,0.9)+ by M3, (.0, )], @)
n=1m=—n

E, = X % [dy, N3y mr,0.9) + ¢ M, (0. $)]. ®)
n=1m=-n

In the above, (90, @mn)s @mns Omn) and (¢, d,,,) are the expansion coefficients for
the incident, scattered and internal fields, respectively, and m = n+ik is the complex
index of refraction of the sphere. The vector spherical harmonics M,,, and N,,,, are
defined by

Mgvjz)n = eru%)m Ngz)n = (1/k)VXM;1]1)n> (4)

where ) is the scalar spherical harmonic given by
ud, = jn(r) P (cos 0) ™ u® = h,(r) P (cos 6) e™?, (5)

In the above, j, and %, = j,+iy, are spherical Bessel functions, and P™ is the
associated Legendre function (Abramowitz & Stegun 1964). In the above and
following equations, it is to be understood that the radial position y has been non-
dimensionalized by the factor k = 2n/A, where A is the wavelength of the incident
radiation. Expressions for the incident, scattered, and internal magnetic field are
obtained from (1)—(3) via the relation H = (V x E)/iwu, where w and y are the circular
frequency and magnetic permeability, respectively.

Across the surface of the sphere, the tangential components of the electric and
magnetic fields are continuous:

(Ey+ E,—E)x¢é,=0, (Hy+H,—H,)xé =0. 6)
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By applying the above boundary conditions and utilizing the orthogonality
properties of the spherical harmonics, the scattered field coefficients a,,, and b,,, can
be expressed in terms of the incident field coefficients p,,, and ¢,,,, the sphere size
parameter k, where a is the sphere radius, and the index of refraction m.

The only modification to the formulation for multiple-sphere scattering is that the
scattered field is now taken to be the superposition of scattered waves originating
from each sphere in the configuration. Referring to figure 1, each of the N spheres
in the configuration is located at a point X’, Y?, Z%, and is characterized by a size
parameter x’ and refractive index m'’. The scattered field E; is thus expressed as

N
E,= Y E. (7

i=1
The ith component of the scattered field is written using equation (2), with the
spherical harmonics evaluated in a spherical coordinate system referenced to sphere i:

0 n
E{= 3% X (a5, N, 0, ¢") + b5, M3, (7, 0", $7)]. (8)
n=1m=-n
To apply the boundary conditions, and ultimately obtain the field coefficients af,,,,
bi,, about each sphere, it is necessary to transform the harmonics written about
sphere j into harmonics about sphere 4. This transformation is accomplished through
an addition theorem. For the condition 7/* > 7%, where ' represents the distance from
origin j to ¢, the addition theorem for vector spherical harmonics can be written

0 !

MR, 07,0, ¢7) = 5 X [AQ" MGG (0, 08, ') + B Nid (v, 07, ¢°)], 9)
I=1k=-1
© l

N0, ¢) = B 3[4 NR 0,6, ¢) + Bl MR .6', 691 (10)

The coefficients A" and B,’C”l” depend upon 7" and the direction of translation, 6%, ¢7*,
of origin j to i. The formulation and computation of these coefficients, which is the
focus of this paper, will be discussed in the following section.

Using the addition theorem, a linear relationship can be obtained between the
scattering coefficients corresponding to sphere ¢ and those for all the other spheres.
This is given as

Ng o 1
afnn =—a (pmn Z Z Z [Alﬁfn(Tji»gji,¢ji) a;cl-i_Blgzln(rﬁ?oﬂ’¢ﬁ)b;cl])> (11)
[ A
N © l s s s . 2. s s
binn = —ﬂ%(q’}nn ST S (A0 0, ¢”)b§cz+B’frfn(V”,9”,¢“)a§cz])' (12)
JoLimtie=—t
Here, a!, and g are the familiar Lorenz—Mie single sphere coefficients defined by

where i, and £, are Ricatti-Bessel functions, and the prime denotes differentiation
with respect to argument.
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Figure 1. Sphere configuration.

By truncating the series representation for the scattered field, equation (8), at
n = N,, equations (11) and (12) are reduced to a system of linear equations for the
coefficients. In matrix form, this system is expressed

NS
a+ Yy Ta = p, (15)
2
where a’ = (ai,,,b%,,), P' = — (& Plpns B @onn)s m = 1,2, ..., N;ym =0, +1,+2,... +n
and T7 represents the translation’” matrix from sphere j to sphere 7. The elements
of T are given by
772

mnkl —

AR (gt gy gl BEL (il gt gty
(zxA W (1707 BTt ocBrﬁqﬁ) (16)

/)nn Blcl Tﬂ o7t ¢7z /)nn Alcl pit 071 ¢7z
The coefficients pt,,,q%,, are specified by the nature of the incident field. A

convenient choice is to assume the incident field propagates in the z-direction and is
polarized in the z-direction. For this situation (Saxon 1955),

2n+1 i .
Pl = —hr S exp (), ph, = H 0t Desp (2), (1)
Poun = G = 0, m| # 1. (19)

2.2. Far-field scattering and cross sections

At distances r > r.., where 7, is the largest distance between the spheres, the
scattered field from the ensemble can be represented as a spherical, transverse wave.
Using the asymptotic limit of the Hankel function £,(7), the 8 and ¢ components of
this wave can be expressed in terms of a single coordinate system by the form

By =i/re" S S (=)™l Typn(0) + b5, 7 (0)] €7, (20)
n=1m=-n
o0 n
By=—1/reé" S S (=)"ak, 7 (0) + 65, 70 (0)] 77, (21)
n=1m=-n
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where the functions #,,, and 7, are defined by
Tn(0) = (m)/(sin 6) PT(cos 0), 7,,,(0) = d/d6 P (cos 6). (22)

The total scatterlng coefficients al,,,b%, are obtained by transforming the
scattered field expansions for the individual spheres to an expression based on a
single origin. For simplicity, this origin will be taken to correspond to sphere 1. For
the condition 7' > ¢/1, the addition theorem for vector harmonics has the form

0 1]
M, (7.0, ¢") = X X [A7" M0, 0%, ¢+ By N (', 0, V)], (23)

I=1k=-1

N0, 00, ¢7) = > 2 [AG" NQ(r, 61, ¢1)+ B MY (r,, 6, 1)) (24)
1=1k=—1
The addition coefficients 47", B, are similar to A7}, BYi® defined by equations (9)
and (10), but have a different dependence on 7. Applying the above two equations
to each sphere (except sphere 1), the total scattering coefficients defined about origin
1 can be written

Ng o0 1

U = G+ 2 5 X [A7 078 0, ) aly + B, (70, 07, ¢71) b, (25)
j=11=1k=-1
J#i
Ng o0 1

On = bpn+ 2 2 B [A75 (7, 07, ¢ by + B (71, 67, ¢77) ). (26)
J=11=1k=-1
J#i

The scattering cross section of the sphere ensemble is obtained by integrating the
scattered radiant intensity over a spherical surface enclosing the ensemble, i.e.

2 (2n (n
csca:;-J Jlssinﬁdﬁdqi
0J0
——Re E H*—E,, H%) sin 0 d6 dg, 27)
s " sd s¢ " s0

where the asterisk denotes complex conjugate. Using the expressions for the
scattered field, and the relations

" MY s nn+1) (n+m)!
jo fo (T on Tiey + T Tir) €% 8in 6 d6 dgp = 4m 2n+1 (n—m)!al"b\"m’ (28)

21 ("t
f J (T Tt + Tonn Trez) €™ 9% sin 6 d6 dgp = 0, (29)
0

the scattering cross section can be written

nn+1) (n+m)!

2n
Csea = L 2n+1 (n—m)!

g

§ § (I 2+ B, ). (30)

n _

The extinction cross section of the ensemble is obtained simply from the sum of the
extinction cross sections of the individual spheres. From the optical theorem (Bohren
& Huffman 1983), the latter, for sphere 7, is given by

2 nn+1)(n+m)!
(3
Clxi = k2 ;Re X T 2n+1 (n—m)!

n=1m=-n

(@nn Pin B T - (31)
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For the z-propagating, x-polarized incident field assumed here, the above equation
becomes

Cl= kz " Re {exp (—iZY) %

n

1

and, for the entire ensemble,

ext 2-4 Oext ( 33 )

The total absorption cross section for the ensemble can be obtained from Cy, =
C oyt — Cocn- Alternatively, the absorption cross section can be obtained by calculating

the radiant energy absorped by each sphere, via

12
Clpg =— f f (r = a') sin 6 d6 d¢
aiz 2n 'n )
=57 Re f f (B HYy— B, HYy) |-y sin 0 d6 d. (34)
0 0 0
Substituting the expression for the internal field E,, equation (3), into the above and
integrating, one obtains

) 21 @
Czlzbs =5 Re X

lmzl2 k2 i m

Loonn+1)(ntm)! .
Z AT 1 Yl ) Y )

X (m" ||+ e l®), (35)

where the internal field coefficients ¢!,, and d’,, are related to the scattering
coefficients by

) imt )

- __ L i 36
O = i ) @) — () P ) (59)
di imi . (37)

T () Yy (@) — (@) Yy ()

As was the case with extinction, the ensemble absorption cross section is the sum of
the individual sphere absorption cross sections, i.e.

NS
Cors = Z Cgmbs' (38)

i=1

3. Addition theorems
3.1. Solid translation of coordinates

The formulation of the multiple-sphere scattering problem is, up to this point,
relatively straightforward. The analysis, however, becomes significantly more
complicated once the details of the addition coefficients 47" and Bf," are addressed.
Explicit expressions exist for the scalar (Friedman & Russek 1954) and vector (Stein
1961; Cruzan 1962) spherical harmonic addition theorems. The derivations are
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X’ Y"' Py
Figure 2. Translation of coordinates from origin j to origin i.
lengthy, and the results are simply listed here. From Cruzan (1962), the vector

addition coefficients for the solid translation from origin X/, Y/, Z/ to X', Y*, Z¢
illustrated in figure 2 is given as

L . 2041 ,
mn (.t Pit Ay — (__ 1)k j0-n) S P —
AP0 ) = (<) ST R Pt D+ U+ ) —pp+ 1)
xa(m,n; —k,1;p)h, (") P77 *(cos 6%) exp [i(m—k) $], (39)
Bt 67, ) = — (= 1)k it 2041 5 o2 ¥3

20(1+1)7, 2p+1
x{{{—k)I+k+1)a(m,n;, —k—1,1;p)
+2k(p—m+k+1)a(m,n; —k,1;p)
—(p—m+k+ 1) (p—m+k)aim,n; —k+1,1;p)}
X by (P PP E(cos 67F) exp [i(m— k) ¢7]. (40)

The quantity a(m,n;k,;p) is defined by the linearization expansion for Legendre
functions:
P(cos 0) Pf(cos 0) = Xa(m,n; k,1;p) P+ (cos 0). (41)
p

The summation over p in equations (39)—(41) runs over the values p = |n—I|,
[n—1|+2,...,n+[. Expressions for the addition coefficients 4;7" and B;}'" defined in
equations (23) and (24) are obtained by replacing 4, (") with j,(+"*) in equations (39)
and (40).

Explicit relations for a(m, n; k,[; p) exist (Stein 1961), but they envolve additional
summations and are not easily implemented. Alternatively, recurrence relations for
these quantities can be obtained (Cruzan 1962). These relations, however, are rather
complicated. They also cannot be put in the form where the index p is the only
independent variable, which would be the ideal form from inspection of equations
(39) and (40).

An alternate formulation of the addition coefficients can be derived, which
bypasses the computation of the a(m,n;k,{;p) functions and the evaluation of the
series in equations (39) and (40). It yields relatively simple recurrence relations from
which A7" and BJ" can be obtained directly, and considerably speeds up the
computation of these quantities.
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The derivation begins with consideration of the addition theorem for scalar

spherical harmonics. This theorem, for the problem at hand, can be written

!
¥ Cmn(d gt gy u® (rt, 08, Y, 1>t (42)

1k=—1

M8

ugn (7, &/, ¢7) =

~
I

The explicit expression for the scalar addition coefficient C73" is given as (Friedman
& Russek 1954 ; Stein 1961)

Cpr(?, 0, ¢y = (= 1)* i 21+ 1) X iPa(m, n; —k,1; p)
»

X h, (17" P (cos 67) exp [i(m—k) ¢'].  (43)

Recurrence relations will now be developed for the C;* coefficients. By taking the
gradient of u,,,, resolving into cartesian components, and utilizing the recurrence
relations for Bessel and Legendre functions, the following equations are obtained:

(éx + 1éy) ’ Vumn = (2% + 1)_1 [um+1n~1 + um4-1n+1]7 (4‘4)

(é,—i€,) Vi, = Cn+1)" [(n+m)n+m—1)uy 4,
+(n—mA D)= +2) sy ), (45)
éz ’ Vumn = (271’ + 1)_1 [(n +m) Um—1n—-1"" (n—m+ 1) um—ln-ﬂ]' (46)
One sees from the above that the cartesian components of the gradient of a scalar
harmonic can be expressed in terms of harmonics of neighbouring degree and order.
The gradient operator is invariant with coordinate system, and the cartesian
components of a vector are unaltered by a solid translation of coordinates. Thus, by

taking the gradient of both sides of equation (42), matching components, and
rearranging, the following equations are obtained

0 ! 1 B 1 B
Co+ 1) ul  tufg =% X [_— Ot +m Okm—lllﬁlil ugy, (47)

it L2143
2n+1)"(m+m)(n+m+1)ud,_ +n—m)n—m+1)ud, ]
0 l -
(I+k+1)(I+k+2) (I—k)(l—k—1)
= Z E I: O”H“l’lz +—__Om+17_z u(l), (48
1=1 k=—1 20+3 k1t 21—1 1=t Y )
(2n+ 1)_1[ n+m) ug)n—l—‘(”"m“‘ 1) ug)vwl]
2 L l+k+1 I— 1
=3 X [——(]’(m ————mn gD (49)
el 2043 TE g R

where the harmonics 4, and u{} are expressed in terms of +/, &, ¢/ and +*, 6°, ¢,
respectively. The addition theorem, equation (42), is now applied to the left-hand
side of the above three equations. Using the orthogonality of the harmonics yields

(2n+ 1) 7H[OmA1 4 OndT] = (20— 1)~ OPAn, + (204 3)71 O3, (50)
@Cn+ 1) (n+m)n+m+1) CFr "+ (n—m)(n—m+ 1) Cr+L
I—k)(i—F—1) . (I+k+1)(+k+2)
=____2.l_1—._0k++11l_1+( 213 et (51)
1r i I—k I+k+1 .. .
Cn+ 1) (n+m) O —(n—m+1) Cij" ] =51 Wz’ﬁ’h"‘*m Dt (52)
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The above three equations are recurrence relations for the O} functions. They are
noteworthy in that 7%, #7¢ and ¢’ do not explicitly appear in the relations, indicating
a geometrical relationship among the different degrees and orders. Of course, for the
recurrence relationships to be of practical use starting values are needed. This is
accomplished by combining addition theorems for spherical Bessel functions and
Legendre polynomials (Abramowitz & Stegun 1964 ; Hobson 1931) to yield:

exp (irf)/ird = ul@ (7, 67, )

8

=3 (— )P 20+ 1) by (17%) P7*(cos 67) exp (—ikg’)

=1 k=-1
x j,(r') P¥(cos 0%) exp (ik¢?), ' < 1%, (53)
or 00 = (—1)¥Y 21+ 1) by (r7) P;¥(cos %) exp (—ikg’). (54)

Using the starting expression, the recurrence relations can be used to calculate
cmn for arbitrary k, I, m and n. A practical method of doing so uses the fact that
cmr =0 if |m| > n or |k| > 1. Equations (50) and (51) can thus be written for the
specific case of |m| = n as

Cr™t = 2n+1) [(21—1)7" CFy o+ 21+ 3)71 CF2y ], (55)
. U [U—kyi—k—1) I+k+ 1)1 +k+2) .
Okl R 2(n+ 1) [ 2l_ 1 ) C’IC-?I‘Z—I +( 21)_*_ 3 ) Olc+1l+1 . (56)

Starting with the above two equations, C7i™ can be obtained from C%) for all values
of k, I. Equation (52) can then be used to compute C}3" for n = |m|+1, |m|+2,...,N.
Note that, because of the relationship between [ and » in the recurrence relations,
calculation of C7" up to I = n = N requires that one start with €%} calculated up to
= 2N. Extensive numerical tests of the recurrence relations confirmed their
stability.
Additional recurrence formulas for the C7," can be obtained through analysis of the
vector spherical harmonic M,,, = Vu,,, X r. It can be shown that

(éx+iéy)'an = Uy s 105 (57)
(é,—ié,) M, = i(n+m)(n—m=+1) Uyy,_y,, (58)
é, M, =—imu,,,. (59)

Consider the translation from coordinates j to ¢ as illustrated in figure 2. Then

Vu®, (7,0, ¢y x ¥ = M (11,00, $7)

M8

l
Y CmnNud (ot 0, ¢ty x ¥
=1

T
A

k

O Vs (o, 67, 81 x (1 + )

l

Il
M8
[~

~
I

-

=

I
M8
NN

L O Vu (!, 07, 80 x P+ MR (1, 0, §7)]. (60)

~1

T

1k

I

By taking ' = é,X+é,Y+¢é,Z, and using equations (44)—(46) and (57)—(59), both
Proc. R. Soc. Lond. A (1991)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on November 6, 2012

608 D. W. Mackowsk:

sides of equation (60) can be resolved into cartesian components. By equating the
components, and then applying the scalar addition theorem to the left-hand side (as
was done in equations (50) and (51)), the following relations can be derived:

CEil = @U43) 7 ZO7 + I+ k+2) 070, 4,
+@I=1)TZOY — =k —1) EC}, 1+ O, (61)
(m—m~+1)(n+m) CP2" = (+k)20+3) (+k+1) ZOT" — 07", 4]
+(—=k+1)20—-1)" [(I—k) ZCP" + 900", 1+ U+ E)(I—k+1) O, (62)
2(k—m) O™ = (214 3) Oy + (I H+k+ 1) (I+E+2) ECFY, ]
+@I=1) O+ (k) (I —k—1) ECY, 4], (63)
where n = X+iY, £ = X—iY.

An additional symmetry relation for C7" can be obtained from the explicit
expression, equation (43):
Okl = (—1)Frerntm Qp 4 1)(20+ 1)1 O, (64)

—mn

The next step is to relate the vector addition coefficients A7," and B." to the scalar
addition coefficient C};". The vector harmonic N,,, is first resolved into cartesian
components, yielding

(€,+1€) Ny = 20+ 1) [0y 11700 — (0 1) U151 ], (65)
(é,—ié,)'N,,, = Cn+ 1) [n(n—m+1)(n—m+2) u, 1,
—m+1)r+m)(n+m—1)u,_ 1, 1], (66)
€, N,,=CCn+1)" nn—m+1)u,,,+n+1)(n+m)u,, ] (67)
By expanding the vector addition theorem, equations (9) and (10), into components

and following the procedure used in the previous derivations, C7i" can be related to
A" and BY". After some algebraic manipulations, one obtains

Ay =200+ )] (= k) + k4 1) CFEE 4 2mECT™ 4+ (n+m)(n—m+ 1) C34,

(68)
By = —i 20+ 1) 200+ D)(2l—= )] [ —k)(I—k—1) O A,
+2m(l—k)C™" — (n+m)(n—m+1) CP 2" ]
=120+ 1) 20+ 1) 2I+3)] I+ E+ 1)+ E+2) O
=2m(l+k+1) Ot — (n+m)(n—m+1) CP . (69)

Substitution of equations (61)-(63) into the above yield the additional relations:
AP =+ 1) 20+ 3)] H(l+ k+1) ZOT",
+al(+k+1)(+k+ 2) EC 1 — O 1}
+ (20— D) H{(—k) ZCm",
—alU=k)(I=k—1) ECTYy = 9O, B+ CF (70)
Bt = 1200+ 1)) 220" — (1= k)(I+ b+ 1) O, — 0", (71)

The above equations are identical to those derived (in a completely different manner)
by Stein (1961).
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Figure 3. Euler angles of rotation «, £, and y.

Using the explicit expressions for A7}" and B}}", (39) and (40), symmetry relations
analogous to equation (64) can be obtained:

A1 Ul+1) .
214+1 n(n+1)A“ ’ (72)

2n+1 (1+1) ..
m+1mn+nB“' (73)

A:lcln — (___ 1)Ic+l+m+n

B:Ircnln P ( — 1)Ic+l+m+n

The specific case of axial translation from origin j to ¢ results in a simplification of
the addition theorem. In this situation, the two coordinate systems share a common
azimuth angle ¢, and the addition theorem becomes orthogonal in order m. Equations
(54), (70) and (71) reduce is this case to

C% = (=)' 2L+ 1) Iy(r), (74)
A lEm+1 l—m
mn — fl+n Jt mn mn mn
Aml ¢ {7‘ [(l+1)(2l+3) OmH—l l(2l_1)0ml—l]+0ml}’ (75)
B = jgttntlgdig, oM /1(14+1) (76)
AR =B =00 =0, m #k, (77)

where t = 1 and —1 for 67 = 0 and =, respectively.

3.2. Rotation of coordinates

In this section, the transformation of the vector spherical harmonics occurring due
to a rotation of the coordinate system will be addressed. The techniques developed
here will later be useful in numerical computation of the multiple-sphere scattering
problem.

From Edmonds (1960), surface spherical harmonics are transformed by the
rotation of a coordinate system through the Euler angles o, £, v (figure 3) according
to the relation

n
P™(cos 0) €™ = ™ 3 DT () elF* Pt (cos 6) e'F?, (78)

k=—n

It can be readily shown that the rotation transformation for scalar or vector
spherical harmonics is identical (Stein 1961), i.e.

MO, (r,0,8) = 6™ 5 DI () e MO 0, ). (79)

k=—n
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The techniques developed in the previous section can be applied here to obtain
simple recurrence relations for the D?, functions. Without loss of generality, assume
that a rotation is characterized by a =y = 0. The relationship between the unit
vectors in the initial and rotated coordinate systems is

é; = cos® (3f0) é,—sin® (3f) €, +sin €], (80)
é, = —sin*(}3) ;4 cos® (3B) €, +sin fé,, (81)
é, = —¥(sin Bé;+sin Bé)) + cos pé,, (82)

where é,=¢é,+ié, and é, = é,—ié,. By matching the cartesian components of
equation (79) (using the above and equations (57)-(59)) and rearranging, the
following recurrence relationships can be obtained:

D = cos? 30) Dy, — (n—k)(n+k+1) sin® (36) D}y, — k sin gD, (83)
(n+m)(n—m+1) Dl = —gin® (30) DI,

+(n—k)(n+k+1) cos® 3B) Dy, —k sin gD (84)

(k cos f—m) D}, = —4(sin D7, +(n—k)(n+k+1) sin fDP,,,). (85)

The coefficients D, also have the symmetry relations:

-mo +MM(_H:_@_' m :
Do = (=17 (n—k)!(n+m)!p""’ (50)

Starting values for the recurrence relations are obtained from the addition theorem
for Legendre functions (Hobson 1931). Applied to this situation, it can be written

P,(cos O) = X P,¥(cos f) Pt(cos ') 7 (88)

k=—n
or DY,.(B) = Py¥(cos f). (89)

Numerical tests of the recurrence relations were performed by direct computation
of the rotation transformation, equation (78). Results indicated that equations (83)
and (84) were unconditionally stable. Equation (85), on the other hand, is stable only
in increasing k.

4. Numerical computation

Armed with the recurrence relations developed above, it is a relatively simple task
to compute the elements in the translation matrix 77%. The scattering coefficients a,,,
and b,,, for each sphere in the problem can then be calculated from equation (15)
using an appropriate linear equation solution technique.

An efficient solution technique is the ‘order of scattering’ method developed by
Fuller & Kattawar (1988a, b). This method, which is essentially an iterative scheme,
is based upon the physical concept of multiple reflections. The external field about
a given sphere can always be decomposed into the incident field plus the field arising
from first, second, third, and higher reflections off of nmghbourlng spheres. The
scattering coefficients for this sphere can thus be expressed as a series of ‘partial’
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scattering coefficients, each corresponding to the particular reflection order of the
external fleld. Using this approach, the system of equations for the scattering
coefficients, equation (15), can be written

al=3 a-?, (90)
=0
NS
a"?=—3 Tighr, (91)
j=1
J#
a’ = p', (92)

where the index p refers to the scattering order. Note that the zero-order contribution
corresponds to the isolated-sphere Lorenz—Mie solution.

The recurrence relations developed here allow for a very efficient implementation
of this method, particularly in situations where there is insufficient computer
memory to store the complete translation matrix 7" for each pair of spheres j, 1.
Indeed, the memory requirements for the multiple-sphere scattering problem easily
become excessive. In general, the number of scattering coefficients needed to
characterize the scattered field will be on the order of N7, and the translation matrix
T’ will thus be O(NV}) in size. For an ensemble of N, spheres, there will be N (V,—1)
pairs of interactions between the spheres. Thus, the overall memory requirements of
the problem are O(N2Nt). Considering that the number of expansion terms N, is
generally larger than the size parameter at which the field is referenced (Bohren &
Huffman 1983), memory requirements will quickly exceed capacity as the size and
number of spheres in the ensemble are increased.

Under such conditions, it becomes necessary to compute the matrix elements
sequentially during the calculation of a ‘translated’ scattering coefficient vector
a’ = [T"]a’. Considering a solid translation of coordinates, this transformation could
be accomplished through the equations

Ny 1
ahy =l X X [AYL (707, 1) afy + B (7,07, ¢7) b, ], (93)
1=1 k=—1
) . Nt l ) Iy o . s o ) .
Vo = B X X [AR, (7,07, ¢7) by + B, (7, 07, ¢7) ay ). (94)

1=1k=—1

Computation of the above equations for all m and n will generally involve O(NN¢)
steps. For the particular case of spheres ¢ and j aligned on a common z-axis, the
transformation is accomplished in O(N?) steps. In general, the spheres will not be
aligned on a common z-axis. However, through rotation of coordinates, the
numerical advantages to a common axis can be exploited. A transformation from j
to ¢ could thus be accomplished through the three steps.

1. The coordinate system of j is rotated so that the z-axis of j points towards the
origin of i. The Euler angles for this rotation are o = ¢/*, # = ¢/ and y = 0, and the
transformation yields

n

ahn = 2 Dy, (0") exp (ikg”) ., (95)
k=—n
n

bin= X Dy, (0") exp (ikg") b, (96)
k=—mn
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2. The rotated coefficients at j are axially translated to the origin of ¢:

i = a3 LA (7) alfy+ B ) ], (97)
=1
b, = ﬂ; S (A7 () + B 07 ) (98)

Step 3. The coefficients are rotated back to the original orientation. For this,
a=m, f=0% and y = t—¢’. This completes the translation transformation:
n
ai, = (—1)™mexp (—img’") X (—1)¥DE (07 aj, (99)
k=-n
n
i = (=)™ exp (—img”") X (—1)" Dy, (07) b, (100)
k=—n

Note that each of the three steps of the transformation involve O(N?) steps.
Therefore, the translation transformation accomplished using this rotation-axial
translation-rotation scheme will generally be N, times faster than that accomplished
through a pure solid translation, equation (94).

A completely different approach to obtaining the scattering coefficients has been
developed by Borghese et al. (1984). Their formulation uses the powerful techniques
of group theory to make use of the symmetry properties of a particular sphere
configuration. Depending upon the configuration, the analysis can lead to a
considerable reduction in order of the system of equations for the scattering
coefficients. The recurrence relations developed herein could possibly speed up the
computation of the symmetrized coefficient matrices, but this has not been explored
in detail.

5. Discussion and conclusions

The veracity of the multiple-sphere scattering formulation and computational
scheme presented herein was established through comparison of extinction and
scattering computational results with previously published values (Kattawar &
Dean 1983; Fuller & Kattawar 1988a, b). An example of the calculation results
appear in figures 4 and 5, in which the extinction and absorption efficiencies and
scattered intensities for a close-packed tetrahedral cluster of four identical spheres of
size parameter x = 3.114 and refractive index m = 1.366+0.005i are presented.
Calculations were performed on a 386-based PC, and required about 20 s to compute
the scattering coefficients of the cluster for a particular orientation. In figure 4, the
extinction and absorption efficiencies are given as a function of cluster orientation to
the incident radiation. The efficiencies are around 10-20% greater than those
obtained for non-interacting spheres, and display the orientation symmetry expected
for the tetrahedral configuration. The scattered intensity in the direction 6 = 30°,
¢ = 90°, normalized with the total scattered intensity, is given in figure 5 against the
orientation angle. The purpose of this plot is mainly to illustrate the agreement of the
present method with previously published results for the same configuration (Fuller
& Kattawar 19885).

The intention of this work has been to present a relatively simple and numerically
efficient formulation of the neighbouring sphere scattering problem. Future
investigations will concentrate on physical situations where the method would be
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for a close-packed tetrahedral cluster

of four identical spheres against cluster orientation angle «. Sphere size parameter x = 3.114 and

refractive index m = 1.366 +0.005i. Incident radiation is z-propagating and z-polarized.
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Figure 5. Scattered intensity phase function at the scattering angle 6 = 30°, ¢ = 90° against

cluster orientation angle . Conditions are the same as in figure 4.

useful, such as prediction of the radiative behaviour of agglomerated aerosol
particles. Finally, it should be added that the convergence properties of the order-of-
scattering method need to be addressed. It is not at all certain whether this solution
method will converge for arbitrary numbers and sizes of spheres. Indeed, actual
computations indicate that convergence of equations (90)-(92) is not guaranteed
once the number and/or sizes of the spheres exceed a certain limit. Additional work
is needed to quantify the convergence limits, and apply alternative methods

(Borghese 1984) for solving the system of equations.
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